Analysis III for engineering study programs

Ingenuin Gasser
Departments of Mathematics
Universität Hamburg
Technische Universität Hamburg-Harburg
Wintersemester 2021/22
based on slides of Prof. Jens Struckmeier from Wintersemster 2020/21

Content of the course Analysis III.

(1) Partial derivatives, differential operators.
(2) Vector fields, total differential, directional derivative.
(3) Mean value theorems, Taylor's theorem.
(4) Extrem values, implicit function theorem.
(5) Implicit rapresentaion of curves and surfces.
(6) Extrem values under equality constraints.
(1) Newton-method, non-linear equations and the least squares method.
(8) Multiple integrals, Fubini's theorem, transformation theorem.
(9) Potentials, Green's theorem, Gauß's theorem.
(10) Green's formulas, Stokes's theorem.

Chapter 1. Multi variable differential calculus

1.1 Partial derivatives

Let

$$
f\left(x_{1}, \ldots, x_{n}\right) \text { a scalar function depending } n \text { variables }
$$

Example: The constitutive law of an ideal gas $p V=R T$.
Each of the 3 quantities p (pressure), V (volume) and T (emperature) can be expressed as a function of the others (R is the gas constant)

$$
\begin{aligned}
p & =p(V, t)=\frac{R T}{V} \\
V & =V(p, T)=\frac{R T}{p} \\
T & =T(p, V)=\frac{p V}{R}
\end{aligned}
$$

1.1. Partial derivatives

Definition: Let $D \subset \mathbb{R}^{n}$ be open, $f: D \rightarrow \mathbb{R}, x^{0} \in D$.

- f is called partially differentiable in x^{0} with respect to x_{i} if the limit

$$
\begin{aligned}
\frac{\partial f}{\partial x_{i}}\left(x^{0}\right) & :=\lim _{t \rightarrow 0} \frac{f\left(x^{0}+t \mathrm{e}_{i}\right)-f\left(x^{0}\right)}{t} \\
& =\lim _{t \rightarrow 0} \frac{f\left(x_{1}^{0}, \ldots, x_{i}^{0}+t, \ldots, x_{n}^{0}\right)-f\left(x_{1}^{0}, \ldots, x_{i}^{0}, \ldots, x_{n}^{0}\right)}{t}
\end{aligned}
$$

exists. e_{i} denotes the i-th unit vector. The limit is called partial derivative of f with respect to x_{i} at x^{0}.

- If at every point x^{0} the partial derivatives with respect to every variable $x_{i}, i=1, \ldots, n$ exist and if the partial derivatives are continuous functions then we call f continuous partial differentiable or a \mathcal{C}^{1}-function.

Examples.

- Consider the function

$$
f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}
$$

At any point $x^{0} \in \mathbb{R}^{2}$ there exist both partial derivatives and both partial derivatives are continuous:

$$
\frac{\partial f}{\partial x_{1}}\left(x^{0}\right)=2 x_{1}, \quad \frac{\partial f}{\partial x_{2}}\left(x^{0}\right)=2 x_{2}
$$

Thus f is a \mathcal{C}^{1}-function.

- The function

$$
f\left(x_{1}, x_{2}\right)=x_{1}+\left|x_{2}\right|
$$

at $x^{0}=(0,0)^{T}$ is partial differentiable with respect to x_{1}, but the partial derivative with respect to x_{2} does not exist!

An engineering example.

The acoustic pressure of a one dimensional acoustic wave is given by

$$
p(x, t)=A \sin (\alpha x-\omega t)
$$

The partial derivative

$$
\frac{\partial p}{\partial x}=\alpha A \cos (\alpha x-\omega t)
$$

describes at a given time t the spacial rate of change of the pressure.
The partial derivative

$$
\frac{\partial p}{\partial t}=-\omega A \cos (\alpha x-\omega t)
$$

describes for a fixed position x the temporal rate of change of the acoustic pressure.

Rules for differentiation

- Let f, g be differentiable with respect to x_{i} and $\alpha, \beta \in \mathbb{R}$, then we have the rules

$$
\begin{aligned}
\frac{\partial}{\partial x_{i}}(\alpha f(x)+\beta g(x)) & =\alpha \frac{\partial f}{\partial x_{i}}(\mathrm{x})+\beta \frac{\partial g}{\partial x_{i}}(\mathrm{x}) \\
\frac{\partial}{\partial x_{i}}(f(\mathrm{x}) \cdot g(\mathrm{x})) & =\frac{\partial f}{\partial x_{i}}(\mathrm{x}) \cdot g(\mathrm{x})+f(\mathrm{x}) \cdot \frac{\partial g}{\partial x_{i}}(\mathrm{x}) \\
\frac{\partial}{\partial x_{i}}\left(\frac{f(\mathrm{x})}{g(\mathrm{x})}\right) & =\frac{\frac{\partial f}{\partial x_{i}}(\mathrm{x}) \cdot g(\mathrm{x})-f(\mathrm{x}) \cdot \frac{\partial g}{\partial x_{i}}(\mathrm{x})}{g(\mathrm{x})^{2}} \text { for } g(\mathrm{x}) \neq 0
\end{aligned}
$$

- An alternative notation for the partial derivatives of f with respect to x_{i} at x^{0} is given by

$$
D_{i} f\left(x^{0}\right) \quad \text { oder } \quad f_{x_{i}}\left(x^{0}\right)
$$

Gradient and nabla-operator.

Definition: Let $D \subset \mathbb{R}^{n}$ be an open set and $f: D \rightarrow \mathbb{R}$ partial differentiable.

- We denote the row vector

$$
\operatorname{grad} f\left(x^{0}\right):=\left(\frac{\partial f}{\partial x_{1}}\left(x^{0}\right), \ldots, \frac{\partial f}{\partial x_{n}}\left(x^{0}\right)\right)
$$

as gradient of f at x^{0}.

- We denote the symbolic vector

$$
\nabla:=\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}\right)^{T}
$$

as nabla-operator.

- Thus we obtain the column vector

$$
\nabla f\left(x^{0}\right):=\left(\frac{\partial f}{\partial x_{1}}\left(x^{0}\right), \ldots, \frac{\partial f}{\partial x_{n}}\left(x^{0}\right)\right)^{T}
$$

More rules on differentiation.

Let f and g be partial differentiable. Then the following rules on differentiation hold true:

$$
\begin{aligned}
\operatorname{grad}(\alpha f+\beta g) & =\alpha \cdot \operatorname{grad} f+\beta \cdot \operatorname{grad} g \\
\operatorname{grad}(f \cdot g) & =g \cdot \operatorname{grad} f+f \cdot \operatorname{grad} g \\
\operatorname{grad}\left(\frac{f}{g}\right) & =\frac{1}{g^{2}}(g \cdot \operatorname{grad} f-f \cdot \operatorname{grad} g), \quad g \neq 0
\end{aligned}
$$

Examples:

- Let $f(x, y)=e^{x} \cdot \sin y$. Then:

$$
\operatorname{grad} f(x, y)=\left(e^{x} \cdot \sin y, e^{x} \cdot \cos y\right)=e^{x}(\sin y, \cos y)
$$

- For $r(x):=\|x\|_{2}=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}$ we have

$$
\operatorname{grad} r(\mathrm{x})=\frac{\mathrm{x}}{r(\mathrm{x})}=\frac{\mathrm{x}}{\|\mathrm{x}\|_{2}} \quad \text { für } \mathrm{x} \neq 0
$$

where $\mathrm{x}=\left(x_{1}, \ldots, x_{n}\right)$ denotes a row vector.

