Analysis III for engineering study programs

Ingenuin Gasser

Departments of Mathematics Universität Hamburg

Technische Universität Hamburg–Harburg Wintersemester 2021/22

based on slides of Prof. Jens Struckmeier from Wintersemster 2020/21

Content of the course Analysis III.

- Partial derivatives, differential operators.
- 2 Vector fields, total differential, directional derivative.
- 3 Mean value theorems, Taylor's theorem.
- Extrem values, implicit function theorem.
- Implicit rapresentaion of curves and surfces.
- **6** Extrem values under equality constraints.
- Newton-method, non-linear equations and the least squares method.
- Multiple integrals, Fubini's theorem, transformation theorem.
- Potentials, Green's theorem, Gauß's theorem.
- Green's formulas, Stokes's theorem.

Chapter 1. Multi variable differential calculus

1.1 Partial derivatives

Let

$$f(x_1, \ldots, x_n)$$
 a scalar function depending n variables

Example: The constitutive law of an ideal gas pV = RT.

Each of the 3 quantities p (pressure), V (volume) and T (emperature) can be expressed as a function of the others (R is the gas constant)

$$p = p(V, t) = \frac{RT}{V}$$

$$V = V(p, T) = \frac{RT}{p}$$

$$T = T(p, V) = \frac{pV}{R}$$

1.1. Partial derivatives

Definition: Let $D \subset \mathbb{R}^n$ be open, $f : D \to \mathbb{R}$, $x^0 \in D$.

• f is called partially differentiable in x^0 with respect to x_i if the limit

$$\frac{\partial f}{\partial x_{i}}(x^{0}) := \lim_{t \to 0} \frac{f(x^{0} + te_{i}) - f(x^{0})}{t}$$

$$= \lim_{t \to 0} \frac{f(x_{1}^{0}, \dots, x_{i}^{0} + t, \dots, x_{n}^{0}) - f(x_{1}^{0}, \dots, x_{i}^{0}, \dots, x_{n}^{0})}{t}$$

exists. e_i denotes the i-th unit vector. The limit is called partial derivative of f with respect to x_i at x^0 .

• If at every point x^0 the partial derivatives with respect to every variable $x_i, i = 1, \ldots, n$ exist and if the partial derivatives are **continuous functions** then we call f continuous partial differentiable or a \mathcal{C}^1 -function.

Examples.

Consider the function

$$f(x_1,x_2) = x_1^2 + x_2^2$$

At any point $x^0 \in \mathbb{R}^2$ there exist both partial derivatives and both partial derivatives are continuous:

$$\frac{\partial f}{\partial x_1}(x^0) = 2x_1, \qquad \frac{\partial f}{\partial x_2}(x^0) = 2x_2$$

Thus f is a C^1 -function.

The function

$$f(x_1, x_2) = x_1 + |x_2|$$

at $x^0 = (0,0)^T$ is partial differentiable with respect to x_1 , but the partial derivative with respect to x_2 does **not** exist!

An engineering example.

The acoustic pressure of a one dimensional acoustic wave is given by

$$p(x,t) = A\sin(\alpha x - \omega t)$$

The partial derivative

$$\frac{\partial p}{\partial x} = \alpha A \cos(\alpha x - \omega t)$$

describes at a given time t the spacial rate of change of the pressure.

The partial derivative

$$\frac{\partial p}{\partial t} = -\omega A \cos(\alpha x - \omega t)$$

describes for a fixed position x the temporal rate of change of the acoustic pressure.

Rules for differentiation

• Let f,g be differentiable with respect to x_i and $\alpha,\beta\in\mathbb{R}$, then we have the rules

$$\frac{\partial}{\partial x_{i}} \left(\alpha f(\mathbf{x}) + \beta g(\mathbf{x}) \right) = \alpha \frac{\partial f}{\partial x_{i}}(\mathbf{x}) + \beta \frac{\partial g}{\partial x_{i}}(\mathbf{x})$$

$$\frac{\partial}{\partial x_{i}} \left(f(\mathbf{x}) \cdot g(\mathbf{x}) \right) = \frac{\partial f}{\partial x_{i}}(\mathbf{x}) \cdot g(\mathbf{x}) + f(\mathbf{x}) \cdot \frac{\partial g}{\partial x_{i}}(\mathbf{x})$$

$$\frac{\partial}{\partial x_{i}} \left(\frac{f(\mathbf{x})}{g(\mathbf{x})} \right) = \frac{\frac{\partial f}{\partial x_{i}}(\mathbf{x}) \cdot g(\mathbf{x}) - f(\mathbf{x}) \cdot \frac{\partial g}{\partial x_{i}}(\mathbf{x})}{g(\mathbf{x})^{2}} \quad \text{for } g(\mathbf{x}) \neq 0$$

• An alternative notation for the partial derivatives of f with respect to x_i at x^0 is given by

$$D_i f(x^0)$$
 oder $f_{x_i}(x^0)$

◆ロト ◆問 ト ◆ 意 ト ◆ 意 ・ 夕 Q ○

Gradient and nabla-operator.

Definition: Let $D \subset \mathbb{R}^n$ be an open set and $f: D \to \mathbb{R}$ partial differentiable.

We denote the row vector

$$\operatorname{grad} f(x^0) := \left(\frac{\partial f}{\partial x_1}(x^0), \dots, \frac{\partial f}{\partial x_n}(x^0)\right)$$

as gradient of f at x^0 .

• We denote the symbolic vector

$$\nabla := \left(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}\right)^T$$

as nabla-operator.

Thus we obtain the column vector

$$\nabla f(\mathsf{x}^0) := \left(\frac{\partial f}{\partial \mathsf{x}_1}(\mathsf{x}^0), \dots, \frac{\partial f}{\partial \mathsf{x}_n}(\mathsf{x}^0)\right)^T$$

More rules on differentiation.

Let f and g be partial differentiable. Then the following rules on differentiation hold true:

$$\begin{array}{rcl} \operatorname{grad} \left(\alpha f + \beta g \right) & = & \alpha \cdot \operatorname{grad} f + \beta \cdot \operatorname{grad} g \\ \\ \operatorname{grad} \left(f \cdot g \right) & = & g \cdot \operatorname{grad} f + f \cdot \operatorname{grad} g \\ \\ \operatorname{grad} \left(\frac{f}{g} \right) & = & \frac{1}{g^2} \left(g \cdot \operatorname{grad} f - f \cdot \operatorname{grad} g \right), \quad g \neq 0 \end{array}$$

Examples:

• Let $f(x, y) = e^x \cdot \sin y$. Then:

$$\operatorname{grad} f(x,y) = (e^{x} \cdot \sin y, e^{x} \cdot \cos y) = e^{x}(\sin y, \cos y)$$

• For $r(x) := ||x||_2 = \sqrt{x_1^2 + \cdots + x_n^2}$ we have

grad
$$r(x) = \frac{x}{r(x)} = \frac{x}{\|x\|_2}$$
 für $x \neq 0$,

where $x = (x_1, \dots, x_n)$ denotes a row vector.

Partial differentiability does not imply continuity.

Observation: A partial differentiable function (with respect to all coordinates) is not necessarily a continuous function.

Example: Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined as

$$f(x,y) := \begin{cases} \frac{x \cdot y}{(x^2 + y^2)^2} & : & \text{for } (x,y) \neq 0 \\ 0 & : & \text{for } (x,y) = 0 \end{cases}$$

The function is partial differntiable on the **entire** \mathbb{R}^2 and we have

$$f_x(0,0) = f_y(0,0) = 0$$

$$\frac{\partial f}{\partial x}(x,y) = \frac{y}{(x^2 + y^2)^2} - 4\frac{x^2y}{(x^2 + y^2)^3}, \quad (x,y) \neq (0,0)$$

$$\frac{\partial f}{\partial y}(x,y) = \frac{x}{(x^2 + y^2)^2} - 4\frac{xy^2}{(x^2 + y^2)^3}, \quad (x,y) \neq (0,0)$$

Example (continuation).

We calculate the partial derivatives at the origin (0,0):

$$\frac{\partial f}{\partial x}(0,0) = \lim_{t \to 0} \frac{f(t,0) - f(0,0)}{t} = \frac{\frac{t \cdot 0}{(t^2 + 0^2)^2} - 0}{t} = 0$$

$$\frac{\partial f}{\partial y}(0,0) = \lim_{t \to 0} \frac{f(0,t) - f(0,0)}{t} = \frac{\frac{0 \cdot t}{(0^2 + t^2)^2} - 0}{t} = 0$$

But: At (0,0) the function is **not** continuous since

$$\lim_{n \to \infty} f\left(\frac{1}{n}, \frac{1}{n}\right) = \frac{\frac{1}{n} \cdot \frac{1}{n}}{\left(\frac{1}{n} \cdot \frac{1}{n} + \frac{1}{n} \cdot \frac{1}{n}\right)^2} = \frac{\frac{1}{n^2}}{\frac{4}{n^4}} = \frac{n^2}{4} \to \infty$$

and thus we have

$$\lim_{(x,y)\to(0,0)} f(x,y) \neq f(0,0) = 0$$

Boundedness of the derivatives implies continuity.

To guarantee the continuity of a partial differentiable function we need additional conditions on f.

Theorem: Let $D \subset \mathbb{R}^n$ be an open set. Let $f: D \to \mathbb{R}$ be partial differentiable in a neighborhood of $x^0 \in D$ and let the partial derivatives $\frac{\partial f}{\partial x_i}$, $i = 1, \ldots, n$, be bounded. Then f is continuous in x^0 .

Attention: In the previous example the partial derivatives are not bounded in a neighborhood of (0,0) since

$$\frac{\partial f}{\partial x}(x,y) = \frac{y}{(x^2 + y^2)^2} - 4\frac{x^2y}{(x^2 + y^2)^3} \quad \text{für } (x,y) \neq (0,0)$$

Proof of the theorem.

For $\|\mathbf{x} - \mathbf{x}^0\|_{\infty} < \varepsilon$, $\varepsilon > 0$ sufficiently small we write:

$$f(x) - f(x^{0}) = (f(x_{1}, \dots, x_{n-1}, x_{n}) - f(x_{1}, \dots, x_{n-1}, x_{n}^{0}))$$

$$+ (f(x_{1}, \dots, x_{n-1}, x_{n}^{0}) - f(x_{1}, \dots, x_{n-2}, x_{n-1}^{0}, x_{n}^{0}))$$

$$\vdots$$

$$+ (f(x_{1}, x_{2}^{0}, \dots, x_{n}^{0}) - f(x_{1}^{0}, \dots, x_{n}^{0}))$$

For any difference on the right hand side we consider f as a function in one single variable:

$$g(x_n) - g(x_n^0) := f(x_1, \dots, x_{n-1}, x_n) - f(x_1, \dots, x_{n-1}, x_n^0)$$

Since f is partial differentiable g is differentiable and we can apply the mean value theorem on g:

$$g(x_n) - g(x_n^0) = g'(\xi_n)(x_n - x_n^0)$$

for an appropriate ξ_n between x_n and x_n^0 .

Proof of the theorem (continuation).

Applying the mean value theorem to every term in the right hand side we obtain

$$f(x) - f(x^{0}) = \frac{\partial f}{\partial x_{n}}(x_{1}, \dots, x_{n-1}, \xi_{n}) \cdot (x_{n} - x_{n}^{0})$$

$$+ \frac{\partial f}{\partial x_{n-1}}(x_{1}, \dots, x_{n-2}, \xi_{n-1}, x_{n}^{0}) \cdot (x_{n-1} - x_{n-1}^{0})$$

$$\vdots$$

$$+ \frac{\partial f}{\partial x_{1}}(\xi_{1}, x_{2}^{0}, \dots, x_{n}^{0}) \cdot (x_{1} - x_{1}^{0})$$

Using the boundedness of the partial derivatives

$$|f(x) - f(x^0)| \le C_1|x_1 - x_1^0| + \cdots + C_n|x_n - x_n^0|$$

for $\|\mathbf{x} - \mathbf{x}^0\|_{\infty} < \varepsilon$, we obtain the continuity of f at \mathbf{x}^0 since

$$f(x) \rightarrow f(x^0)$$
 für $||x - x^0||_{\infty} \rightarrow 0$

Higher order derivatives.

Definition: Let f be a scalar function and partial differentiable on an open set $D \subset \mathbb{R}^n$. If the partial derivatives are differentiable we obtain (by differentiating) the partial derivatives of second order of f with

$$\frac{\partial^2 f}{\partial x_j \partial x_i} := \frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i} \right)$$

Example: Second order partial derivatives of a function f(x, y):

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right), \quad \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right), \quad \frac{\partial^2 f}{\partial x \partial y}, \quad \frac{\partial^2 f}{\partial y^2}$$

Let $i_1, \ldots, i_k \in \{1, \ldots, n\}$. Then we define recursively

$$\frac{\partial^k f}{\partial x_{i_k} \partial x_{i_{k-1}} \dots \partial x_{i_1}} := \frac{\partial}{\partial x_{i_k}} \left(\frac{\partial^{k-1} f}{\partial x_{i_{k-1}} \partial x_{i_{k-2}} \dots \partial x_{i_1}} \right)$$

◆ロト ◆昼 ト ◆ 恵 ト ・ 恵 ・ 夕 ○ ○ ○

Higher order derivatives.

