WiSe 2023/24

Mathematics III Exam (Module: Analysis III)

4. March 2024

Please mark each page with your name and your matriculation number.

Please write your surname, first name and matriculation number in **BLOCK CAPI-TALS** each in the following designated fields. These entries will be stored.

										 	· · · ·		 		
Surn	ame:														
First	name	:													
Matr	:No.:														
					1	1				 1		1			
Stg.:	AIW	BU	BV	CI CS	ΕT	EUI	G G	ES	IN IIW	UM	MB	MT ME	SB	VT	

I was instructed about the fact that the exam performance will only be assessed if the TUHH central examination office verifies my official admission before the exam's beginning.

(Signature)

Task no.	Points	Examiner
1		
2		
3		
4		
5		

 $\sum \ =$

Exercise 1: (2+2 Points)

Given a function f with

 $f(x,y) = x^2 - \cos(y)e^{x-1}.$

a) Compute

- (i) the gradient and
- (ii) the Hessian matrix.
- b) Determine the 2nd degree Taylor polynomial for the function f at the point $(x_0, y_0) = (1, 0)$.

Exercise 2: (1+3+1 points)

Compute the extreme values of the function

 $f: \mathbb{R}^2 \to \mathbb{R}$ with $f(x, y) = x^2 + y^2$

under the constraint $g(x,y) = 9x^2 + 4y^2 - 36 = 0$ using the method of Lagrange multipliers:

- a) Check the regularity condition for g.
- b) Compute the candidates for extrema using the method of Lagrange multipliers.
- c) Classify their type.

Exercise 3: (3 points)

Compute for the vector field

$$\boldsymbol{f} : \mathbb{R}^2 \to \mathbb{R}^2 \quad ext{with} \quad \boldsymbol{f}(x, y) = \left(egin{array}{c} -xy \\ y^2 \end{array}
ight)$$

the line integral $\int_{c} f(x) dx$, where the curve c runs through the left half circle

$$H := \left\{ (x, y)^T \in \mathbb{R}^2 \mid x^2 + y^2 = 9, \ x \le 0 \right\}$$

in a mathematically positive orientation.

Exercise 4: (1+3 points)

Given a vector field $\ \boldsymbol{f} \, : \mathbb{R}^3 \to \mathbb{R}^3$ with

$$\boldsymbol{f}(x,y,z) = \begin{pmatrix} e^z \\ 4z - 2\sin(y) \\ xe^z + 4y + 1 \end{pmatrix},$$

- a) Prove the existence of a potential for f without calculating it.
- b) Compute a potential for $\ \boldsymbol{f}$.

Exercise 5: (2+2 points)

- a) Make a sketch of the area K bounded by $0 \le y$, $0 \le z$ and $x^2 + y^2 + z^2 = 9$, and represent it using spherical coordinates.
- b) Compute the mass of K with the density function $\,\rho=8z+3\,$ using spherical coordinates.