Partial differentiability does not imply continuity.

Observation: A partial differentiable function (with respect to all coordinates) is not necessarily a continuous function.
Example: Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined as

$$
f(x, y):=\left\{\begin{array}{ccc}
\frac{x \cdot y}{\left(x^{2}+y^{2}\right)^{2}} & : & \text { for }(x, y) \neq 0 \\
0 & : & \text { for }(x, y)=0
\end{array}\right.
$$

The function is partial differntiable on the entire \mathbb{R}^{2} and we have

$$
\begin{aligned}
f_{x}(0,0) & =f_{y}(0,0)=0 \\
\frac{\partial f}{\partial x}(x, y) & =\frac{y}{\left(x^{2}+y^{2}\right)^{2}}-4 \frac{x^{2} y}{\left(x^{2}+y^{2}\right)^{3}}, \quad(x, y) \neq(0,0) \\
\frac{\partial f}{\partial y}(x, y) & =\frac{x}{\left(x^{2}+y^{2}\right)^{2}}-4 \frac{x y^{2}}{\left(x^{2}+y^{2}\right)^{3}}, \quad(x, y) \neq(0,0)
\end{aligned}
$$

Example (continuation).

We calculate the partial derivatives at the origin $(0,0)$:

$$
\begin{aligned}
& \frac{\partial f}{\partial x}(0,0)=\lim _{t \rightarrow 0} \frac{f(t, 0)-f(0,0)}{t}=\frac{\frac{t \cdot 0}{\left(t^{2}+0^{2}\right)^{2}}-0}{t}=0 \\
& \frac{\partial f}{\partial y}(0,0)=\lim _{t \rightarrow 0} \frac{f(0, t)-f(0,0)}{t}=\frac{\frac{0 \cdot t}{\left(0^{2}+t^{2}\right)^{2}}-0}{t}=0
\end{aligned}
$$

But: At $(0,0)$ the function is not continuous since

$$
\lim _{n \rightarrow \infty} f\left(\frac{1}{n}, \frac{1}{n}\right)=\frac{\frac{1}{n} \cdot \frac{1}{n}}{\left(\frac{1}{n} \cdot \frac{1}{n}+\frac{1}{n} \cdot \frac{1}{n}\right)^{2}}=\frac{\frac{1}{n^{2}}}{\frac{4}{n^{4}}}=\frac{n^{2}}{4} \rightarrow \infty
$$

and thus we have

$$
\lim _{(x, y) \rightarrow(0,0)} f(x, y) \neq f(0,0)=0
$$

Boundedness of the derivatives implies continuity.

To guarantee the continuity of a partial differentiable function we need additional conditions on f.

Theorem: Let $D \subset \mathbb{R}^{n}$ be an open set. Let $f: D \rightarrow \mathbb{R}$ be partial differentiable in a neighborhood of $x^{0} \in D$ and let the partial derivatives $\frac{\partial f}{\partial x_{i}}, i=1, \ldots, n$, be bounded. Then f is continuous in x^{0}.

Attention: In the previous example the partial derivatives are not bounded in a neighborhood of $(0,0)$ since

$$
\frac{\partial f}{\partial x}(x, y)=\frac{y}{\left(x^{2}+y^{2}\right)^{2}}-4 \frac{x^{2} y}{\left(x^{2}+y^{2}\right)^{3}} \quad \text { für }(x, y) \neq(0,0)
$$

Proof of the theorem.

For $\left\|x-x^{0}\right\|_{\infty}<\varepsilon, \varepsilon>0$ sufficiently small we write:

$$
\begin{aligned}
f(x)-f\left(x^{0}\right) & =\left(f\left(x_{1}, \ldots, x_{n-1}, x_{n}\right)-f\left(x_{1}, \ldots, x_{n-1}, x_{n}^{0}\right)\right) \\
& +\left(f\left(x_{1}, \ldots, x_{n-1}, x_{n}^{0}\right)-f\left(x_{1}, \ldots, x_{n-2}, x_{n-1}^{0}, x_{n}^{0}\right)\right) \\
& \vdots \\
& +\left(f\left(x_{1}, x_{2}^{0}, \ldots, x_{n}^{0}\right)-f\left(x_{1}^{0}, \ldots, x_{n}^{0}\right)\right)
\end{aligned}
$$

For any difference on the right hand side we consider f as a function in one single variable:

$$
g\left(x_{n}\right)-g\left(x_{n}^{0}\right):=f\left(x_{1}, \ldots, x_{n-1}, x_{n}\right)-f\left(x_{1}, \ldots, x_{n-1}, x_{n}^{0}\right)
$$

Since f is partial differentiable g is differentiable and we can apply the mean value theorem on g :

$$
g\left(x_{n}\right)-g\left(x_{n}^{0}\right)=g^{\prime}\left(\xi_{n}\right)\left(x_{n}-x_{n}^{0}\right)
$$

for an appropriate ξ_{n} between x_{n} and x_{n}^{0}.

Proof of the theorem (continuation).

Applying the mean value theorem to every term in the right hand side we obtain

$$
\begin{aligned}
f(x)-f\left(x^{0}\right) & =\frac{\partial f}{\partial x_{n}}\left(x_{1}, \ldots, x_{n-1}, \xi_{n}\right) \cdot\left(x_{n}-x_{n}^{0}\right) \\
& +\frac{\partial f}{\partial x_{n-1}}\left(x_{1}, \ldots, x_{n-2}, \xi_{n-1}, x_{n}^{0}\right) \cdot\left(x_{n-1}-x_{n-1}^{0}\right) \\
& \vdots \\
& +\frac{\partial f}{\partial x_{1}}\left(\xi_{1}, x_{2}^{0}, \ldots, x_{n}^{0}\right) \cdot\left(x_{1}-x_{1}^{0}\right)
\end{aligned}
$$

Using the boundedness of the partial derivatives

$$
\left|f(\mathrm{x})-f\left(\mathrm{x}^{0}\right)\right| \leq C_{1}\left|x_{1}-x_{1}^{0}\right|+\cdots+C_{n}\left|x_{n}-x_{n}^{0}\right|
$$

for $\left\|x-\mathrm{x}^{0}\right\|_{\infty}<\varepsilon$, we obtain the continuity of f at x^{0} since

$$
f(x) \rightarrow f\left(x^{0}\right) \quad \text { für }\left\|x-x^{0}\right\|_{\infty} \rightarrow 0
$$

Higher order derivatives.

Definition: Let f be a scalar function and partial differentiable on an open set $D \subset \mathbb{R}^{n}$. If the partial derivatives are differentiable we obtain (by differentiating) the partial derivatives of second order of f with

$$
\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}:=\frac{\partial}{\partial x_{j}}\left(\frac{\partial f}{\partial x_{i}}\right)
$$

Example: Second order partial derivatives of a function $f(x, y)$:

$$
\frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right), \quad \frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right), \quad \frac{\partial^{2} f}{\partial x \partial y}, \quad \frac{\partial^{2} f}{\partial y^{2}}
$$

Let $i_{1}, \ldots, i_{k} \in\{1, \ldots, n\}$. Then we define recursively

$$
\frac{\partial^{k} f}{\partial x_{i_{k}} \partial x_{i_{k-1}} \ldots \partial x_{i_{1}}}:=\frac{\partial}{\partial x_{i_{k}}}\left(\frac{\partial^{k-1} f}{\partial x_{i_{k-1}} \partial x_{i_{k-2}} \ldots \partial x_{i_{1}}}\right)
$$

Higher order derivatives.