Definition: The function f is called k-times partial differentiable, if all derivatives of order k,

$$\frac{\partial^k f}{\partial x_{i_k} \partial x_{i_{k-1}} \dots \partial x_{i_1}} \qquad \text{for all } i_1, \dots, i_k \in \{1, \dots, n\},$$

exist on D.

Alternative notation:

$$\frac{\partial^k f}{\partial x_{i_k} \partial x_{i_{k-1}} \dots \partial x_{i_1}} = D_{i_k} D_{i_{k-1}} \dots D_{i_1} f = f_{x_{i_1} \dots x_{i_k}}$$

If all the derivatives of k-th order are continuous the function f is called k-times continuous partial differentiable or called a \mathcal{C}^k -function on D. Continuous functions f are called \mathcal{C}^0 -functions.

Example: For the function $f(x_1, ..., x_n) = \prod_{i=1}^n x_i^i$ we have $\frac{\partial^n f}{\partial x_n ... \partial x_1} = ?$

◆ロト ◆個ト ◆ 恵ト ◆ 恵ト ・ 恵 ・ 釣り○

Partial derivaratives are not arbitrarely exchangeable.

ATTENTION: The order how to execute partial derivatives is in general not arbitrarely exchangeable!

Example: For the function

$$f(x,y) := \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2} & : & \text{for } (x,y) \neq (0,0) \\ 0 & : & \text{for } (x,y) = (0,0) \end{cases}$$

we calculate

$$egin{array}{lcl} f_{xy}(0,0) & = & rac{\partial}{\partial y} \left(rac{\partial f}{\partial x}(0,0)
ight) = -1 \ & \ f_{yx}(0,0) & = & rac{\partial}{\partial x} \left(rac{\partial f}{\partial y}(0,0)
ight) = +1 \end{array}$$

i.e.
$$f_{xy}(0,0) \neq f_{yx}(0,0)$$
.

Theorem of Schwarz on exchangeablity.

Satz: Let $D \subset \mathbb{R}^n$ be open and let $f: D \to \mathbb{R}$ be a \mathcal{C}^2 -function. Then it holds

$$\frac{\partial^2 f}{\partial x_i \partial x_i}(x_1, \dots, x_n) = \frac{\partial^2 f}{\partial x_i \partial x_i}(x_1, \dots, x_n)$$

for all $i, j \in \{1, ..., n\}$.

Idea of the proof:

Apply the men value theorem twice.

Conclusion:

If f is a C^k -function, then we can exchange the differentiation in order to calculate partial derivatives up to order k arbitrarely!

Example for the exchangeability of partial derivatives.

Calculate the partial derivative of third order f_{xyz} for the function

$$f(x, y, z) = y^2 z \sin(x^3) + (\cosh y + 17e^{x^2})z^2$$

The order of execution is exchangealbe since $f \in C^3$.

• Differentiate first with respect to *z*:

$$\frac{\partial f}{\partial z} = y^2 \sin(x^3) + 2z(\cosh y + 17e^{x^2})$$

• Differentiate then f_z with respect to x (then $\cosh y$ disappears):

$$f_{zx} = \frac{\partial}{\partial x} \left(y^2 \sin(x^3) + 2z(\cosh y + 17e^{x^2}) \right)$$
$$= 3x^2 y^2 \cos(x^3) + 68xze^{x^2}$$

• For the partial derivative of f_{zx} with respect to y we obtain

$$f_{xyz} = 6x^2y\cos(x^3)$$

4D > 4A > 4B > 4B > B 990

The Laplace operator.

The Laplace-operator or Laplacian is defined as

$$\Delta := \sum_{i=1}^{n} \frac{\partial^2}{\partial x_i^2}$$

For a scalar function $u(x) = u(x_1, ..., x_n)$ we have

$$\Delta u = \sum_{i=1}^{n} \frac{\partial^{2} u}{\partial x_{i}^{2}} = u_{x_{1}x_{1}} + \dots + u_{x_{n}x_{n}}$$

Examples of important partial differential equations of second order (i.e. equations containing partial derivatives up to order two):

$$\Delta u - rac{1}{c^2} u_{tt} = 0$$
 (wave equation)
$$\Delta u - rac{1}{k} u_t = 0$$
 (heat equation)

 $\Delta u = 0$ (Laplace-equation or equation for the potential)

Vector valued functions.

Definition: Let $D \subset \mathbb{R}^n$ be open and let $f: D \to \mathbb{R}^m$ be a vector valued function.

The function f is called partial differentiable on $x^0 \in D$, if for all i = 1, ..., n the limits

$$\frac{\partial f}{\partial x_i}(x^0) = \lim_{t \to 0} \frac{f(x^0 + te_i) - f(x^0)}{t}$$

exist. The calculation is done componentwise

$$\frac{\partial f}{\partial x_i}(x^0) = \begin{pmatrix} \frac{\partial f_1}{\partial x_i} \\ \vdots \\ \frac{\partial f_m}{\partial x_i} \end{pmatrix} \quad \text{for } i = 1, \dots, n$$

Vectorfields.

Definition: If m = n the function $f: D \to \mathbb{R}^n$ is called a vectorfield on D. If every (coordinate-) function $f_i(x)$ of $f = (f_1, \dots, f_n)^T$ is a C^k -function, then f is called C^k -vectorfield.

Examples of vectorfields:

- velocity fields of liquids or gases;
- elektromagnetic fields;
- temperature gradients in solid states.

Definition: Let $f: D \to \mathbb{R}^n$ be a partial differentiable vector field. The divergence on $x \in D$ is defined as

$$\operatorname{div} f(x^0) := \sum_{i=1}^n \frac{\partial f_i}{\partial x_i}(x^0)$$

or

$$\operatorname{div} f(x) = \nabla^T f(x) = (\nabla, f(x))$$

Rules of computation and the rotation.

The following rules hold true:

$$\begin{array}{lcl} \operatorname{div} \left(\alpha \operatorname{f} + \beta \operatorname{g} \right) & = & \alpha \operatorname{div} \operatorname{f} + \beta \operatorname{div} \operatorname{g} & \operatorname{for} \operatorname{f}, \operatorname{g} : D \to \mathbb{R}^n \\ \\ \operatorname{div} \left(\varphi \cdot \operatorname{f} \right) & = & \left(\nabla \varphi, \operatorname{f} \right) + \varphi \operatorname{div} \operatorname{f} & \operatorname{for} \varphi : D \to \mathbb{R}, \operatorname{f} : D \to \mathbb{R}^n \end{array}$$

Remark: Let $f:D\to\mathbb{R}$ be a \mathcal{C}^2 -function, then for the Laplacian we have

$$\Delta f = \operatorname{div}(\nabla f)$$

Definition: Let $D \subset \mathbb{R}^3$ open and $f: D \to \mathbb{R}^3$ a partial differentiable vector field. We define the rotation as

$$\mathsf{rot}\; \mathsf{f}(\mathsf{x}^0) := \left(\frac{\partial f_3}{\partial x_2} - \frac{\partial f_2}{\partial x_3}, \frac{\partial f_1}{\partial x_3} - \frac{\partial f_3}{\partial x_1}, \frac{\partial f_2}{\partial x_1} - \frac{\partial f_1}{\partial x_2}\right)^T \bigg|_{\mathsf{x}^0}$$

Alternative notations and additional rules.

$$\operatorname{rot} f(x) = \nabla \times f(x) = \begin{vmatrix} e_1 & e_2 & e_3 \\ \frac{\partial}{\partial x_1} & \frac{\partial}{\partial x_2} & \frac{\partial}{\partial x_3} \\ f_1 & f_2 & f_3 \end{vmatrix}$$

Remark: The following rules hold true:

$$\begin{split} \operatorname{rot} \big(\alpha \operatorname{f} + \beta \operatorname{g} \big) &= & \alpha \operatorname{rot} \operatorname{f} + \beta \operatorname{rot} \operatorname{g} \\ \\ \operatorname{rot} \big(\varphi \cdot \operatorname{f} \big) &= & (\nabla \varphi) \times \operatorname{f} + \varphi \operatorname{rot} \operatorname{f} \end{split}$$

Remark: Let $D \subset \mathbb{R}^3$ and $\varphi: D \to \mathbb{R}$ be a \mathcal{C}^2 -function. Then

$$rot (\nabla \varphi) = 0,$$

using the exchangeability theorem of Schwarz. I.e. gradient fileds are rotation-free everywhere.

401401401000

Chapter 1. Multivariate differential calculus

1.2 The total differential

Definition: Let $D \subset \mathbb{R}^n$ open, $x^0 \in D$ and $f: D \to \mathbb{R}^m$. The function f(x) is called differentiable in x^0 (or totally differentiable in x_0), if there exists a linear map

$$I(x,x^0) := A \cdot (x-x^0)$$

with a matrix $A \in \mathbb{R}^{m \times n}$ which satisfies the following approximation property

$$f(x) = f(x^0) + A \cdot (x - x^0) + o(\|x - x^0\|)$$

i.e.

$$\lim_{x \to x^0} \frac{f(x) - f(x^0) - A \cdot (x - x^0)}{\|x - x^0\|} = 0.$$

The total differential and the Jacobian matrix.

Notation: We call the linear map I the differential or the total differential of f(x) at the point x^0 . We denote I by $df(x^0)$.

The related matrix A is called Jacobi–matrix of f(x) at the point x^0 and is denoted by $Jf(x^0)$ (or $Df(x^0)$ or $f'(x^0)$).

Remark: For m = n = 1 we obtain the well known relation

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + o(|x - x_0|)$$

for the derivative $f'(x_0)$ at the point x_0 .

Remark: In case of a scalar function (m = 1) the matrix A = a is a row vextor and $a(x - x^0)$ a scalar product $\langle a^T, x - x^0 \rangle$.

Total and partial differentiability.

Theorem: Let $f: D \to \mathbb{R}^m$, $x^0 \in D \subset \mathbb{R}^n$, D open.

- a) If f(x) is differentiable in x^0 , then f(x) is continuous in x^0 .
- b) If f(x) is differentiable in x^0 , then the (total) differential and thus the Jacobi-matrix are uniquely determined and we have

$$\mathsf{Jf}(\mathsf{x}^0) = \left(\begin{array}{ccc} \frac{\partial f_1}{\partial x_1}(\mathsf{x}^0) & \dots & \frac{\partial f_1}{\partial x_n}(\mathsf{x}^0) \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1}(\mathsf{x}^0) & \dots & \frac{\partial f_m}{\partial x_n}(\mathsf{x}^0) \end{array} \right) = \left(\begin{array}{c} Df_1(\mathsf{x}^0) \\ \vdots \\ Df_m(\mathsf{x}^0) \end{array} \right)$$

c) If f(x) is a C^1 -function on D, then f(x) is differentiable on D.

→ロト ←団ト ← 豆ト ← 豆 り へ ○

Proof of a).

If f is differentiable in x^0 , then by definition

$$\lim_{x \to x^0} \frac{f(x) - f(x^0) - A \cdot (x - x^0)}{\|x - x^0\|} = 0$$

Thus we conclude

$$\lim_{x \to x^0} \|f(x) - f(x^0) - A \cdot (x - x^0)\| = 0$$

and we obtain

$$\begin{split} \|f(x) - f(x^0)\| & \leq & \|f(x) - f(x^0) - A \cdot (x - x^0)\| + \|A \cdot (x - x^0)\| \\ & \to & 0 & \text{as } x \to x^0 \end{split}$$

Therefore the function f is continuous at x^0 .

Proof of b).

Let $x = x^0 + te_i$, $|t| < \varepsilon$, $i \in \{1, ..., n\}$. Since f in differentiable at x^0 , we have

$$\lim_{x \to x^0} \frac{f(x) - f(x^0) - A \cdot (x - x^0)}{\|x - x^0\|_{\infty}} = 0$$

We write

$$\frac{f(x) - f(x^0) - A \cdot (x - x^0)}{\|x - x^0\|_{\infty}} = \frac{f(x^0 + te_i) - f(x^0)}{|t|} - \frac{tAe_i}{|t|}$$

$$= \frac{t}{|t|} \cdot \left(\frac{f(x^0 + te_i) - f(x^0)}{t} - Ae_i\right)$$

$$\to 0 \quad \text{as } t \to 0$$

Thus

$$\lim_{t\to 0}\frac{f(x^0+te_i)-f(x^0)}{t}=Ae_i \qquad i=1,\ldots,n$$

Examples.