Definition: The function f is called k-times partial differentiable, if all derivatives of order k,

$$
\frac{\partial^{k} f}{\partial x_{i_{k}} \partial x_{i_{k-1}} \ldots \partial x_{i_{1}}} \quad \text { for all } i_{1}, \ldots, i_{k} \in\{1, \ldots, n\},
$$

exist on D.
Alternative notation:

$$
\frac{\partial^{k} f}{\partial x_{i_{k}} \partial x_{i_{k-1}} \ldots \partial x_{i_{1}}}=D_{i_{k}} D_{i_{k-1}} \ldots D_{i_{1}} f=f_{x_{i_{1}} \ldots x_{i_{k}}}
$$

If all the derivatives of k-th order are continuous the function f is called k-times continuous partial differentiable or called a \mathcal{C}^{k}-function on D. Continuous functions f are called \mathcal{C}^{0}-functions.

Example: For the function $f\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} x_{i}^{i}$ we have $\frac{\partial^{n} f}{\partial x_{n} \ldots \partial x_{1}}=$?

Partial derivaratives are not arbitrarely exchangeable.

ATTENTION: The order how to execute partial derivatives is in general not arbitrarely exchangeable!

Example: For the function

$$
f(x, y):=\left\{\begin{array}{ccc}
x y \frac{x^{2}-y^{2}}{x^{2}+y^{2}} & : & \text { for }(x, y) \neq(0,0) \\
0 & : & \text { for }(x, y)=(0,0)
\end{array}\right.
$$

we calculate

$$
\begin{aligned}
& f_{x y}(0,0)=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}(0,0)\right)=-1 \\
& f_{y x}(0,0)=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}(0,0)\right)=+1
\end{aligned}
$$

i.e. $f_{x y}(0,0) \neq f_{y x}(0,0)$.

Theorem of Schwarz on exchangeablity.

Satz: Let $D \subset \mathbb{R}^{n}$ be open and let $f: D \rightarrow \mathbb{R}$ be a \mathcal{C}^{2}-function. Then it holds

$$
\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}\left(x_{1}, \ldots, x_{n}\right)=\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\left(x_{1}, \ldots, x_{n}\right)
$$

for all $i, j \in\{1, \ldots, n\}$.

Idea of the proof:

Apply the men value theorem twice.

Conclusion:

If f is a C^{k}-function, then we can exchange the differentiation in order to calculate partial derivatives up to order k arbitrarely!

Example for the exchangeability of partial derivatives.

Calculate the partial derivative of third order $f_{x y z}$ for the function

$$
f(x, y, z)=y^{2} z \sin \left(x^{3}\right)+\left(\cosh y+17 e^{x^{2}}\right) z^{2}
$$

The order of execution is exchangealbe since $f \in \mathcal{C}^{3}$.

- Differentiate first with respect to z :

$$
\frac{\partial f}{\partial z}=y^{2} \sin \left(x^{3}\right)+2 z\left(\cosh y+17 e^{x^{2}}\right)
$$

- Differentiate then f_{z} with respect to x (then cosh y disappears):

$$
\begin{aligned}
f_{z x} & =\frac{\partial}{\partial x}\left(y^{2} \sin \left(x^{3}\right)+2 z\left(\cosh y+17 e^{x^{2}}\right)\right) \\
& =3 x^{2} y^{2} \cos \left(x^{3}\right)+68 x z e^{x^{2}}
\end{aligned}
$$

- For the partial derivative of $f_{z x}$ with respect to y we obtain

$$
f_{x y z}=6 x^{2} y \cos \left(x^{3}\right)
$$

The Laplace operator.

The Laplace-operator or Laplacian is defined as

$$
\Delta:=\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}
$$

For a scalar function $u(\mathrm{x})=u\left(x_{1}, \ldots, x_{n}\right)$ we have

$$
\Delta u=\sum_{i=1}^{n} \frac{\partial^{2} u}{\partial x_{i}^{2}}=u_{x_{1} x_{1}}+\cdots+u_{x_{n} x_{n}}
$$

Examples of important partial differential equations of second order (i.e. equations containing partial derivatives up to order two):

$$
\begin{array}{rll}
\Delta u-\frac{1}{c^{2}} u_{t t} & =0 & \\
\text { (wave equation) } \\
\Delta u-\frac{1}{k} u_{t} & =0 & \\
\text { (heat equation) } \\
\Delta u & =0 & \\
\text { (Laplace-equation or equation for the potential) }
\end{array}
$$

Vector valued functions.

Definition: Let $D \subset \mathbb{R}^{n}$ be open and let $f: D \rightarrow \mathbb{R}^{m}$ be a vector valued function.

The function f is called partial differentiable on $\mathrm{x}^{0} \in D$, if for all $i=1, \ldots, n$ the limits

$$
\frac{\partial f}{\partial x_{i}}\left(x^{0}\right)=\lim _{t \rightarrow 0} \frac{f\left(x^{0}+t \mathrm{e}_{i}\right)-f\left(x^{0}\right)}{t}
$$

exist. The calculation is done componentwise

$$
\frac{\partial f}{\partial x_{i}}\left(x^{0}\right)=\left(\begin{array}{c}
\frac{\partial f_{1}}{\partial x_{i}} \\
\vdots \\
\frac{\partial f_{m}}{\partial x_{i}}
\end{array}\right) \quad \text { for } i=1, \ldots, n
$$

Vectorfields.

Definition: If $m=n$ the function $\mathrm{f}: D \rightarrow \mathbb{R}^{n}$ is called a vectorfield on D. If every (coordinate-) function $f_{i}(x)$ of $f=\left(f_{1}, \ldots, f_{n}\right)^{T}$ is a \mathcal{C}^{k}-function, then f is called \mathcal{C}^{k}-vectorfield.

Examples of vectorfields:

- velocity fields of liquids or gases;
- elektromagnetic fields;
- temperature gradients in solid states.

Definition: Let $\mathrm{f}: D \rightarrow \mathbb{R}^{n}$ be a partial differentiable vector field. The divergence on $x \in D$ is defined as

$$
\operatorname{div} f\left(x^{0}\right):=\sum_{i=1}^{n} \frac{\partial f_{i}}{\partial x_{i}}\left(x^{0}\right)
$$

or

$$
\operatorname{div} f(x)=\nabla^{T} f(x)=(\nabla, f(x))
$$

Rules of computation and the rotation.

The following rules hold true:

$$
\begin{aligned}
\operatorname{div}(\alpha \mathrm{f}+\beta \mathrm{g}) & =\alpha \operatorname{div} \mathrm{f}+\beta \operatorname{div} \mathrm{g} \text { for } \mathrm{f}, \mathrm{~g}: D \rightarrow \mathbb{R}^{n} \\
\operatorname{div}(\varphi \cdot \mathrm{f}) & =(\nabla \varphi, \mathrm{f})+\varphi \operatorname{div} \mathrm{f} \text { for } \varphi: D \rightarrow \mathbb{R}, \mathrm{f}: D \rightarrow \mathbb{R}^{n}
\end{aligned}
$$

Remark: Let $f: D \rightarrow \mathbb{R}$ be a \mathcal{C}^{2}-function, then for the Laplacian we have

$$
\Delta f=\operatorname{div}(\nabla f)
$$

Definition: Let $D \subset \mathbb{R}^{3}$ open and $\mathrm{f}: D \rightarrow \mathbb{R}^{3}$ a partial differentiable vector field. We define the rotation as

$$
\operatorname{rot} f\left(x^{0}\right):=\left.\left(\frac{\partial f_{3}}{\partial x_{2}}-\frac{\partial f_{2}}{\partial x_{3}}, \frac{\partial f_{1}}{\partial x_{3}}-\frac{\partial f_{3}}{\partial x_{1}}, \frac{\partial f_{2}}{\partial x_{1}}-\frac{\partial f_{1}}{\partial x_{2}}\right)^{T}\right|_{x^{0}}
$$

Alternative notations and additional rules.

$$
\operatorname{rot} f(x)=\nabla \times f(x)=\left|\begin{array}{ccc}
e_{1} & e_{2} & e_{3} \\
\frac{\partial}{\partial x_{1}} & \frac{\partial}{\partial x_{2}} & \frac{\partial}{\partial x_{3}} \\
f_{1} & f_{2} & f_{3}
\end{array}\right|
$$

Remark: The following rules hold true:

$$
\begin{aligned}
\operatorname{rot}(\alpha \mathrm{f}+\beta \mathrm{g}) & =\alpha \operatorname{rot} \mathrm{f}+\beta \operatorname{rot} \mathrm{g} \\
\operatorname{rot}(\varphi \cdot \mathrm{f}) & =(\nabla \varphi) \times \mathrm{f}+\varphi \operatorname{rot} \mathrm{f}
\end{aligned}
$$

Remark: Let $D \subset \mathbb{R}^{3}$ and $\varphi: D \rightarrow \mathbb{R}$ be a \mathcal{C}^{2}-function. Then

$$
\operatorname{rot}(\nabla \varphi)=0,
$$

using the exchangeability theorem of Schwarz. I.e. gradient fileds are rotation-free everywhere.

Chapter 1. Multivariate differential calculus

1.2 The total differential

Definition: Let $D \subset \mathbb{R}^{n}$ open, $\mathrm{x}^{0} \in D$ and $\mathrm{f}: D \rightarrow \mathbb{R}^{m}$. The function $\mathrm{f}(\mathrm{x})$ is called differentiable in x^{0} (or totally differentiable in x_{0}), if there exists a linear map

$$
I\left(x, x^{0}\right):=A \cdot\left(x-x^{0}\right)
$$

with a matrix $A \in \mathbb{R}^{m \times n}$ which satisfies the following approximation property

$$
f(x)=f\left(x^{0}\right)+A \cdot\left(x-x^{0}\right)+o\left(\left\|x-x^{0}\right\|\right)
$$

i.e.

$$
\lim _{x \rightarrow x^{0}} \frac{f(x)-f\left(x^{0}\right)-A \cdot\left(x-x^{0}\right)}{\left\|x-x^{0}\right\|}=0
$$

The total differential and the Jacobian matrix.

Notation: We call the linear map I the differential or the total differential of $f(x)$ at the point x^{0}. We denote I by $\operatorname{df}\left(x^{0}\right)$.

The related matrix A is called Jacobi-matrix of $f(x)$ at the point x^{0} and is denoted by $\mathrm{Jf}\left(\mathrm{x}^{0}\right)$ (or $\operatorname{Df}\left(\mathrm{x}^{0}\right)$ or $\mathrm{f}^{\prime}\left(\mathrm{x}^{0}\right)$).

Remark: For $m=n=1$ we obtain the well known relation

$$
f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+o\left(\left|x-x_{0}\right|\right)
$$

for the derivative $f^{\prime}\left(x_{0}\right)$ at the point x_{0}.
Remark: In case of a scalar function $(m=1)$ the matrix $A=a$ is a row vextor and $a\left(x-x^{0}\right)$ a scalar product $\left\langle a^{T}, x-x^{0}\right\rangle$.

Total and partial differentiability.

Theorem: Let $\mathrm{f}: D \rightarrow \mathbb{R}^{m}, \mathrm{x}^{0} \in D \subset \mathbb{R}^{n}, D$ open.
a) If $f(x)$ is differentiable in x^{0}, then $f(x)$ is continuous in x^{0}.
b) If $f(x)$ is differentiable in x^{0}, then the (total) differential and thus the Jacobi-matrix are uniquely determined and we have

$$
\mathrm{Jf}\left(\mathrm{x}^{0}\right)=\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}}\left(x^{0}\right) & \cdots & \frac{\partial f_{1}}{\partial x_{n}}\left(x^{0}\right) \\
\vdots & & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}}\left(x^{0}\right) & \cdots & \frac{\partial f_{m}}{\partial x_{n}}\left(x^{0}\right)
\end{array}\right)=\left(\begin{array}{c}
D f_{1}\left(x^{0}\right) \\
\vdots \\
D f_{m}\left(x^{0}\right)
\end{array}\right)
$$

c) If $f(x)$ is a \mathcal{C}^{1}-function on D, then $f(x)$ is differentiable on D.

Proof of a).

If f is differentiable in x^{0}, then by definition

$$
\lim _{x \rightarrow x^{0}} \frac{f(x)-f\left(x^{0}\right)-A \cdot\left(x-x^{0}\right)}{\left\|x-x^{0}\right\|}=0
$$

Thus we conclude

$$
\lim _{x \rightarrow x^{0}}\left\|f(x)-f\left(x^{0}\right)-A \cdot\left(x-x^{0}\right)\right\|=0
$$

and we obtain

$$
\begin{aligned}
\left\|f(x)-f\left(x^{0}\right)\right\| & \leq\left\|f(x)-f\left(x^{0}\right)-A \cdot\left(x-x^{0}\right)\right\|+\left\|A \cdot\left(x-x^{0}\right)\right\| \\
& \rightarrow 0 \quad \text { as } x \rightarrow x^{0}
\end{aligned}
$$

Therefore the function f is continuous at x^{0}.

Proof of b).

Let $\mathrm{x}=\mathrm{x}^{0}+t \mathrm{e}_{\mathrm{i}},|t|<\varepsilon, i \in\{1, \ldots, n\}$. Since f in differentiable at x^{0}, we have

$$
\lim _{x \rightarrow x^{0}} \frac{f(x)-f\left(x^{0}\right)-A \cdot\left(x-x^{0}\right)}{\left\|x-x^{0}\right\|_{\infty}}=0
$$

We write

$$
\begin{aligned}
\frac{f(x)-f\left(x^{0}\right)-A \cdot\left(x-x^{0}\right)}{\left\|x-x^{0}\right\|_{\infty}} & =\frac{f\left(x^{0}+t e_{i}\right)-f\left(x^{0}\right)}{|t|}-\frac{t \mathrm{Ae}_{i}}{|t|} \\
& =\frac{t}{|t|} \cdot\left(\frac{f\left(\mathrm{x}^{0}+t \mathrm{e}_{i}\right)-\mathrm{f}\left(\mathrm{x}^{0}\right)}{t}-\mathrm{Ae}_{i}\right) \\
& \rightarrow 0 \quad \text { as } t \rightarrow 0
\end{aligned}
$$

Thus

$$
\lim _{t \rightarrow 0} \frac{\mathrm{f}\left(\mathrm{x}^{0}+t \mathrm{e}_{i}\right)-\mathrm{f}\left(\mathrm{x}^{0}\right)}{t}=\mathrm{Ae}_{i} \quad i=1, \ldots, n
$$

Examples.