• Consider the scalar function $f(x_1, x_2) = x_1 e^{2x_2}$. Then the Jacobian is given by:

$$Jf(x_1,x_2) = Df(x_1,x_2) = e^{2x_2}(1,2x_1)$$

• Consider the function $f: \mathbb{R}^3 \to \mathbb{R}^2$ defined by

$$f(x_1, x_2, x_3) = \begin{pmatrix} x_1 x_2 x_3 \\ \sin(x_1 + 2x_2 + 3x_3) \end{pmatrix}$$

The Jacobian is given by

$$\mathsf{Jf}(x_1, x_2, x_3) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \frac{\partial f_1}{\partial x_3} \\ \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \frac{\partial f_2}{\partial x_3} \end{pmatrix} = \begin{pmatrix} x_2 x_3 & x_1 x_3 & x_1 x_2 \\ \\ \cos(s) & 2\cos(s) & 3\cos(s) \end{pmatrix}$$

with $s = x_1 + 2x_2 + 3x_3$.

4□ > 4問 > 4 = > 4 = > = 900

Further examples.

• Let f(x) = Ax, $A \in \mathbb{R}^{m \times n}$ and $x \in \mathbb{R}^n$. Then

$$Jf(x) = A$$
 for all $x \in \mathbb{R}^n$

• Let $f(x) = x^T A x = \langle x, Ax \rangle$, $A \in \mathbb{R}^{n \times n}$ and $x \in \mathbb{R}^n$. Then we have

$$\frac{\partial f}{\partial x_i} = \langle e_i, Ax \rangle + \langle x, Ae_i \rangle$$
$$= e_i^T Ax + x^T Ae_i$$
$$= x^T (A^T + A)e_i$$

We conclude

$$\mathsf{J} f(\mathsf{x}) = \mathsf{grad} f(\mathsf{x}) = \mathsf{x}^\mathsf{T} (\mathsf{A}^\mathsf{T} + \mathsf{A})$$

- (ロ) (個) (量) (量) (量) (Q(C)

Rules for the differentiation.

Theorem:

a) **Linearität:** LET f, g : $D \to \mathbb{R}^m$ be differentiable in $x^0 \in D$, D open. Then α f(x^0) + β g(x^0), and α , $\beta \in \mathbb{R}$ are differentiable in x^0 and we have

$$d(\alpha f + \beta g)(x^0) = \alpha df(x^0) + \beta dg(x^0)$$
$$J(\alpha f + \beta g)(x^0) = \alpha Jf(x^0) + \beta Jg(x^0)$$

b) Chain rule: Let $f: D \to \mathbb{R}^m$ be differentiable in $x^0 \in D$, D open. Let $g: E \to \mathbb{R}^k$ be differentiable in $y^0 = f(x^0) \in E \subset \mathbb{R}^m$, E open. Then $g \circ f$ is differentiable in x^0 .

For the differentials it holds

$$d(g\circ f)(x^0)=dg(y^0)\circ df(x^0)$$

and analoglously for the Jacobian matrix

$$J(g\circ f)(x^0)=Jg(y^0)\cdot Jf(x^0)$$

4□ > 4問 > 4 = > 4 = > ■ 900

Examples for the chain rule.

Let $I \subset \mathbb{R}$ be an intervall. Let $h: I \to \mathbb{R}^n$ be a curve, differentiable in $t_0 \in I$ with values in $D \subset \mathbb{R}^n$, D open. Let $f: D \to \mathbb{R}$ be a scalar function, differentiable in $x^0 = h(t_0)$.

Then the composition

$$(f \circ \mathsf{h})(t) = f(h_1(t), \dots, h_n(t))$$

is differentiable in t_0 and we have for the derivative:

$$\begin{array}{lcl} (f \circ \mathsf{h})'(t_0) & = & \mathsf{J} f(\mathsf{h}(t_0)) \cdot \mathsf{J} \mathsf{h}(t_0) \\ \\ & = & \mathsf{grad} f(\mathsf{h}(t_0)) \cdot \mathsf{h}'(t_0) \\ \\ & = & \sum_{k=1}^n \frac{\partial f}{\partial \mathsf{x}_k}(\mathsf{h}(t_0)) \cdot h_k'(t_0) \end{array}$$

Directional derivative.

Definition: Let $f: D \to \mathbb{R}$, $D \subset \mathbb{R}^n$ open, $x^0 \in D$, and $v \in \mathbb{R} \setminus \{0\}$ a vector. Then

$$D_{v} f(x^{0}) := \lim_{t \to 0} \frac{f(x^{0} + tv) - f(x^{0})}{t}$$

is called the directional derivative (Gateaux-derivative) of f(x) in the direction of v.

Example: Let $f(x, y) = x^2 + y^2$ and $v = (1, 1)^T$. Then the directional derivative in the direction of v is given by:

$$D_{v} f(x,y) = \lim_{t \to 0} \frac{(x+t)^{2} + (y+t)^{2} - x^{2} - y^{2}}{t}$$
$$= \lim_{t \to 0} \frac{2xt + t^{2} + 2yt + t^{2}}{t}$$
$$= 2(x+y)$$

Remarks.

• For $v = e_i$ the directional derivative in the direction of v is given by the partial derivative with respect to x_i :

$$D_{v} f(x^{0}) = \frac{\partial f}{\partial x_{i}}(x^{0})$$

- If v is a unit vector, i.e. ||v|| = 1, then the directional derivative $D_v f(x^0)$ describes the slope of f(x) in the direction of v.
- If f(x) is differentiable in x^0 , then all directional derivatives of f(x) in x^0 exist. With $h(t) = x^0 + tv$ we have

$$D_{\mathsf{v}} f(\mathsf{x}^0) = \frac{d}{dt} (f \circ \mathsf{h})|_{t=0} = \operatorname{\mathsf{grad}} f(\mathsf{x}^0) \cdot \mathsf{v}$$

This follows directely applying the chain rule.

Properties of the gradient.

Theorem: Let $D \subset \mathbb{R}^n$ open, $f: D \to \mathbb{R}$ differentiable in $x^0 \in D$. Then we have

a) The gradient vector grad $f(x^0) \in \mathbb{R}^n$ is orthogonal in the level set

$$N_{x^0} := \{ x \in D \mid f(x) = f(x^0) \}$$

In the case of n=2 we call the level sets contour lines, in n=3 we call the level sets equipotential surfaces.

2) The gradient grad $f(x^0)$ gives the direction of the steepest slope of f(x) in x^0 .

Idea of the proof:

- a) application of the chain rule.
- b) for an arbitrary direction v we conclude with the Cauchy–Schwarz inequality

$$|D_{v} f(x^{0})| = |(\operatorname{grad} f(x^{0}), v)| \le \|\operatorname{grad} f(x^{0})\|_{2}$$

Equality is obtained for $v = \text{grad } f(x^0) / \|\text{grad } f(x^0)\|_2$.

←□▶←□▶←□▶←□▶
□ ◆□▶←□▶

Curvilinear coordinates.

Definition: Let $U, V \subset \mathbb{R}^n$ be open and $\Phi: U \to V$ be a \mathcal{C}^1 -map, for which the Jacobimatrix $J\Phi(u^0)$ is regular (invertible) at every $u^0 \in U$.

In addition there exists the inverse map $\Phi^{-1}:V\to U$ and the inverse map is also a \mathcal{C}^1 -map.

Then $x = \Phi(u)$ defines a coodinate transformation from the coordinates u to x.

Example: Consider for n=2 the polar coordinates $\mathbf{u}=(r,\varphi)$ with r>0 and $-\pi<\varphi<\pi$ and set

$$x = r \cos \varphi$$

$$y = r \sin \varphi$$

with the cartesian coordinates x = (x, y).

Calculation of the partial derivatives.

For all $u \in U$ with $x = \Phi(u)$ the following relations hold

$$\Phi^{-1}(\Phi(u)) = u$$

$$J \Phi^{-1}(x) \cdot J \Phi(u) = I_n \quad \text{(chain rule)}$$

$$J \Phi^{-1}(x) = (J \Phi(u))^{-1}$$

Let $\widetilde{f}:V o\mathbb{R}$ be a given function. Set

$$f(\mathsf{u}) := \tilde{f}(\Phi(\mathsf{u}))$$

the by using the chain rule we obtain

$$\frac{\partial f}{\partial u_i} = \sum_{j=1}^n \frac{\partial \tilde{f}}{\partial x_j} \frac{\partial \Phi_j}{\partial u_i} =: \sum_{j=1}^n g^{ij} \frac{\partial \tilde{f}}{\partial x_j}$$

with

$$g^{ij} := \frac{\partial \Phi_j}{\partial u_i}, \qquad \mathsf{G}(\mathsf{u}) := (g^{ij}) = (\mathsf{J}\,\Phi(\mathsf{u}))^T$$

Notations.

We use the short notation

$$\frac{\partial}{\partial u_i} = \sum_{j=1}^n g^{ij} \frac{\partial}{\partial x_j}$$

Analogously we can express the partial derivatives with respect to x_i by the partial derivatives with respect to u_i

$$\frac{\partial}{\partial x_i} = \sum_{j=1}^n g_{ij} \frac{\partial}{\partial u_j}$$

where

$$(g_{ij}) := (g^{ij})^{-1} = (J \Phi)^{-T} = (J \Phi^{-1})^{T}$$

We obtain these relations by applying the chain rule on Φ^{-1} .

Example: polar coordinates.

We consider polar coordinates

$$x = \Phi(u) = \begin{pmatrix} r\cos\varphi \\ r\sin\varphi \end{pmatrix}$$

We calculate

$$\mathsf{J}\,\Phi(\mathsf{u}) = \left(\begin{array}{cc} \cos\varphi & -r\sin\varphi\\ \sin\varphi & r\cos\varphi \end{array}\right)$$

and thus

$$(g^{ij}) = \begin{pmatrix} \cos \varphi & \sin \varphi \\ \\ -r \sin \varphi & r \cos \varphi \end{pmatrix} \qquad (g_{ij}) = \begin{pmatrix} \cos \varphi & -\frac{1}{r} \sin \varphi \\ \\ \sin \varphi & \frac{1}{r} \cos \varphi \end{pmatrix}$$

Partial derivatives for polar coordinates.

The calculation of the partial derivatives gives

 $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} = \frac{\partial^2}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2}{\partial y^2} + \frac{1}{r} \frac{\partial}{\partial r}$

$$\frac{\partial}{\partial x} = \cos \varphi \frac{\partial}{\partial r} - \frac{1}{r} \sin \varphi \frac{\partial}{\partial \varphi}$$
$$\frac{\partial}{\partial y} = \sin \varphi \frac{\partial}{\partial r} + \frac{1}{r} \cos \varphi \frac{\partial}{\partial \varphi}$$

Example: Calculation of the Laplacian-operator in polar coordinates

$$\frac{\partial^2}{\partial x^2} = \cos^2 \varphi \frac{\partial^2}{\partial r^2} - \frac{\sin(2\varphi)}{r} \frac{\partial^2}{\partial r \partial \varphi} + \frac{\sin^2 \varphi}{r^2} \frac{\partial^2}{\partial \varphi^2} + \frac{\sin(2\varphi)}{r^2} \frac{\partial}{\partial \varphi} + \frac{\sin^2 \varphi}{r} \frac{\partial}{\partial r}$$

$$\frac{\partial^2}{\partial y^2} = \sin^2 \varphi \frac{\partial^2}{\partial r^2} + \frac{\sin(2\varphi)}{r} \frac{\partial^2}{\partial r \partial \varphi} + \frac{\cos^2 \varphi}{r^2} \frac{\partial^2}{\partial \varphi^2} - \frac{\sin(2\varphi)}{r^2} \frac{\partial}{\partial \varphi} + \frac{\cos^2 \varphi}{r} \frac{\partial}{\partial r}$$

Example: spherical coordinates.

We consider spherical coordinates

$$x = \Phi(u) = \begin{pmatrix} r \cos \varphi \cos \theta \\ r \sin \varphi \cos \theta \\ r \sin \theta \end{pmatrix}$$

The Jacobian–matrix is given by:

$$J\Phi(u) = \begin{pmatrix} \cos\varphi\cos\theta & -r\sin\varphi\cos\theta & -r\cos\varphi\sin\theta \\ \sin\varphi\cos\theta & r\cos\varphi\cos\theta & -r\sin\varphi\sin\theta \\ \sin\theta & 0 & r\cos\theta \end{pmatrix}$$

Partial derivatives for spherical coordinates.