- Consider the scalar function $f\left(x_{1}, x_{2}\right)=x_{1} e^{2 x_{2}}$. Then the Jacobian is given by:

$$
J f\left(x_{1}, x_{2}\right)=D f\left(x_{1}, x_{2}\right)=e^{2 x_{2}}\left(1,2 x_{1}\right)
$$

- Consider the function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ defined by

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\binom{x_{1} x_{2} x_{3}}{\sin \left(x_{1}+2 x_{2}+3 x_{3}\right)}
$$

The Jacobian is given by

$$
\operatorname{Jf}\left(x_{1}, x_{2}, x_{3}\right)=\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \frac{\partial f_{1}}{\partial x_{3}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \frac{\partial f_{2}}{\partial x_{3}}
\end{array}\right)=\left(\begin{array}{ccc}
x_{2} x_{3} & x_{1} x_{3} & x_{1} x_{2} \\
\cos (s) & 2 \cos (s) & 3 \cos (s)
\end{array}\right)
$$

with $s=x_{1}+2 x_{2}+3 x_{3}$.

Further examples.

- Let $f(x)=A x, A \in \mathbb{R}^{m \times n}$ and $x \in \mathbb{R}^{n}$. Then

$$
\mathrm{Jf}(\mathrm{x})=\mathrm{A} \quad \text { for all } \mathrm{x} \in \mathbb{R}^{n}
$$

- Let $f(x)=x^{T} A x=\langle x, A x\rangle, A \in \mathbb{R}^{n \times n}$ and $x \in \mathbb{R}^{n}$.

Then we have

$$
\begin{aligned}
\frac{\partial f}{\partial x_{i}} & =\left\langle e_{i}, A x\right\rangle+\left\langle x, \mathrm{Ae}_{i}\right\rangle \\
& =e_{i}^{T} \mathrm{~A} x+x^{T} \mathrm{Ae}_{i} \\
& =x^{T}\left(\mathrm{~A}^{T}+A\right) e_{i}
\end{aligned}
$$

We conclude

$$
J f(x)=\operatorname{grad} f(x)=x^{T}\left(A^{T}+A\right)
$$

Rules for the differentiation.

Theorem:

a) Linearität: LET f,g : $D \rightarrow \mathbb{R}^{m}$ be differentiable in $x^{0} \in D, D$ open. Then $\alpha \mathrm{f}\left(\mathrm{x}^{0}\right)+\beta \mathrm{g}\left(\mathrm{x}^{0}\right)$, and $\alpha, \beta \in \mathbb{R}$ are differentiable in x^{0} and we have

$$
\begin{aligned}
& \mathrm{d}(\alpha \mathrm{f}+\beta \mathrm{g})\left(\mathrm{x}^{0}\right)=\alpha \mathrm{df}\left(\mathrm{x}^{0}\right)+\beta \mathrm{dg}\left(\mathrm{x}^{0}\right) \\
& \mathrm{J}(\alpha \mathrm{f}+\beta \mathrm{g})\left(\mathrm{x}^{0}\right)=\alpha \mathrm{Jf}\left(\mathrm{x}^{0}\right)+\beta \mathrm{Jg}\left(\mathrm{x}^{0}\right)
\end{aligned}
$$

b) Chain rule: Let $\mathrm{f}: D \rightarrow \mathbb{R}^{m}$ be differentiable in $x^{0} \in D, D$ open. Let $\mathrm{g}: E \rightarrow \mathbb{R}^{k}$ be differentiable in $\mathrm{y}^{0}=f\left(\mathrm{x}^{0}\right) \in E \subset \mathbb{R}^{m}, E$ open. Then $g \circ f$ is differentiable in x^{0}.
For the differentials it holds

$$
d(g \circ f)\left(x^{0}\right)=\operatorname{dg}\left(y^{0}\right) \circ \operatorname{df}\left(x^{0}\right)
$$

and analoglously for the Jacobian matrix

$$
J(g \circ f)\left(x^{0}\right)=\operatorname{Jg}\left(y^{0}\right) \cdot J f\left(x^{0}\right)
$$

Examples for the chain rule.

Let $I \subset \mathbb{R}$ be an intervall. Let $h: I \rightarrow \mathbb{R}^{n}$ be a curve, differentiable in $t_{0} \in I$ with values in $D \subset \mathbb{R}^{n}, D$ open. Let $f: D \rightarrow \mathbb{R}$ be a scalar function, differentiable in $\mathrm{x}^{0}=\mathrm{h}\left(t_{0}\right)$.
Then the composition

$$
(f \circ h)(t)=f\left(h_{1}(t), \ldots, h_{n}(t)\right)
$$

is differentiable in t_{0} and we have for the derivative:

$$
\begin{aligned}
(f \circ \mathrm{~h})^{\prime}\left(t_{0}\right) & =\mathrm{J} f\left(\mathrm{~h}\left(t_{0}\right)\right) \cdot \mathrm{Jh}\left(t_{0}\right) \\
& =\operatorname{grad} f\left(\mathrm{~h}\left(t_{0}\right)\right) \cdot \mathrm{h}^{\prime}\left(t_{0}\right) \\
& =\sum_{k=1}^{n} \frac{\partial f}{\partial x_{k}}\left(\mathrm{~h}\left(t_{0}\right)\right) \cdot h_{k}^{\prime}\left(t_{0}\right)
\end{aligned}
$$

Directional derivative.

Definition: Let $f: D \rightarrow \mathbb{R}, D \subset \mathbb{R}^{n}$ open, $x^{0} \in D$, and $v \in \mathbb{R} \backslash\{0\}$ a vector. Then

$$
D_{v} f\left(x^{0}\right):=\lim _{t \rightarrow 0} \frac{f\left(x^{0}+t v\right)-f\left(x^{0}\right)}{t}
$$

is called the directional derivative (Gateaux-derivative) of $f(x)$ in the direction of v.

Example: Let $f(x, y)=x^{2}+y^{2}$ and $v=(1,1)^{T}$. Then the directional derivative in the direction of v is given by:

$$
\begin{aligned}
D_{v} f(x, y) & =\lim _{t \rightarrow 0} \frac{(x+t)^{2}+(y+t)^{2}-x^{2}-y^{2}}{t} \\
& =\lim _{t \rightarrow 0} \frac{2 x t+t^{2}+2 y t+t^{2}}{t} \\
& =2(x+y)
\end{aligned}
$$

Remarks.

- For $v=e_{i}$ the directional derivative in the direction of v is given by the partial derivative with respect to x_{i} :

$$
D_{v} f\left(x^{0}\right)=\frac{\partial f}{\partial x_{i}}\left(x^{0}\right)
$$

- If v is a unit vector, i.e. $\|v\|=1$, then the directional derivative $D_{v} f\left(x^{0}\right)$ describes the slope of $f(x)$ in the direction of v.
- If $f(x)$ is differentiable in x^{0}, then all directional derivatives of $f(x)$ in x^{0} exist. With $h(t)=x^{0}+t v$ we have

$$
D_{v} f\left(x^{0}\right)=\left.\frac{d}{d t}(f \circ h)\right|_{t=0}=\operatorname{grad} f\left(x^{0}\right) \cdot v
$$

This follows directely applying the chain rule.