Calculating the partial derivatives gives

$$\frac{\partial}{\partial x} = \cos \varphi \cos \theta \frac{\partial}{\partial r} - \frac{\sin \varphi}{r \cos \theta} \frac{\partial}{\partial \varphi} - \frac{1}{r} \cos \varphi \sin \theta \frac{\partial}{\partial \theta}$$

$$\frac{\partial}{\partial y} = \sin \varphi \cos \theta \frac{\partial}{\partial r} + \frac{\cos \varphi}{r \cos \theta} \frac{\partial}{\partial \varphi} - \frac{1}{r} \sin \varphi \sin \theta \frac{\partial}{\partial \theta}$$

$$\frac{\partial}{\partial z} = \sin \theta \frac{\partial}{\partial r} + \frac{1}{r} \cos \theta \frac{\partial}{\partial \theta}$$

Example: calculation of the Laplace-operator in spherical coordinates

$$\Delta = \frac{\partial^2}{\partial r^2} + \frac{1}{r^2 \cos^2 \theta} \frac{\partial^2}{\partial \varphi^2} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} + \frac{2}{r} \frac{\partial}{\partial r} - \frac{\tan \theta}{r^2} \frac{\partial}{\partial \theta}$$

Chapter 1. Multivariate differential calculus

1.3 Mean value theorems and Taylor expansion

Theorem (Mean value theorem): Let $f: D \to \mathbb{R}$ be a scalar differentiable function on an open set $D \subset \mathbb{R}^n$. Let $a, b \in D$ be points in D such that the connecting line segment

$$[a,b] := \{a + t(b-a) \mid t \in [0,1]\}$$

lies entirely in D. Then there exits a number $\theta \in (0,1)$ with

$$f(b) - f(a) = \operatorname{grad} f(a + \theta(b - a)) \cdot (b - a)$$

Proof: We set

$$h(t) := f(\mathsf{a} + t(\mathsf{b} - \mathsf{a}))$$

with the mean value theorem for a single variable and the chain rules we conclude

$$f(b) - f(a) = h(1) - h(0) = h'(\theta) \cdot (1 - 0)$$

= grad $f(a + \theta(b - a)) \cdot (b - a)$

Definition and example.

Definition: If the condition $[a,b] \subset D$ holds true for **all** points $a,b \in D$, then the set D is called **convex**.

Example for the mean value theorem: Given a scalar function

$$f(x,y) := \cos x + \sin y$$

It is

$$f(0,0) = f(\pi/2, \pi/2) = 1 \quad \Rightarrow \quad f(\pi/2, \pi/2) - f(0,0) = 0$$

Applying the mean value theorem there exists a $\theta \in (0,1)$ with

$$\operatorname{grad} f\left(\theta\left(\begin{array}{c}\pi/2\\\pi/2\end{array}\right)\right)\cdot\left(\begin{array}{c}\pi/2\\\pi/2\end{array}\right)=0$$

Indeed this is true for $\theta = \frac{1}{2}$.

Mean value theorem is only true for scalar functions.

Attention: The mean value theorem for multivariate functions is only true for scalar functions but in general not for vector—valued functions!

Examples: Consider the vector-valued Function

$$f(t) := \begin{pmatrix} \cos t \\ \sin t \end{pmatrix}, \qquad t \in [0, \pi/2]$$

It is

$$f(\pi/2) - f(0) = \begin{pmatrix} 0 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

and

$$f'\left(\theta \frac{\pi}{2}\right) \cdot \left(\frac{\pi}{2} - 0\right) = \frac{\pi}{2} \left(\begin{array}{c} -\sin(\theta \pi/2) \\ \cos(\theta \pi/2) \end{array}\right)$$

BUT: the vectors on the right hand side have length $\sqrt{2}$ and $\pi/2$!

- 4 ロ ト 4 昼 ト 4 昼 ト 0 夏 - り Q (C)

A mean value estimate for vector-valued functions.

Theorem: Let $f: D \to \mathbb{R}^m$ be differentiable on an open set $D \subset \mathbb{R}^n$. Let a, b bei points in D with $[a,b] \subset D$. Then there exists a $\theta \in (0,1)$ with

$$\|f(b) - f(a)\|_2 \le \|Jf(a + \theta(b - a)) \cdot (b - a)\|_2$$

Idea of the proof: Application of the mean value theorem to the scalar function $g(\mathbf{x})$ definid as

$$g(x) := (f(b) - f(a))^T f(x)$$
 (scalar product!)

Remark: Another (weaker) for of the mean value estimate is

$$\|f(b) - f(a)\| \le \sup_{\xi \in [a,b]} \|Jf(\xi)\| \cdot \|(b-a)\|$$

where $\|\cdot\|$ denotes an arbitrary vector norm with related matrix norm.

←ロト→個ト→重ト→重・約90

Taylor series: notations.

We define the multi-index $\alpha \in \mathbb{N}_0^n$ as

$$\alpha := (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}_0^n$$

Let

$$|\alpha| := \alpha_1 + \dots + \alpha_n$$
 $\alpha! := \alpha_1! \cdot \dots \cdot \alpha_n!$

Let $f: D \to \mathbb{R}$ be $|\alpha|$ times continuous differentiable. Then we set

$$D^{\alpha} = D_1^{\alpha_1} D_2^{\alpha_2} \dots D_n^{\alpha_n} = \frac{\partial^{|\alpha|} f}{\partial x_1^{\alpha_1} \dots \partial x_n^{\alpha_n}},$$

where
$$D_i^{\alpha_i} = \underbrace{D_i \dots D_i}_{\alpha := \mathsf{mal}}$$
. We write

$$\mathsf{x}^{lpha} := \mathsf{x}_1^{lpha_1}\,\mathsf{x}_2^{lpha_2}\ldots\mathsf{x}_n^{lpha_n} \qquad \mathsf{for}\ \mathsf{x} = (\mathsf{x}_1,\ldots,\mathsf{x}_n) \in \mathbb{R}^n.$$

The Taylor theorem.

Theorem: (Taylor)

Let $D \subset \mathbb{R}^n$ be open and convex. Let $f: D \to \mathbb{R}$ be a \mathcal{C}^{m+1} -function and $x_0 \in D$. Then the Taylor–expansion holds true in $x \in D$

$$f(x) = T_m(x; x_0) + R_m(x; x_0)$$

$$T_m(x; x_0) = \sum_{|\alpha| \le m} \frac{D^{\alpha} f(x_0)}{\alpha!} (x - x_0)^{\alpha}$$

$$R_m(x; x_0) = \sum_{|\alpha| = m+1} \frac{D^{\alpha} f(x_0 + \theta(x - x_0))}{\alpha!} (x - x_0)^{\alpha}$$

for an appropriate $\theta \in (0,1)$.

Notation: In the Taylor–expansion we denote $T_m(x; x_0)$ Taylor–polynom of degree m and $R_m(x; x_0)$ Lagrange–remainder.

4 D > 4 D > 4 D > 4 D > 3 P 9 Q Q

Derivation of the Taylor expansion.

We define a scalar function in one single variable $t \in [0,1]$ as

$$g(t) := f(x_0 + t(x - x_0))$$

and calculate the (univariate) Taylor-expansion at t = 0. It is

$$g(1) = g(0) + g'(0) \cdot (1-0) + rac{1}{2} g''(\xi) \cdot (1-0)^2 \quad ext{for a } \xi \in (0,1).$$

The calculation of g'(0) is given by the chain rule

$$g'(0) = \frac{d}{dt} f(x_1^0 + t(x_1 - x_1^0), x_2^0 + t(x_2 - x_2^0), \dots, x_n^0 + t(x_n - x_n^0)) \Big|_{t=0}$$

$$= D_1 f(x_0) \cdot (x_1 - x_1^0) + \dots + D_n f(x_0) \cdot (x_n - x_n^0)$$

$$= \sum_{|\alpha|=1} \frac{D^{\alpha} f(x_0)}{\alpha!} \cdot (x - x_0)^{\alpha}$$

Continuation of the derivation.

Calculation of g''(0) gives

$$g''(0) = \frac{d^2}{dt^2} f(x_0 + t(x - x_0)) \Big|_{t=0} = \frac{d}{dt} \sum_{k=1}^n D_k f(x^0 + t(x - x^0)) (x_k - x_k^0) \Big|_{t=0}$$

$$= D_{11} f(x_0) (x_1 - x_1^0)^2 + D_{21} f(x_0) (x_1 - x_1^0) (x_2 - x_2^0)$$

$$+ \dots + D_{ij} f(x_0) (x_i - x_i^0) (x_j - x_j^0) + \dots +$$

$$+ D_{n-1,n} f(x_0) (x_{n-1} - x_{n-1}^0) (x_n - x_n^0) + D_{nn} f(x_0) (x_n - x_n^0)^2)$$

$$= \sum_{|\alpha|=2} \frac{D^{\alpha} f(x_0)}{\alpha!} (x - x_0)^{\alpha} \quad \text{(exchange theorem of Schwarz!)}$$

Continuation: Proof of the Taylor-formula by (mathematical) induction!

Proof of the Taylor theorem.

The function

$$g(t) := f(x^0 + t(x - x^0))$$

is (m+1)-times continuous differentiable and we have

$$g(1) = \sum_{k=0}^m rac{g^{(k)}(0)}{k!} + rac{g^{(m+1)}(heta)}{(m+1)!} \quad ext{for a } heta \in [0,1].$$

In addition we have (by induction over k)

$$\frac{g^{(k)}(0)}{k!} = \sum_{|\alpha|=k} \frac{D^{\alpha}f(x^0)}{\alpha!} (x - x^0)^{\alpha}$$

and

$$\frac{g^{(m+1)}(\theta)}{(m+1)!} = \sum_{|\alpha|=m+1} \frac{D^{\alpha} f(x^0 + \theta(x - x^0))}{\alpha!} (x - x^0)^{\alpha}$$

◆ロト ◆母 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q (^*)

Examples for the Taylor-expansion.

• Calculate the Taylor–polynom $T_2(x; x_0)$ of degree 2 of the function

$$f(x, y, z) = x y^2 \sin z$$

at
$$(x, y, z) = (1, 2, 0)^T$$
.

- ② The calculation of $T_2(x; x_0)$ requires the partial derivatives up to order 2.
- **3** These derivatives have to be evaluated at $(x, y, z) = (1, 2, 0)^T$.
- The result is $T_2(x; x_0)$ in the form

$$T_2(x;x_0)=4z(x+y-2)$$

Details on extra slide.

Remarks to the remainder of a Taylor-expansion.

Remark: The remainder of a Taylor–expansion contains **all** partial derivatives of order (m + 1):

$$R_m(\mathsf{x};\mathsf{x}_0) = \sum_{|\alpha|=m+1} \frac{D^{\alpha} f(\mathsf{x}_0 + \theta(\mathsf{x} - \mathsf{x}_0))}{\alpha!} (\mathsf{x} - \mathsf{x}_0)^{\alpha}$$

If all these derivative are bounded by aconstant C in a neighborhood of x_0 then the estimate for the remainder hold true

$$|R_m(x;x_0)| \le \frac{n^{m+1}}{(m+1)!} C ||x-x_0||_{\infty}^{m+1}$$

We conclude for the quality of the approximation of a \mathcal{C}^{m+1} -function by the Taylor-polynom

$$f(x) = T_m(x; x_0) + O(||x - x_0||^{m+1})$$

Special case m=1: For a \mathcal{C}^2 -function f(x) we obtain

$$f(x) = f(x^0) + \text{grad } f(x^0) \cdot (x - x^0) + O(||x - x^0||^2).$$

←□▶←□▶←□▶←□▶ □ 900

The Hesse-matrix.

The matrix

$$\mathsf{H}f(\mathsf{x}_0) := \left(\begin{array}{cccc} f_{\mathsf{x}_1\mathsf{x}_1}(\mathsf{x}_0) & \dots & f_{\mathsf{x}_1\mathsf{x}_n}(\mathsf{x}_0) \\ & \vdots & & \vdots \\ f_{\mathsf{x}_n\mathsf{x}_1}(\mathsf{x}_0) & \dots & f_{\mathsf{x}_n\mathsf{x}_n}(\mathsf{x}_0) \end{array} \right)$$

is called Hesse–matrix of f at x_0 .

Hesse–matrix = Jacobi–matrix of the gradient ∇f

The Taylor–expansion of a \mathcal{C}^3 –function can be written as

$$f(\mathbf{x}) = f(\mathbf{x}_0) + \operatorname{grad} f(\mathbf{x}_0)(\mathbf{x} - \mathbf{x}_0) + \frac{1}{2}(\mathbf{x} - \mathbf{x}_0)^T \mathsf{H} f(\mathbf{x}_0)(\mathbf{x} - \mathbf{x}_0) + O(\|\mathbf{x} - \mathbf{x}_0\|^3)$$

The Hesse–matrix of a C^2 –function is symmetric.

Chapter 2. Applications of multivariate differential calculus

2.1 Extrem values of multivariate functions

Definition: Let $D \subset \mathbb{R}^n$, $f: D \to \mathbb{R}$ and $x^0 \in D$. Then at x^0 the function f has

- a global maximum if $f(x) \le f(x^0)$ for all $x \in D$.
- a strict global maximum if $f(x) < f(x^0)$ for all $x \in D$.
- a local maximum if there exists an $\varepsilon > 0$ such that

$$f(x) \le f(x^0)$$
 for all $x \in D$ with $||x - x^0|| < \varepsilon$.

• a strict local maximum if there exists an $\varepsilon > 0$ such that

$$f(x) < f(x^0)$$
 for all $x \in D$ with $||x - x^0|| < \varepsilon$.

Analogously we define the different forms of minima.

Necessary conditions for local extrem values.

Theorem: If a C^1 -function f(x) has a local extrem value (minimum or maximum) at $x^0 \in D^0$, then

$$\operatorname{grad} f(x^0) = 0 \in \mathbb{R}^n$$

Proof: For an arbitrary $v \in \mathbb{R}^n$, $v \neq 0$ the function

$$\varphi(t) := f(x^0 + tv)$$

is differentiable in a neighborhood of $t^0 = 0$.

 $\varphi(t)$ has a local extrem value at $t^0 = 0$. We conclude:

$$\varphi'(0) = \operatorname{grad} f(x^0) v = 0$$

Since this holds true for all $v \neq 0$ we obtain

$$\operatorname{grad} f(x^0) = (0, \dots, 0)^T$$

Remarks to local extrem values.

Bemerkungen:

- Typically the condition grad $f(x^0) = 0$ gives a non-linear system of n equations for n unknowns for the calculation of $x = x^0$.
- The points $x^0 \in D^0$ with grad $f(x^0) = 0$ are called stationary points of f. Stationary points are **not** necessarily local extram values. As an example take

$$f(x,y) := x^2 - y^2$$

with the gradient

$$\operatorname{grad} f(x, y) = 2(x, -y)$$

and therefore with the only stationary point $x^0 = (0,0)^T$. However, the point x^0 is a saddel point of f, i.e. in every neighborhood of x^0 there exist two points x^1 and x^2 with

$$f(x^1) < f(x^0) < f(x^2)$$
.

Classification of stationary points.

Theorem: Let f(x) be a C^2 -function on D^0 and let $x^0 \in D^0$ be a stationary point of f(x), i.e. grad $f(x^0) = 0$.

a) necessary condition

If x^0 is a local extrem value of f, then:

 x^0 local minimum \Rightarrow H $f(x^0)$ positiv semidefinit x^0 local maximum \Rightarrow H $f(x^0)$ negativ semidefinit

b) sufficient condition

If $H f(x^0)$ is positiv definit (negativ definit) then x^0 is a strict local minimum (maximum) of f.

If H $f(x^0)$ is indefinit then x^0 is a saddel point, i.e. in every neighborhood of x^0 there exist points x^1 and x^2 with $f(x^1) < f(x^0) < f(x^2)$.

Proof of the theorem, part a).

Let x^0 be a local minimum. For $v\neq 0$ and $\varepsilon>0$ sufficiently small we conclude from the Taylor–expansion

$$f(\mathbf{x}^0 + \varepsilon \mathbf{v}) - f(\mathbf{x}^0) = \frac{1}{2} (\varepsilon \mathbf{v})^T \mathbf{H} f(\mathbf{x}^0 + \theta \varepsilon \mathbf{v}) (\varepsilon \mathbf{v}) \ge 0$$
 (1)

with $\theta = \theta(\varepsilon, v) \in (0, 1)$.

The gradient in the Taylor expansion grad $f(x^0) = 0$ vanishes since x^0 is stationary.

From (1) it follows

$$v^T H f(x^0 + \theta \varepsilon v) v \ge 0$$
 (2)

Since f is a \mathcal{C}^2 -function, the Hesse–matrix is a continuous map. In the limit $\varepsilon \to 0$ we conclude from (2),

$$v^T H f(x^0) v \geq 0$$

i.e. $H f(x^0)$ is positiv semidefinit.

Proof of the theorem, part b).

If $H f(x^0)$ is positiv definit, then H f(x) is positiv definit in a sufficiently small neighborhood $x \in K_{\varepsilon}(x^0) \subset D$ around x^0 . This follows from the continuity of the second partial derivatives.

For $x \in K_{\varepsilon}(x^0)$, $x \neq x^0$ we have

$$f(x) - f(x^{0}) = \frac{1}{2}(x - x^{0})^{T} H f(x^{0} + \theta(x - x^{0}))(x - x^{0})$$

> 0

with $\theta \in (0,1)$, i.e. f has a strict local minimum at x^0 .

If H $f(x^0)$ is indefinit, then there exist Eigenvectors v, w for Eigenvalues of H $f(x^0)$ with opposite sign with

$$v^T H f(x^0) v > 0$$
 $w^T H f(x^0) w < 0$

and thus x^0 is a saddel point.

Remarks.

- A stationary point x^0 with det $Hf(x^0) = 0$ is called degenerate. The Hesse–matrix has an Eigenvalue $\lambda = 0$.
- If x^0 is **not** degenerate, then there exist 3 cases for the Eigenvalues of $Hf(x^0)$:

all Eigenvalues are strictly positive \Rightarrow x^0 is a strict local minimal Eigenvalues are strictly negative \Rightarrow x^0 is a strict local mathere are strictly positive and negative Eigenvalues \Rightarrow x^0 saddel point

• The following implications are true (but not the inverse)

$$x^0$$
 local minimum $\Leftrightarrow x^0$ strict local minimum \uparrow
 $Hf(x^0)$ positiv semidefinit $\Leftrightarrow Hf(x^0)$ positiv definit

Further remarks.

• If f is a \mathcal{C}^3 -function, x^0 a stationary point of f and $Hf(x^0)$ positiv definit. Then the following estimate is true:

$$(x - x^0)^T Hf(x^0) (x - x^0) \ge \lambda_{min} \cdot ||x - x^0||^2$$

where λ_{\min} denoted the smallest Eigenvalue ot the Hesse–matrix.

Using the Taylor theorem we obtain:

$$f(x) - f(x^{0}) \ge \frac{1}{2} \lambda_{min} ||x - x^{0}||^{2} + R_{3}(x; x^{0})$$

 $\ge ||x - x^{0}||^{2} \left(\frac{\lambda_{min}}{2} - C||x - x^{0}||\right)$

with an appropriate constant C > 0.

The function f grows at least quadratically around x^0 .

◆ロト ◆昼 ト ◆ 重 ト ◆ 重 ・ 夕 Q ○

Example.

We consider the function

$$f(x,y) := y^2(x-1) + x^2(x+1)$$

and look for stationary points:

grad
$$f(x,y) = (y^2 + x(3x + 2), 2y(x - 1))^T$$

The condition grad f(x, y) = 0 gives two stationary points

$$x^0 = (0,0)^T$$
 und $x^1 = (-2/3,0)^T$.

The related Hesse–matrices of f at x^0 and x^1 are

$$Hf(x^0) = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}$$
 and $Hf(x^1) = \begin{pmatrix} -2 & 0 \\ 0 & -10/3 \end{pmatrix}$

The matrix $Hf(x^0)$ is indefinit, therefore x^0 is a saddel point. $Hf(x^1)$ is negativ definit and thus x^1 is a strict local ein strenges maximum of f.

◆ロト ◆団 ト ◆ 豆 ト ◆ 豆 ・ 夕 Q ○

Chapter 2. Applications of multivariate differential calculus

2.2 Implicitely defined functions

Aim: study the set of solutions of the system of *non-linear* equations of the form

$$g(x) = 0$$

with $g:D\to\mathbb{R}^m$, $D\subset\mathbb{R}^n$. I.e. we consider m equations for n unknowns with

$$m < n$$
.

Thus: there are less equations than unknowns.

We call such a system of equations underdetermined and the set of solutions $G \subset \mathbb{R}^n$ contains typically *infinitely* many points.

Solvability of (non-linear) equations.

Question: can we **solve** the system g(x) = 0 with respect to certain unknowns, i.e. with respect to the last m variables x_{n-m+1}, \ldots, x_n ?

In other words: is there a function $f(x_1, ..., x_{n-m})$ with

$$g(x) = 0 \iff (x_{n-m+1}, ..., x_n)^T = f(x_1, ..., x_{n-m})$$

Terminology: "solve" means express the last m variables by the first n-m variables?

Other question: with respect to which m variables can we solve the system? Is the solution possible *globally* on the domain of defintion D? Or only *locally* on a subdomain $\tilde{D} \subset D$?

Geometrical interpretation: The set of solution G of g(x)=0 can be expressed (at least locally) as graph of a function $f:\mathbb{R}^{n-m}\to\mathbb{R}^m$.

←□▶ ←□▶ ← □ ▶ ← □ ▶ ○ □ ● ○ ○ ○

Example.

The equation for a circle

$$g(x,y) = x^2 + y^2 - r^2 = 0$$
 mit $r > 0$

defines an underdetermined non-linear system of equations since we have **two** unknowns (x, y), but only **one** scalar equation.

The equation for the circle can be solved locally and defines the four functions :

$$y = \sqrt{r^2 - x^2}, -r \le x \le r$$

$$y = -\sqrt{r^2 - x^2}, -r \le x \le r$$

$$x = \sqrt{r^2 - y^2}, -r \le y \le r$$

$$x = -\sqrt{r^2 - y^2}, -r \le y \le r$$

Example.

Let g be an affin-linear function, i.e. g has the form

$$g(x) = Cx + b$$
 for $C \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$

We split the variables x into two vectors

$$\mathbf{x}^{(1)} = (x_1, \dots, x_{n-m})^T \in \mathbb{R}^{n-m}$$
 and $\mathbf{x}^{(2)} = (x_{n-m+1}, \dots, x_n)^T \in \mathbb{R}^n$

Splitting of the matrix C = [B, A] gives the form

$$g(x) = Bx^{(1)} + Ax^{(2)} + b$$

with $B \in \mathbb{R}^{m \times (n-m)}$, $A \in \mathbb{R}^{m \times m}$.

The system of equations g(x) = 0 can be solved (uniquely) with respect to the variables $x^{(2)}$, if A is regular. Then

$$g(x) = 0 \iff x^{(2)} = -A^{-1}(Bx^{(1)} + b) = f(x^{(1)})$$

Continuation of the example.

Question: How can we write the matrix A as dependent of g?

From the equation

$$g(x) = Bx^{(1)} + Ax^{(2)} + b$$

we see that

$$A = \frac{\partial g}{\partial x^{(2)}}(x^{(1)}, x^{(2)})$$

holds, i.e. A is the Jacobian of the map

$$x^{(2)} \rightarrow g(x^{(1)}, x^{(2)})$$

for fixed $x^{(1)}$!

We conclude: Solvability is given if the Jacobian is regular (invertible).

Implicit function theorem.

Theorem: Let $g: D \to \mathbb{R}^m$ be a C^1 -function, $D \subset \mathbb{R}^n$ open. We denote the variables in D by (x,y) with $x \in \mathbb{R}^{n-m}$ und $y \in \mathbb{R}^m$. Let $Der(x^0,y^0) \in D$ be a solution of $g(x^0,y^0) = 0$.

If the Jacobi-matrix

$$\frac{\partial g}{\partial y}(x^0, y^0) := \left(\begin{array}{ccc} \frac{\partial g_1}{\partial y_1}(x^0, y^0) & \dots & \frac{\partial g_1}{\partial y_m}(x^0, y^0) \\ \vdots & & \vdots \\ \frac{\partial g_m}{\partial y_1}(x^0, y^0) & \dots & \frac{\partial g_m}{\partial y_m}(x^0, y^0) \end{array} \right)$$

is regular, then there exist neighborhoods U of x^0 and V of y^0 , $U \times V \subset D$ and a uniquely determined continuous differentiable function $f: U \to V$ with

$$f(x^0) = y^0$$
 und $g(x, f(x)) = 0$ für alle $x \in U$

and

$$J\,f(x) = -\left(\frac{\partial g}{\partial y}(x,f(x))\right)^{-1}\,\left(\frac{\partial g}{\partial x}(x,f(x))\right)$$

◆ロト ◆個ト ◆ 恵ト ◆ 恵 ・ りへぐ

Example.

For the equation of a circle $g(x,y)=x^2+y^2-r^2=0, r>0$ we have at $(x^0,y^0)=(0,r)$

$$\frac{\partial g}{\partial x}(0,r) = 0, \quad \frac{\partial g}{\partial y}(0,r) = 2r \neq 0$$

Thus we can solve the equation of a circle in a neighborhod of (0, r) with respect to y:

$$f(x) = \sqrt{r^2 - x^2}$$

The derivative f'(x) can be calculated by implicit diffentiation:

$$g(x,y(x)) = 0 \implies g_x(x,y(x)) + g_y(x,y(x))y'(x) = 0$$

and therefore

$$2x + 2y(x)y'(x) = 0$$
 \Rightarrow $y'(x) = f'(x) = -\frac{x}{y(x)}$

◆ロト ◆団ト ◆豆ト ◆豆ト 豆 めへ○

Another example.

Consider the equation $g(x, y) = e^{y-x} + 3y + x^2 - 1 = 0$.