Properties of the gradient.

Theorem: Let $D \subset \mathbb{R}^{n}$ open, $f: D \rightarrow \mathbb{R}$ differentiable in $x^{0} \in D$. Then we have
a) The gradient vector $\operatorname{grad} f\left(x^{0}\right) \in \mathbb{R}^{n}$ is orthogonal in the level set

$$
N_{x^{0}}:=\left\{x \in D \mid f(x)=f\left(x^{0}\right)\right\}
$$

In the case of $n=2$ we call the level sets contour lines, in $n=3$ we call the level sets equipotential surfaces.
2) The gradient grad $f\left(x^{0}\right)$ gives the direction of the steepest slope of $f(x)$ in x^{0}.

Idea of the proof:

a) application of the chain rule.
b) for an arbitrary direction v we conclude with the Cauchy-Schwarz inequality

$$
\left|D_{v} f\left(x^{0}\right)\right|=\left|\left(\operatorname{grad} f\left(x^{0}\right), v\right)\right| \leq\left\|\operatorname{grad} f\left(x^{0}\right)\right\|_{2}
$$

Equality is obtained for $v=\operatorname{grad} f\left(x^{0}\right) /\left\|\operatorname{grad} f\left(x^{0}\right)\right\|_{2}$.

Curvilinear coordinates.

Definition: Let $U, V \subset \mathbb{R}^{n}$ be open and $\Phi: U \rightarrow V$ be a \mathcal{C}^{1}-map, for which the Jacobimatrix $J \Phi\left(u^{0}\right)$ is regular (invertible) at every $\mathrm{u}^{0} \in U$. In addition there exists the inverse map $\Phi^{-1}: V \rightarrow U$ and the inverse map is also a \mathcal{C}^{1}-map.
Then $\mathrm{x}=\Phi(\mathrm{u})$ defines a coodinate transformation from the coordinates u to x .

Example: Consider for $n=2$ the polar coordinates $\mathrm{u}=(r, \varphi)$ with $r>0$ and $-\pi<\varphi<\pi$ and set

$$
\begin{aligned}
& x=r \cos \varphi \\
& y=r \sin \varphi
\end{aligned}
$$

with the cartesian coordinates $x=(x, y)$.

Calculation of the partial derivatives.

For all $\mathrm{u} \in U$ with $\mathrm{x}=\Phi(\mathrm{u})$ the following relations hold

$$
\begin{aligned}
\Phi^{-1}(\Phi(\mathrm{u})) & =\mathrm{u} \\
\mathrm{~J} \Phi^{-1}(\mathrm{x}) \cdot \mathrm{J} \Phi(\mathrm{u}) & =\mathrm{I}_{n} \quad \text { (chain rule) } \\
\mathrm{J} \Phi^{-1}(\mathrm{x}) & =(\mathrm{J} \Phi(\mathrm{u}))^{-1}
\end{aligned}
$$

Let $\tilde{f}: V \rightarrow \mathbb{R}$ be a given function. Set

$$
f(\mathrm{u}):=\tilde{f}(\Phi(\mathrm{u}))
$$

the by using the chain rule we obtain

$$
\frac{\partial f}{\partial u_{i}}=\sum_{j=1}^{n} \frac{\partial \tilde{f}}{\partial x_{j}} \frac{\partial \Phi_{j}}{\partial u_{i}}=: \sum_{j=1}^{n} g^{i j} \frac{\partial \tilde{f}}{\partial x_{j}}
$$

with

$$
g^{i j}:=\frac{\partial \Phi_{j}}{\partial u_{i}}, \quad \mathrm{G}(\mathrm{u}):=\left(g^{i j}\right)=(\mathrm{J} \Phi(\mathrm{u}))^{T}
$$

Notations.

We use the short notation

$$
\frac{\partial}{\partial u_{i}}=\sum_{j=1}^{n} g^{i j} \frac{\partial}{\partial x_{j}}
$$

Analogously we can express the partial derivatives with respect to x_{i} by the partial derivatives with respect to u_{j}

$$
\frac{\partial}{\partial x_{i}}=\sum_{j=1}^{n} g_{i j} \frac{\partial}{\partial u_{j}}
$$

where

$$
\left(g_{i j}\right):=\left(g^{i j}\right)^{-1}=(J \Phi)^{-T}=\left(J \Phi^{-1}\right)^{T}
$$

We obtain these relations by applying the chain rule on Φ^{-1}.

Example: polar coordinates.

We consider polar coordinates

$$
\mathrm{x}=\Phi(\mathrm{u})=\binom{r \cos \varphi}{r \sin \varphi}
$$

We calculate

$$
J \Phi(\mathrm{u})=\left(\begin{array}{cc}
\cos \varphi & -r \sin \varphi \\
\sin \varphi & r \cos \varphi
\end{array}\right)
$$

and thus

$$
\left(g^{i j}\right)=\left(\begin{array}{rr}
\cos \varphi & \sin \varphi \\
-r \sin \varphi & r \cos \varphi
\end{array}\right) \quad\left(g_{i j}\right)=\left(\begin{array}{cc}
\cos \varphi & -\frac{1}{r} \sin \varphi \\
\sin \varphi & \frac{1}{r} \cos \varphi
\end{array}\right)
$$

Partial derivatives for polar coordinates.

The calculation of the partial derivatives gives

$$
\begin{aligned}
\frac{\partial}{\partial x} & =\cos \varphi \frac{\partial}{\partial r}-\frac{1}{r} \sin \varphi \frac{\partial}{\partial \varphi} \\
\frac{\partial}{\partial y} & =\sin \varphi \frac{\partial}{\partial r}+\frac{1}{r} \cos \varphi \frac{\partial}{\partial \varphi}
\end{aligned}
$$

Example: Calculation of the Laplacian-operator in polar coordinates

$$
\begin{aligned}
\frac{\partial^{2}}{\partial x^{2}} & =\cos ^{2} \varphi \frac{\partial^{2}}{\partial r^{2}}-\frac{\sin (2 \varphi)}{r} \frac{\partial^{2}}{\partial r \partial \varphi}+\frac{\sin ^{2} \varphi}{r^{2}} \frac{\partial^{2}}{\partial \varphi^{2}}+\frac{\sin (2 \varphi)}{r^{2}} \frac{\partial}{\partial \varphi}+\frac{\sin ^{2} \varphi}{r} \frac{\partial}{\partial r} \\
\frac{\partial^{2}}{\partial y^{2}} & =\sin ^{2} \varphi \frac{\partial^{2}}{\partial r^{2}}+\frac{\sin (2 \varphi)}{r} \frac{\partial^{2}}{\partial r \partial \varphi}+\frac{\cos ^{2} \varphi}{r^{2}} \frac{\partial^{2}}{\partial \varphi^{2}}-\frac{\sin (2 \varphi)}{r^{2}} \frac{\partial}{\partial \varphi}+\frac{\cos ^{2} \varphi}{r} \frac{\partial}{\partial r} \\
\Delta & =\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}=\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \varphi^{2}}+\frac{1}{r} \frac{\partial}{\partial r}
\end{aligned}
$$

Example: spherical coordinates.