It is

$$\frac{\partial g}{\partial y}(x,y) = e^{y-x} + 3 > 0$$
 for all $x \in \mathbb{R}$.

Therefore the equation con be solved fpr every $x \in \mathbb{R}$ with respect to y =: f(x) and f(x) is a continuous differentiable function. Implicit differentiation ives

$$e^{y-x}(y'-1) + 3y' + 2x = 0 \implies y' = \frac{e^{y-x} - 2x}{e^{y-x} + 3}$$

Differentiating again gives

$$e^{y-x}y'' + e^{y-x}(y'-1)^2 + 3y'' + 2 = 0$$
 \Longrightarrow $y' = -\frac{2 + e^{y-x}(y'-1)^2}{e^{y-x} + 3}$

But: Solving the equation with respect to y (in terms of elementary functions) is not possible in this case!

→ロト→団ト→豆ト→豆 りへ○

general remark.

Implicit differentiation of a implicitely defined function

$$g(x,y)=0, \quad \frac{\partial g}{\partial y}\neq 0$$

y = f(x), with $x, y \in \mathbb{R}$, gives

$$f'(x) = -\frac{g_x}{g_y}$$

$$f''(x) = -\frac{g_{xx}g_y^2 - 2g_{xy}g_xg_y + g_{yy}g_x^2}{g_y^3}$$

Therefore the opint x^0 is a stationary point of f(x) if

$$g(x^0, y^0) = g_x(x^0, y^0) = 0$$
 and $g_y(x^0, y^0) \neq 0$

And x^0 is a local maximum (minimum) if

$$\frac{g_{xx}(x^0,y^0)}{g_y(x^0,y^0)}>0 \qquad \bigg(\text{ bzw. } \frac{g_{xx}(x^0,y^0)}{g_y(x^0,y^0)}<0 \bigg)$$

Analysis III for students in engineering

Implicit representation of curves.

Consider the set of solutions of a scalar equation

$$g(x,y)=0$$

lf

$$\operatorname{grad} g = (g_x, g_y) \neq 0$$

then g(x, y) defines locally a function y = f(x) or $x = \bar{f}(y)$.

Definition: A solution point (x^0, y^0) of the equation g(x, y) = 0 with

- grad $g(x^0, y^0) \neq 0$ is called regular point,
- grad $g(x^0, y^0) = 0$ is called singular point.

Example: Consider (again) the equation for a circle

$$g(x,y) = x^2 + y^2 - r = 0$$
 mit $r > 0$.

on the circle there are no singular points!

Horizontal and vertical tangents.

Remarks:

a) If for a regular point (x^0, y^0) we have

$$g_x(x^0) = 0$$
 und $g_y(x^0) \neq 0$

then the set of solutions contains a horizontal tangent in x^0 .

b) If for a regular point (x^0, y^0) we have

$$g_x(x^0) \neq 0$$
 und $g_y(x^0) = 0$

then the set of solutions contains a vertical tangent in x^0 .

c) If x^0 is a singular point, then the set of solutions is approximated at x^0 "in second order" by the following quadratic equation

$$g_{xx}(x^0)(x-x^0)^2 + 2g_{xy}(x^0)(x-x^0)(y-y^0) + g_{yy}(x^0)(y-y^0)^2 = 0$$

◆ロト ◆問ト ◆ ヨト ◆ ヨ ・ か Q (~)

Remarks.

Due to c) for $g_{xx}, g_{xy}, g_{yy} \neq 0$ we obtain:

 $\det Hg(x^0) > 0$: x^0 is an isolated point of the set of solutions

 $\det Hg(x^0) < 0$: x^0 is a double point

 $\det Hg(x^0) = 0$: x^0 is a return point or a cusp

Geometric interpretation:

- a) If $\det Hg(x^0) > 0$, then both Eigenvalues of $Hg(x^0)$ are or strictly positiv or strictly negativ, i.e. x^0 is a strict local minimum or maximum of g(x).
- b) If $\det Hg(x^0) < 0$, then both Eigenvalues of $Hg(x^0)$ have opposite sign, i.e. x^0 is a saddel point of g(x).
- c) If $\det Hg(x^0) = 0$, then the stationary point x^0 of g(x) is degenerate.

Example 1.

Consider the singular point $x^0 = 0$ of the implicit equation

$$g(x,y) = y^{2}(x-1) + x^{2}(x-2) = 0$$

Calculate the partial derivatives up to order 2:

$$g_x = y^2 + 3x^2 - 4x$$

$$g_y = 2y(x-1)$$

$$g_{xx} = 6x - 4$$

$$g_{xy} = 2y$$

$$g_{yy} = 2(x-1)$$

$$Hg(0) = \begin{pmatrix} -4 & 0 \\ 0 & -2 \end{pmatrix}$$

Therefore $x^0 = 0$ is an isolated point.

Example 2.

Consider the singular point $x^0 = 0$ of the implicit equation

$$g(x,y) = y^2(x-1) + x^2(x+q^2) = 0$$

Calculate the partial derivatives up to order 2:

$$g_x = y^2 + 3x^2 + 2xq^2$$

$$g_y = 2y(x-1)$$

$$g_{xx} = 6x + 2q^2$$

$$g_{xy} = 2y$$

$$g_{yy} = 2(x-1)$$

$$Hg(0) = \begin{pmatrix} 2q^2 & 0\\ 0 & -2 \end{pmatrix}$$

Therefore $x^0 = 0$ is an double point.

40 14 4 2 1 4 2 1 2 1 2 0 0

Example 3.

Consider the singular point $x^0 = 0$ of the implicit equation

$$g(x,y) = y^2(x-1) + x^3 = 0$$

Calculate the partial derivatives up to order 2:

$$g_x = y^2 + 3x^2$$

$$g_y = 2y(x-1)$$

$$g_{xx} = 6x$$

$$g_{xy} = 2y$$

$$g_{yy} = 2(x-1)$$

$$Hg(0) = \begin{pmatrix} 0 & 0 \\ 0 & -2 \end{pmatrix}$$

Therefore $x^0 = 0$ is a cusp (or a return point).

4 D F 4 D F 4 D F 9 O O

Implicit representation of surfaces.

- The set of solutions of a scalar equation g(x, y, z) = 0 for grad $g \neq 0$ is locally a surface in \mathbb{R}^3 .
- For the tangential in $x^0 = (x^0, y^0, z^0)^T$ with $g(x^0) = 0$ and $grad g(x^0) \neq 0^T$ we obtain by Taylor expanding (denoting $\Delta x^0 = x x^0$)

grad
$$g \cdot \Delta x^0 = g_x(x^0)(x - x^0) + g_y(x^0)(y - y^0) + g_z(x^0)(z - z_0) = 0$$

i.e. the gradient is vertical to the surface g(x, y, z) = 0.

• If for example $g_z(x^0) \neq 0$, then locally there exists a a representation at x^0 of the form

$$z = f(x, y)$$

and for the partial derivatives of f(x, y) we obtain

$$\operatorname{grad} f(x,y) = (f_x, f_y) = -\frac{1}{g_z}(g_x, g_y) = \left(-\frac{g_x}{g_z}, \frac{g_y}{g_z}\right)$$

using the implicit function theorem.

The inverted Problem.

Question: Given the set of equations

$$y = f(x)$$

with f : $D \to \mathbb{R}^n$, $D \subset \mathbb{R}^n$ open. Can we solve it with respect to x, i.e. can we **invert** the probem?

Theorem: (Inversion theorem)

Let $D \subset \mathbb{R}^n$ be open and $f: D \to \mathbb{R}^n$ a \mathcal{C}^1 -function. If the Jacobian–matrix $Jf(x^0)$ is regular for an $x^0 \in D$, then there exist neighborhoods U and V of x^0 and $y^0 = f(x^0)$ such that f maps U on V bijectively.

The inverse function $f^{-1}: V \to U$ is also C^1 and for all $x \in U$ we have:

$$J f^{-1}(y) = (J f(x))^{-1}, y = f(x)$$

Remark: We call f locally a C^1 -diffeomorphism.

- 4 ロ ト 4 個 ト 4 重 ト 4 重 ・ 夕 Q C・

Chapter 2. Applications of multivariate differential calculus

2.3 Extrem value problems under constraints

Question: What is the size of a metallic cylindrical can in order to minimize the material amount by given volume?

Ansatz for solution: Let r > 0 be the radius and h > 0 the height of the can.

Then

$$V = \pi r^2 h$$

$$O = 2\pi r^2 + 2\pi r h$$

Let $c \in \mathbb{R}_+$ be the given volume (with x := r, y := h),

$$f(x,y) = 2\pi x^2 + 2\pi xy$$

$$g(x,y) = \pi x^2 y - c = 0$$
I single equal we

Determine the minimum of the function f(x, y) on the set

$$G := \{(x,y) \in \mathbb{R}^2_+ \mid g(x,y) = 0\}$$

4 ロ ト 4 昼 ト 4 昼 ト 1 昼 1 夕 Q Q

Solution of the constraint minimisation problem.

From $g(x, y) = \pi x^2 y - c = 0$ follows

$$y = \frac{c}{\pi x^2} \qquad \text{expres} \qquad \text{In most}$$

$$y = \frac{c}{\sqrt{x^2}} \qquad \text{for while}$$

We plug this into f(x, y) and obtain

$$f(x) \leq h(x) := 2\pi x^2 + 2\pi x \frac{c}{\pi x^2} = 2\pi x^2 + \frac{2c}{x}$$

Determine the minimum of the function h(x):

$$h'(x) = 4\pi x - \frac{2c}{x^2} = 0 \quad \Rightarrow \quad 4\pi x = \frac{2c}{x^2} \quad \Rightarrow \quad \left[x = \left(\frac{c}{2\pi}\right)^{1/3} \right]$$

Sufficient condition

$$h''(x) = 4\pi + \frac{4c}{x^3}$$
 \Rightarrow $h''\left(\left(\frac{c}{\pi}\right)^{1/3}\right) = 12\pi > 0$ \Rightarrow Mix

General formulation of the problem.

Determine the extrem values of the function $f: \mathbb{R}^n \to \mathbb{R}$ under the constraint

$$g(x) = 0$$

where $g: \mathbb{R}^{\widehat{h}} \to \mathbb{R}^{\widehat{m}}$.

The constraints are

$$g_1(x_1,\ldots,x_n)=0$$

$$\vdots \qquad \qquad \lim_{n \to \infty} g_m(x_1,\ldots,x_n)=0 \qquad \qquad \text{nonlinear existions}$$

Alternatively: Determine the extrem values of the function f(x) on the set

$$G:=\{x\in\mathbb{R}^n\,|\,g(x)=0\}$$

The Lagrange-function and the Lagrange-Lemma.

We define the Lagrange-function

$$F(x) := f(x) + \sum_{i=1}^{m} \lambda_i g_i(x) \qquad \text{for } x \to \infty$$

and look for the extrem values of F(x) for fixed $\lambda = (\lambda_1, \dots, \lambda_m)^T$.

The numbers λ_i , i = 1, ..., m are called Lagrange-multiplier.

Theorem: (Lagrange-Lemma) If x^0 minimizes (or maximizes) the Lagrange–function F(x) (for a fixed λ) on D and if $g(x^0) = 0$ holds, then x^0 is the minimum (or maximum) of f(x) on $G := \{x \in D \mid g(x) = 0\}$.

Proof: For an arbitrary $x \in D$ we have

A necessary condition for local extrema.

Let f and g_i , i = 1, ..., m, C^1 -functions, then a necessary condition for an extrem value x^0 of F(x) is given by

$$\operatorname{grad} F(x) = \operatorname{grad} f(x) + \sum_{i=1}^{m} \lambda_i \operatorname{grad} g_i(x) = 0$$
Together with the constraints $g(x) = 0$ we obtain a set of (non-linear) equations with $(n+m)$ equations and $(n+m)$ unknowns x and λ

with (n+m) equations and (n+m) unknowns x and λ .

The solutions (x^0, λ^0) are the candidates for the extrem values, since these solutions satisfy the above necessary condition.

Alternatively: Define a Langrange–function

angrange-function
$$G(x,\lambda) := f(x) + \sum_{i=1}^{m} \lambda_{i} g_{i}(x)$$

$$G(x,\lambda) := f(x) + \sum_{i=1}^{m} \lambda_{i} g_{i}(x)$$

$$G(x,\lambda) := f(x) + \sum_{i=1}^{m} \lambda_{i} g_{i}(x)$$

and look for the extrem values of $G(x, \lambda)$ with respect to x and λ .

Some remarks on sufficient conditions.