We consider spherical coordinates

$$
x=\Phi(u)=\left(\begin{array}{c}
r \cos \varphi \cos \theta \\
r \sin \varphi \cos \theta \\
r \sin \theta
\end{array}\right)
$$

The Jacobian-matrix is given by:

$$
\mathrm{J} \Phi(\mathrm{u})=\left(\begin{array}{ccc}
\cos \varphi \cos \theta & -r \sin \varphi \cos \theta & -r \cos \varphi \sin \theta \\
\sin \varphi \cos \theta & r \cos \varphi \cos \theta & -r \sin \varphi \sin \theta \\
\sin \theta & 0 & r \cos \theta
\end{array}\right)
$$

Partial derivatives for spherical coordinates.

Calculating the partial derivatives gives

$$
\begin{aligned}
\frac{\partial}{\partial x} & =\cos \varphi \cos \theta \frac{\partial}{\partial r}-\frac{\sin \varphi}{r \cos \theta} \frac{\partial}{\partial \varphi}-\frac{1}{r} \cos \varphi \sin \theta \frac{\partial}{\partial \theta} \\
\frac{\partial}{\partial y} & =\sin \varphi \cos \theta \frac{\partial}{\partial r}+\frac{\cos \varphi}{r \cos \theta} \frac{\partial}{\partial \varphi}-\frac{1}{r} \sin \varphi \sin \theta \frac{\partial}{\partial \theta} \\
\frac{\partial}{\partial z} & =\sin \theta \frac{\partial}{\partial r}+\frac{1}{r} \cos \theta \frac{\partial}{\partial \theta}
\end{aligned}
$$

Example: calculation of the Laplace-operator in spherical coordinates

$$
\Delta=\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r^{2} \cos ^{2} \theta} \frac{\partial^{2}}{\partial \varphi^{2}}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}+\frac{2}{r} \frac{\partial}{\partial r}-\frac{\tan \theta}{r^{2}} \frac{\partial}{\partial \theta}
$$

Chapter 1. Multivariate differential calculus

1.3 Mean value theorems and Taylor expansion

Theorem (Mean value theorem): Let $f: D \rightarrow \mathbb{R}$ be a scalar differentiable function on an open set $D \subset \mathbb{R}^{n}$. Let $\mathrm{a}, \mathrm{b} \in D$ be points in D such that the connecting line segment

$$
[\mathrm{a}, \mathrm{~b}]:=\{\mathrm{a}+t(\mathrm{~b}-\mathrm{a}) \mid t \in[0,1]\}
$$

lies entirely in D. Then there exits a number $\theta \in(0,1)$ with

$$
f(b)-f(a)=\operatorname{grad} f(a+\theta(b-a)) \cdot(b-a)
$$

Proof: We set

$$
h(t):=f(a+t(b-a))
$$

with the mean value theorem for a single variable and the chain rules we conclude

$$
\begin{aligned}
f(\mathrm{~b})-f(\mathrm{a}) & =h(1)-h(0)=h^{\prime}(\theta) \cdot(1-0) \\
& =\operatorname{grad} f(\mathrm{a}+\theta(\mathrm{b}-\mathrm{a})) \cdot(\mathrm{b}-\mathrm{a})
\end{aligned}
$$

Definition and example.

Definition: If the condition $[\mathrm{a}, \mathrm{b}] \subset D$ holds true for all points $\mathrm{a}, \mathrm{b} \in D$, then the set D is called convex.

Example for the mean value theorem: Given a scalar function

$$
f(x, y):=\cos x+\sin y
$$

It is

$$
f(0,0)=f(\pi / 2, \pi / 2)=1 \quad \Rightarrow \quad f(\pi / 2, \pi / 2)-f(0,0)=0
$$

Applying the mean value theorem there exists a $\theta \in(0,1)$ with

$$
\operatorname{grad} f\left(\theta\binom{\pi / 2}{\pi / 2}\right) \cdot\binom{\pi / 2}{\pi / 2}=0
$$

Indeed this is true for $\theta=\frac{1}{2}$.

Mean value theorem is only true for scalar functions.

Attention: The mean value theorem for multivariate functions is only true for scalar functions but in general not for vector-valued functions!

Examples: Consider the vector-valued Function

$$
\mathrm{f}(t):=\binom{\cos t}{\sin t}, \quad t \in[0, \pi / 2]
$$

It is

$$
f(\pi / 2)-f(0)=\binom{0}{1}-\binom{1}{0}=\binom{-1}{1}
$$

and

$$
f^{\prime}\left(\theta \frac{\pi}{2}\right) \cdot\left(\frac{\pi}{2}-0\right)=\frac{\pi}{2}\binom{-\sin (\theta \pi / 2)}{\cos (\theta \pi / 2)}
$$

BUT: the vectors on the right hand side have lenght $\sqrt{2}$ and $\pi / 2$!

A mean value estimate for vector-valued functions.

Theorem: Let $f: D \rightarrow \mathbb{R}^{m}$ be differentiable on an open set $D \subset \mathbb{R}^{n}$. Let a, b bei points in D with $[\mathrm{a}, \mathrm{b}] \subset D$. Then there exists a $\theta \in(0,1)$ with

$$
\|f(b)-f(a)\|_{2} \leq\|J f(a+\theta(b-a)) \cdot(b-a)\|_{2}
$$

Idea of the proof: Application of the mean value theorem to the scalar function $g(x)$ definid as

$$
g(x):=(f(b)-f(a))^{T} f(x) \quad \text { (scalar product!) }
$$

Remark: Another (weaker) for of the mean value estimate is

$$
\left.\|f(b)-f(a)\| \leq \sup _{\xi \in[a, b]} \| J f(\xi)\right)\|\cdot\|(b-a) \|
$$

where $\|\cdot\|$ denotes an arbitrary vector norm with related matrix norm.

Taylor series: notations.

We define the multi-index $\alpha \in \mathbb{N}_{0}^{n}$ as

$$
\alpha:=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}_{0}^{n}
$$

Let

$$
|\alpha|:=\alpha_{1}+\cdots+\alpha_{n} \quad \alpha!:=\alpha_{1}!\cdots \cdot \alpha_{n}!
$$

Let $f: D \rightarrow \mathbb{R}$ be $|\alpha|$ times continuous differentiable. Then we set

$$
D^{\alpha}=D_{1}^{\alpha_{1}} D_{2}^{\alpha_{2}} \ldots D_{n}^{\alpha_{n}}=\frac{\partial^{|\alpha|} f}{\partial x_{1}^{\alpha_{1}} \ldots \partial x_{n}^{\alpha_{n}}},
$$

where $D_{i}^{\alpha_{i}}=\underbrace{D_{i} \ldots D_{i}}_{\alpha_{i}-\text { mal }}$. We write

$$
x^{\alpha}:=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \ldots x_{n}^{\alpha_{n}} \quad \text { for } x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} .
$$

The Taylor theorem.