- We can formulate a **necessary** condition: If the functions f and g are \mathcal{C}^2 -functions and if the Hesse-matrix $HF(x^0)$ of the Lagrange-function is positiv (negativ) definit, then x^0 is a strict local minimum (maximum) of f(x) on G.
- ② In most of the applications the necessary condition are **not** satisfied, allthough x^0 is a strict local extremum.
- **3** And from the indefinitness of the Hesse–matrix $HF(x^0)$ we **cannot** conclude, that x^0 is not an extremum.
- We have a similar problem with the necessary condition which is obtained from the Hesse–matrix of the Lagrange–function $G(x, \lambda)$ with respect to x and λ .

An example of a minimisation problem with constraints.

We look for extrem values of f(x, y) := xy on the disc

$$K := \{(x,y)^T \mid \underbrace{x^2 + y^2 \leq 1}_{\text{loc gradien}}\}$$

Since the function f is continuous and $K \subset \mathbb{R}^2$ compact we conclude from the min–max–property the existence of global maxima and minima on K.

We consider first the interior K^0 of K, i.e. the open set

$$K^0 := \{(x,y)^T \mid x^2 + y^2 < 1\}$$

The necessary condition for an extrem value is given by

Mecasson y land, here
$$grad f = (y, x) = 0$$

Thus the origin $x^0 = 0$ is a candidate for a (local) extrem value.

- (ロ) (個) (E) (E) E の(C)

continuation of the example.

The Hesse-matrix at the origin is given by

$$Hf(0) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \begin{cases} 2 - 1 = 0 \\ 6 - 1 = 0 \end{cases}$$

and is indefinit. Thus x^0 is a saddel point.

Therefore the extrem values have to be on the boundary which is represented by a constraint equation:

$$g(x,y) = x^2 + y^2 - 1 = 0$$

Therefore we look for the extrem values of f(x, y) = xy under the constraint g(x, y) = 0.

The Lagrange-function is given by

$$f(x_{\mathcal{I}}) \neq \lambda f(x_{\mathcal{I}}) = F(x, y) = xy + \lambda(x^2 + y^2 - 1)$$

→ロト→□ト→ミト→ミト ミ からぐ

Completion of the example.

We obtain the non-linear system of equations

$$\lambda = \frac{1}{2}$$
 : $\mathbf{x}^{(1)} = (\sqrt{1/2}, -\sqrt{1/2})^T$ $\mathbf{x}^{(2)} = (-\sqrt{1/2}, \sqrt{1/2})^T$

$$\mathbf{x}^{(2)} = (-\sqrt{1/2}, \sqrt{1/2})^T$$

0 + m = 2 + 1 = 3

$$\lambda = -\frac{1}{2}$$
 : $\mathbf{x}^{(3)} = (\sqrt{1/2}, \sqrt{1/2})^T$ $\mathbf{x}^{(4)} = (-\sqrt{1/2}, -\sqrt{1/2})^T$

Minima and Maxima can be concluded from the values of the function

$$f(x^{(1)}) = f(x^{(2)}) = -1/2$$
 $f(x^{(3)}) = f(x^{(4)}) = 1/2$

i.e. minima are $x^{(1)}$ and $x^{(2)}$, maxima are $x^{(3)}$ and $x^{(4)}$.

Completion of the example.

We obtain the non-linear system of equations

$$y + 2\lambda x = 0$$

$$x + 2\lambda y = 0$$

$$x^2 + y^2 = 1$$

with the four solution

$$\lambda = \frac{1}{2} \quad : \quad \mathbf{x}^{(1)} = (\sqrt{1/2}, -\sqrt{1/2})^T \quad \mathbf{x}^{(2)} = (-\sqrt{1/2}, \sqrt{1/2})^T$$
$$\lambda = -\frac{1}{2} \quad : \quad \mathbf{x}^{(3)} = (\sqrt{1/2}, \sqrt{1/2})^T \quad \mathbf{x}^{(4)} = (-\sqrt{1/2}, -\sqrt{1/2})^T$$

Minima and Maxima can be concluded from the values of the function

$$f(x^{(1)}) = f(x^{(2)}) = -1/2$$
 $f(x^{(3)}) = f(x^{(4)}) = 1/2$

i.e. minima are $x^{(1)}$ and $x^{(2)}$, maxima are $x^{(3)}$ and $x^{(4)}$.

Completion of the example.

We obtain the non-linear system of equations

$$y + 2\lambda x = 0$$

$$x + 2\lambda y = 0$$

$$x^2 + y^2 = 1$$

with the four solution

$$\lambda = \frac{1}{2} \quad : \quad \mathbf{x}^{(1)} = (\sqrt{1/2}, -\sqrt{1/2})^T \quad \mathbf{x}^{(2)} = (-\sqrt{1/2}, \sqrt{1/2})^T$$
$$\lambda = -\frac{1}{2} \quad : \quad \mathbf{x}^{(3)} = (\sqrt{1/2}, \sqrt{1/2})^T \quad \mathbf{x}^{(4)} = (-\sqrt{1/2}, -\sqrt{1/2})^T$$

Minima and Maxima can be concluded from the values of the function

$$f(x^{(1)}) = f(x^{(2)}) = -1/2$$
 $f(x^{(3)}) = f(x^{(4)}) = 1/2$

i.e. minima are $x^{(1)}$ and $x^{(2)}$, maxima are $x^{(3)}$ and $x^{(4)}$.

 $Hf(x_{1}y) = \begin{pmatrix} 2\lambda & 1 \\ 1 & 2\lambda \end{pmatrix}$ $0 = (2\lambda - 6)^{2} - 1$ $0 = (2\lambda + 1) = (2\lambda + 1) = (2\lambda + 1) = (2\lambda + 1)$ $1 = (2\lambda - 6)^{2} - 1$ $1 = (2\lambda - 6)^{2} - 1$ 1 = (2

y = (2x, 2y) $y'' + Fy = \frac{2}{2}(1, -1) \begin{pmatrix} 2\lambda & 1 \\ 1 & 2\lambda \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \frac{2}{2}(1, -1) \begin{pmatrix} 2\lambda - 1 \\ 1 - 2\lambda \end{pmatrix} = \frac{2}{2}(4\lambda - 2) = -\frac{2}{2}(4\lambda - 2) = -\frac{2}{2}($

$$f(x,y) = 2\pi x^{2} + 2\pi xy \implies mn'$$

$$g(x,y) = \pi x^{2}y - c = 0$$

$$f(x,y) = \pi x(2x + 2y + \lambda xy) - c$$

$$g(x,y) = \pi x(2x + 2y + \lambda xy) - c$$

$$g(x,y) = \pi x(2x + 2y + \lambda xy) - c$$

$$g(x,y) = \pi x(2x + 2y + \lambda xy) - c$$

$$g(x,y) = \pi x(2x + 2y + \lambda xy) - c$$

$$g(x,y) = \pi x(2x + 2y + \lambda xy) - c$$

$$g(x,y) = \pi x(2x + 2y + \lambda xy) - c$$

$$g(x,y) = \pi x(2x + 2y + \lambda xy) - c$$

$$g(x,y) = \pi x(2x + 2y + \lambda xy) - c$$

$$g(x,y) = \pi x(2x + 2y + \lambda xy) - c$$

$$g(x,y) = \pi x(2x + 2y + \lambda xy) - c$$

$$g(x,y) = \pi x(2x + 2y + \lambda xy) - c$$

$$g(x,y) = \pi x(2x + 2y + \lambda xy) - c$$

$$g(x,y) = \pi x(2x + 2y + \lambda xy) - c$$

$$g(x,y) = \pi x(2x + 2y + \lambda xy) - c$$

$$g(x,y) = \pi x(2x + 2y + \lambda xy) - c$$

$$g(x,y) = \pi x(2x + 2y + \lambda xy) - c$$

$$g(x,y) = \pi x(2x + 2y + \lambda xy) - c$$

$$g(x,y) = \pi x(2x + 2y + \lambda xy) - c$$

$$g(x,y) = \pi x(2x + 2y + \lambda xy) - c$$

$$g(x,y) = \pi x(2x + 2y + \lambda xy) - c$$

$$g(x,y) = \pi x(2x + 2y + \lambda xy) - c$$

$$g(x,y) = \pi x(2x + 2y + \lambda xy) - c$$

$$g(x,y) = \pi x(2x + 2y + \lambda xy) - c$$

$$g(x,y) = \pi x(2x + 2y + \lambda xy) - c$$

$$g(x,y) = \pi x(2x + 2y + \lambda xy) - c$$

$$g(x,y) = \pi x(2x + 2y + \lambda xy) - c$$

$$g(x,y) = \pi x(2x + 2y + \lambda xy) - c$$

$$g(x,y) = \pi x(2x + 2y + \lambda xy) - c$$

$$g(x,y) = \pi x(2x + 2y + \lambda xy) - c$$

$$g(x,y) = \pi x(2x + 2y + \lambda xy) - c$$

$$g(x,y) = \pi x(2x + 2y + \lambda xy) - c$$

$$g(x,y) = \pi x(2x + 2y + \lambda xy) - c$$

$$g(x,y) = \pi x(2x + 2y + \lambda xy) - c$$

$$g(x,y) = \pi x(2x + 2y + \lambda xy) - c$$

$$g(x,y) = \pi x(2x + 2y + \lambda xy) - c$$

$$g(x,y) = \pi x(2x + 2y + \lambda xy) - c$$

$$g(x,y) = \pi x(2x + 2y + \lambda xy) - c$$

$$g(x,y) = \pi x(2x + 2y + \lambda xy) - c$$

$$g(x,y) = \pi x(2x + 2y + \lambda xy) - c$$

$$g(x,y) = \pi x(2x + 2y + \lambda xy) - c$$

$$g(x,y) = \pi x(2x + 2y + \lambda xy) - c$$

$$g(x,y) = \pi x(2x + 2y + \lambda xy) - c$$

$$g(x,y) = \pi x(2x + 2y + \lambda xy) - c$$

$$g(x,y) = \pi x(2x + 2y + \lambda xy) - c$$

$$g(x,y) = \pi x(2x + 2y + \lambda xy) - c$$

$$g(x,y) = \pi x(2x + 2y + \lambda xy) - c$$

$$g(x,y) = \pi x(2x + 2y + \lambda xy) - c$$

$$g(x,y) = \pi x(2x + 2y + \lambda xy) - c$$

$$g(x,y) = \pi x(2x + 2y + \lambda xy) - c$$

$$g(x,y) = \pi x(2x + 2y + \lambda xy) - c$$

$$g(x,y) = \pi x(2x + 2y + \lambda xy) - c$$

$$g(x,y) = \pi x(2x + 2y + \lambda xy) - c$$

$$g(x,y) = \pi x(2x + 2y + \lambda xy) - c$$

$$g(x,y) = \pi x(2x + 2y + \lambda xy) - c$$

$$g(x,y) = \pi x(2x + 2y + \lambda xy) - c$$

$$g(x,y) = \pi x(2x + 2y +$$

Lagrange-multiplier-rule.

Satz: Let $f, g_1, \ldots, g_m : D \to \mathbb{R}$ be \mathcal{C}^1 -functions, und let $\mathsf{x}^0 \in D$ a local extrem value of $f(\mathsf{x})$ under the constraint $\mathsf{g}(\mathsf{x}) = 0$. In addition let the regularity condition

$$\operatorname{rang}\left(\operatorname{Jg}(\mathsf{x}^0)\right) = m \qquad \qquad \operatorname{fram}(\mathsf{x}^0) = m$$

hold true. Then there exist Lagrange–multiplier $\lambda_1, \ldots, \lambda_m$, such that for the Lagrange function

$$F(x) := f(x) + \sum_{i=1}^{m} \lambda_i g_i(x)$$

the following first order necessary condition holds true:

$$\operatorname{grad} F(x^0) = 0$$

Necessary condition of second order and sufficient condition.

Theorem: 1) Let $x^0 \in D$ a local minimum of f(x) under the constraint g(x) = 0, let the regularity condition be satisfied and let $\lambda_1, \ldots, \lambda_m$ be the related Lagrange–multiplier. Then the Hesse–matrix $HF(x^0)$ of the Lagrange–function is positiv semi-definit on the tangential space

$$TG(\mathsf{x}^0) := \{ \mathsf{y} \in \mathbb{R}^n \mid \operatorname{grad} g_i(\mathsf{x}^0) \cdot \mathsf{y} \} = 0 \text{ for } i = 1, \dots, m \}$$
 i.e. it is $\mathsf{y}^T \mathsf{H} F(\mathsf{x}^0) \mathsf{y} \geq 0$ for all $\mathsf{y} \in TG(\mathsf{x}^0)$. 2) Let the regularity condition for a point $\mathsf{x}^0 \in G$ be staisfied. If there exist

2) Let the regularity condition for a point $x^0 \in G$ be staisfied. If there exist Lagrange–multiplier $\lambda_1, \ldots, \lambda_m$, such that x^0 is a stationary point of the related Lagrange–function. Let the Hesse–matrix $HF(x^0)$ be positiv definit on the tangential space $TG(x^0)$, i.e. it holds

$$y^T HF(x^0) y > 0 \quad \forall y \in TG(x^0) \setminus \{0\},$$

then x^0 is a strict local minimum of f(x) under the constraint g(x) = 0.

- 4 ロ ト 4 固 ト 4 直 ト 4 直 ・ 9 9 0 0

Example.

Determine the global maximum of the function

$$h=2$$

$$f(x,y) = -x^2 + 8x - y^2 + 9$$

under the constraint

$$g(x,y) = x^2 + y^2 - 1 = 0$$

The Lagrange-function is given by

$$F(x) = -x^2 + 8x - y^2 + 9 + \lambda(x^2 + y^2 - 1)$$

From the necessary condition we obtain the non-linear system

$$F_{x}(x,y) = -2x + 8 = -2\lambda x$$

$$F_{y}(x,y) = -2y = -2\lambda y$$

$$F_{y}(x,y) + 1 = x^{2} + y^{2} = 1$$

Ingenuin Gasser (Mathematik, UniHH)

Continuation of the example.

From the necessary condition we obtain the non-linear system

$$-2x + 8 = -2\lambda x \qquad \Rightarrow \lambda \neq \lambda$$

$$-2y = -2\lambda y \qquad \Rightarrow y = 0$$

$$x^2 + y^2 = 1 \qquad \Rightarrow x = \pm \lambda$$

$$x^2 + y^2 = 1 \qquad \Rightarrow x = \pm \lambda$$
The first equation gives $\lambda \neq 1$. Using this in the second equation we get $y = 0$.

From the third equation we obtain $x=\pm 1$. Therefore the two points (x,y)=(1,0) and (x,y)=(-1,0) are candidates for a global maximum. Since

$$f(1,0) = 16$$
 $f(-1,0) = 0$

the global maximum of f(x, y) under the constraint g(x, y) = 0 is given at the point (x, y) = (1, 0).

Another example.

Determine the local extrem values of

$$f(x,y,z)=2x+3y+2z$$

on the intersection of the cylinder surface m=2

$$M_Z := \{(x, y, z)^T \in \mathbb{R}^3 \mid x^2 + y^2 = 2\}$$

with the plane

$$E := \{(x, y, z)^T \in \mathbb{R}^3 \mid x + z = 1\}$$

Reformulation: Determine the extrem values of the function f(x, y, z) under the constraint

$$g_1(x, y, z) := x^2 + y^2 - 2 = 0$$

$$g_2(x, y, z) := x + z - 1 = 0$$

Continuation of the example.

$$g(x) = \begin{pmatrix} 2x & 2y & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

$$F(x, y, z) = 2x + 3y + 2z + \lambda_1(x^2 + y^2 - 2) + \lambda_2(x + z - 1)$$

The necessary condition gives the non-linear system

$$F_{2} = 2 + 2\lambda_{1}x + \lambda_{2} = 0$$

$$F_{3} = 3 + 2\lambda_{1}y = 0$$

$$F_{2} = 2 + \lambda_{2} = 0$$

$$x^{2} + y^{2} = 2$$

$$x + z = 1$$

<ロト 4回 ト 4 亘 ト 4 亘 ト □ り Q ()

Continuation of the example.

The necessary condition gives the non-linear system

$$2 + 2\lambda_1 x + \lambda_2 = 0$$

$$3 + 2\lambda_1 y = 0$$

$$2 + \lambda_2 = 0$$

$$2 + \lambda_2 = 0$$

$$x^2 + y^2 = 2$$

$$x + z = 1$$

$$2\lambda_1 x = 0$$

$$\lambda_1 \pm 0 \Rightarrow x = 0$$

97 / 125

From the first and the third equation it follows

$$2\lambda_1 x = 0$$

From the second equation it follows $\lambda_1 \neq 0$, i.e. x = 0.

Thus we have possible extrem values

$$(x, y, z) = (0, \sqrt{2}, 1)$$
 $(x, y, z) = (0, -\sqrt{2}, 1)$

Completion if the example.

The possible extrem values are

$$(x, y, z) = (0, \sqrt{2}, 1)$$
 $(x, y, z) = (0, -\sqrt{2}, 1)$

and lie on the cylinder surface M_Z of the cylinder Z with

$$Z = \{(x, y, z)^T \in \mathbb{R}^3 \mid x^2 + y^2 \le 2\}$$

$$M_Z = \{(x, y, z)^T \in \mathbb{R}^3 \mid x^2 + y^2 = 2\}$$

We calculate the related functioon values

$$f(0, \sqrt{2}, 1) = 3\sqrt{2} + 2$$

 $f(0, -\sqrt{2}, 1) = -3\sqrt{2} + 2$

Thus the point $(x, y, z) = (0, \sqrt{2}, 1)$ is a maximum an the point $(x, y, z) = (0, -\sqrt{2}, 1)$ a minimum.

Chapter 2. Applications of multivariate differential calculus

2.4 the Newton-method

fredsfield

Aim: We look for the zero's of a function $f:D\to\mathbb{R}^n$, $D\subset\mathbb{R}^n$:

We already know the fixed-point iteration

$$(e)+(e)+x=x$$

$$x^{k+1} := \Phi(x^k) \quad \overline{\phi}(x) = \underbrace{+} \times = \times$$

with starting point x^0 and iteration map $\Phi: \mathbb{R}^n \to \mathbb{R}^n$.

• Convergence results are given by the Banach Fixed Point Theorem.

Advantage: this method is derivative-free.

Disadvantages:

- the numerical scheme converges to slow (only linear),
- there is no unique iteratin map.

The construction of the Newton method.

Starting point: Let C^1 -function $f:D\to\mathbb{R}^n$, $D\subset\mathbb{R}^n$ open

We look for a zero of f, i.e. a $x^* \in D$ with

$$f(x^*)=0$$

Construction of the Newton-method:

The Taylor-expansion of f(x) at x^0 is given by

$$= f(x) = f(x^0) + Jf(x^0)(x - x^0) + o(||x - x^0||)$$

Setting $x = x^*$ we obtain

Jf(
$$x^0$$
)($x^* - x^0$) $\approx -f(x^0)$

An approximative solution for x^* is given by x^1 , $x^1 \approx x^*$, the solution of the linear system of equations

$$Jf(x^{0})(x^{1}-x^{0})=-f(x^{0})$$

The Newton-method as algorithm.

The Newton-method can be formulated as algorithm.

Algorithm (Newton-method):

(1) FOR
$$k = 0, 1, 2, ...$$

(2a) Solve $Jf(\underline{\underline{x^k}}) \cdot \Delta x^k = -f(\underline{\underline{x^k}});$
(2b) Set $x^{k+1} = x^k + \Delta x^k;$

- In every Newton-step we solve a set of linear equations.
- The solution Δx^k is called Newton-correction.
- The Newton-method is scaling-invariant.

Scaling-invariance of the Newton–method.

Theorem: the Newton–method is invariant under linear transformations of the form

$$f(x) \to g(x) = \mathsf{A} f(x) \qquad \text{for } \mathsf{A} \in \mathbb{R}^{n \times n} \text{ regular},$$

i.e. the iterates for f and g are identical.

Proof: Constructing the Newton–method for g(x), then the Newton–correction is given by

$$\Delta x^k = -(Jg(x^k))^{-1} \cdot g(x^k)$$

$$= -(AJf(x^k))^{-1} \cdot Af(x^k)$$

$$= -(Jf(x^k))^{-1} \cdot A^{-1}A \cdot f(x^k)$$

$$= -(Jf(x^k))^{-1} \cdot f(x^k)$$

and thus the Newton-correction of f and g conincide.

Using the same starting point x^0 we obtain the same iterates x^k .

Local convergence of the Newton-method.

Theorem: Let $f: D \to \mathbb{R}^n$ be a \mathcal{C}^1 -function, $D \subset \mathbb{R}^n$ open and convex. Let $x^* \in D$ a zero of f, i.e. $f(x^*) = 0$.

Let the Jacobi–matrix Jf(x) be regular for $x \in D$, and suppose the Lipschitz–condition

$$\|(\mathsf{J}\mathsf{f}(\mathsf{x})^{-1}(\mathsf{J}\mathsf{f}(\mathsf{y})-\mathsf{J}\mathsf{f}(\mathsf{x}))\| \leq L\|\mathsf{y}-\mathsf{x}\| \qquad \text{for all } \mathsf{x},\mathsf{y} \in D,$$

holds true with L>0. Then the Newton–method is well defined for all starting points $\mathbf{x}^0\in D$ with

$$\|\mathbf{x}^0 - \mathbf{x}^*\| < \frac{2}{L} =: r \quad \text{and} \quad K_r(\mathbf{x}^*) \subset D$$

with $x^k \in K_r(x^*)$, k = 0, 1, 2, ..., and the Newton–iterates x^k converge quadratically to x^* , i.e.

$$\|\mathbf{x}^{k+1} - \mathbf{x}^*\| \le \frac{L}{2} \|\mathbf{x}^k - \mathbf{x}^*\|^2$$

 x^* is the unique zero of f(x) within the ball $K_r(x^*)$.

The damped Newton-method.

Additional obserrvations:

- The Newton-method converges quadratically, but only locally.
- Global convergence can be obtained if applicable by a damping term:

Algorithm (Damped Newton-method):

(1) FOR
$$k = 0, 1, 2, \dots$$

(2a) Solve
$$Jf(x^k) \cdot \Delta x^k = -f(x^k)$$
;

(2b) Set
$$x^{k+1} = x^k + \lambda_k \Delta x^k$$
;

Frage: How should we choose the damping parameters λ_k ?

Choice of the damping paramter.

Strategy: Use a testfunction T(x) = ||f(x)|| such that

$$T(x) \geq 0, \forall x \in D$$

$$T(x) = 0 \Leftrightarrow f(x) = 0$$

Choose $\lambda_k \in (0,1)$ such that the sequence $T(x^k)$ decreases strictly monotonically, i.e.

$$\|f(x^{k+1})\| < \|f(x^k)\|$$
 für $k \ge 0$.

Close to the solution x^* we should choose $\lambda_k=1$ to guarantee (local) quadratic convergence.

The following Theorem guarantees the existence of damping parameters.

Theorem: Let f a \mathcal{C}^1 -function on the open and convex set $D \subset \mathbb{R}^n$. For $x^k \in D$ with $f(x^k) \neq 0$ there exists a $\mu_k > 0$ such that

$$\|f(x^k + \lambda \Delta x^k)\|_2^2 < \|f(x^k)\|_2^2$$
 for all $\lambda \in (0, \mu_k)$.

◆ロト ◆個ト ◆夏ト ◆夏ト 夏 めなべ

Damping strategy.

For the **initial iteration** k=0: Choose $\lambda_0\in\{1,\frac{1}{2},\frac{1}{4},\ldots,\lambda_{min}\}$ as big as possible such that

$$\|f(x^0)\|_2 > \|f(x^0 + \lambda_0 \Delta x^0)\|_2$$

holds. For subsequent iterations k > 0: Set $\lambda_k = \lambda_{k-1}$.

IF $\|f(x^k)\|_2 > \|f(x^k + \lambda_k \Delta x^k)\|_2$ **THEN**

- $\bullet \ \mathsf{x}^{k+1} := \mathsf{x}^k + \lambda_k \Delta \mathsf{x}^k$
- $\lambda_k := 2\lambda_k$, falls $\lambda_k < 1$.

ELSE

• Determine $\mu = \max\{\lambda_k/2, \lambda_k/4, \dots, \lambda_{min}\}$ with

$$\|f(x^k)\|_2 > \|f(x^k + \lambda_k \Delta x^k)\|_2$$

 $\bullet \lambda_k := \mu$

END

Chapter 3. Integration in higher dimensions

3.1 Area integrals

Given a function $f:D\to\mathbb{R}$ with domain of defintion $D\subset\mathbb{R}^n$.

Aim: Calculate the volume under the graph of f(x):

$$V = \int_D f(x) dx$$

Remember ()Analysis II): Riemann–Integral of a function f on the interval [a, b]:

$$I = \int_{a}^{b} f(x) dx$$

The integral *I* is defined as limit of Riemann upper— and lower-sums, if the limits exist and coincide.

Construction of area integrals.

Procedure: Same as in the one dimensional case.

But: the domain of definition D is more complex.

Starting point: consider the case of two variables n=2 and a domain of definition $D \subset \mathbb{R}^2$ of the form

$$D = [a_1, b_1] \times [a_2, b_2] \subset \mathbb{R}^2$$

i.e. D is compact cuboid (rectangle).

Let $f: D \to \mathbb{R}$ be a bounded function.

Definition: We call $Z = \{(x_0, x_1, \dots, x_n), (y_0, y_1, \dots, y_m)\}$ a partition of the cuboid $D = [a_1, b_1] \times [a_2, b_2]$ if it holds

$$a_1 = x_0 < x_1 < \cdots < x_n = b_1$$

$$a_2 = y_0 < y_1 < \cdots < y_m = b_2$$

Z(D) denotes the set of partitions of D.