Theorem: (Taylor)
Let $D \subset \mathbb{R}^{n}$ be open and convex. Let $f: D \rightarrow \mathbb{R}$ be a \mathcal{C}^{m+1}-function and $x_{0} \in D$. Then the Taylor-expansion holds true in $x \in D$

$$
\begin{aligned}
f(\mathrm{x}) & =T_{m}\left(\mathrm{x} ; \mathrm{x}_{0}\right)+R_{m}\left(\mathrm{x} ; \mathrm{x}_{0}\right) \\
T_{m}\left(\mathrm{x} ; \mathrm{x}_{0}\right) & =\sum_{|\alpha| \leq m} \frac{D^{\alpha} f\left(\mathrm{x}_{0}\right)}{\alpha!}\left(\mathrm{x}-\mathrm{x}_{0}\right)^{\alpha} \\
R_{m}\left(\mathrm{x} ; \mathrm{x}_{0}\right) & =\sum_{|\alpha|=m+1} \frac{D^{\alpha} f\left(\mathrm{x}_{0}+\theta\left(\mathrm{x}-\mathrm{x}_{0}\right)\right)}{\alpha!}\left(\mathrm{x}-\mathrm{x}_{0}\right)^{\alpha}
\end{aligned}
$$

for an appropriate $\theta \in(0,1)$.
Notation: In the Taylor-expansion we denote $T_{m}\left(x ; x_{0}\right)$ Taylor-polynom of degree m and $R_{m}\left(\mathrm{x} ; \mathrm{x}_{0}\right)$ Lagrange-remainder.

Derivation of the Taylor expansion.

We define a scalar function in one single variable $t \in[0,1]$ as

$$
g(t):=f\left(x_{0}+t\left(x-x_{0}\right)\right)
$$

and calculate the (univariate) Taylor-expansion at $t=0$. It is

$$
g(1)=g(0)+g^{\prime}(0) \cdot(1-0)+\frac{1}{2} g^{\prime \prime}(\xi) \cdot(1-0)^{2} \quad \text { for a } \xi \in(0,1)
$$

The calculation of $g^{\prime}(0)$ is given by the chain rule

$$
\begin{aligned}
g^{\prime}(0) & =\left.\frac{d}{d t} f\left(x_{1}^{0}+t\left(x_{1}-x_{1}^{0}\right), x_{2}^{0}+t\left(x_{2}-x_{2}^{0}\right), \ldots, x_{n}^{0}+t\left(x_{n}-x_{n}^{0}\right)\right)\right|_{t=0} \\
& =D_{1} f\left(x_{0}\right) \cdot\left(x_{1}-x_{1}^{0}\right)+\ldots+D_{n} f\left(x_{0}\right) \cdot\left(x_{n}-x_{n}^{0}\right) \\
& =\sum_{|\alpha|=1} \frac{D^{\alpha} f\left(x_{0}\right)}{\alpha!} \cdot\left(x-x_{0}\right)^{\alpha}
\end{aligned}
$$

Continuation of the derivation.

Calculation of $g^{\prime \prime}(0)$ gives

$$
\begin{aligned}
g^{\prime \prime}(0)= & \left.\frac{d^{2}}{d t^{2}} f\left(x_{0}+t\left(x-x_{0}\right)\right)\right|_{t=0}=\left.\frac{d}{d t} \sum_{k=1}^{n} D_{k} f\left(x^{0}+t\left(x-x^{0}\right)\right)\left(x_{k}-x_{k}^{0}\right)\right|_{t=0} \\
= & D_{11} f\left(x_{0}\right)\left(x_{1}-x_{1}^{0}\right)^{2}+D_{21} f\left(x_{0}\right)\left(x_{1}-x_{1}^{0}\right)\left(x_{2}-x_{2}^{0}\right) \\
& +\ldots+D_{i j} f\left(x_{0}\right)\left(x_{i}-x_{i}^{0}\right)\left(x_{j}-x_{j}^{0}\right)+\ldots+ \\
& \left.+D_{n-1, n} f\left(x_{0}\right)\left(x_{n-1}-x_{n-1}^{0}\right)\left(x_{n}-x_{n}^{0}\right)+D_{n n} f\left(x_{0}\right)\left(x_{n}-x_{n}^{0}\right)^{2}\right) \\
= & \sum_{|\alpha|=2} \frac{D^{\alpha} f\left(x_{0}\right)}{\alpha!}\left(x-x_{0}\right)^{\alpha} \quad \text { (exchange theorem of Schwarz!) }
\end{aligned}
$$

Continuation: Proof of the Taylor-formula by (mathematical) induction!

Proof of the Taylor theorem.

The function

$$
g(t):=f\left(x^{0}+t\left(x-x^{0}\right)\right)
$$

is $(m+1)$-times continuous differentiable and we have

$$
g(1)=\sum_{k=0}^{m} \frac{g^{(k)}(0)}{k!}+\frac{g^{(m+1)}(\theta)}{(m+1)!} \quad \text { for a } \theta \in[0,1]
$$

In addition we have (by induction over k)

$$
\frac{g^{(k)}(0)}{k!}=\sum_{|\alpha|=k} \frac{D^{\alpha} f\left(\mathrm{x}^{0}\right)}{\alpha!}\left(\mathrm{x}-\mathrm{x}^{0}\right)^{\alpha}
$$

and

$$
\frac{g^{(m+1)}(\theta)}{(m+1)!}=\sum_{|\alpha|=m+1} \frac{D^{\alpha} f\left(\mathrm{x}^{0}+\theta\left(\mathrm{x}-\mathrm{x}^{0}\right)\right)}{\alpha!}\left(\mathrm{x}-\mathrm{x}^{0}\right)^{\alpha}
$$

Examples for the Taylor-expansion.

(1) Calculate the Taylor-polynom $T_{2}\left(x ; x_{0}\right)$ of degree 2 of the function

$$
f(x, y, z)=x y^{2} \sin z
$$

at $(x, y, z)=(1,2,0)^{T}$.
(2) The calculation of $T_{2}\left(x ; x_{0}\right)$ requires the partial derivatives up to order 2.
(3) These derivatives have to be evaluated at $(x, y, z)=(1,2,0)^{T}$.
(9) The result is $T_{2}\left(x ; x_{0}\right)$ in the form

$$
T_{2}\left(x ; x_{0}\right)=4 z(x+y-2)
$$

(5) Details on extra slide.

Remarks to the remainder of a Taylor-expansion.

Remark: The remainder of a Taylor-expansion contains all partial derivatives of order $(m+1)$:

$$
R_{m}\left(\mathrm{x} ; \mathrm{x}_{0}\right)=\sum_{|\alpha|=m+1} \frac{D^{\alpha} f\left(\mathrm{x}_{0}+\theta\left(\mathrm{x}-\mathrm{x}_{0}\right)\right)}{\alpha!}\left(\mathrm{x}-\mathrm{x}_{0}\right)^{\alpha}
$$

If all these derivative are bounded by aconstant C in a neighborhood of x_{0} then the estimate for the remainder hold true

$$
\left|R_{m}\left(\mathrm{x} ; \mathrm{x}_{0}\right)\right| \leq \frac{n^{m+1}}{(m+1)!} C\left\|\mathrm{x}-\mathrm{x}_{0}\right\|_{\infty}^{m+1}
$$

We conlude for the quality of the approximation of a \mathcal{C}^{m+1}-function by the Taylor-polynom

$$
f(x)=T_{m}\left(x ; x_{0}\right)+O\left(\left\|x-x_{0}\right\|^{m+1}\right)
$$

Special case $m=1$: For a \mathcal{C}^{2}-function $f(x)$ we obtain

$$
f(x)=f\left(x^{0}\right)+\operatorname{grad} f\left(x^{0}\right) \cdot\left(x-x^{0}\right)+O\left(\left\|x-x^{0}\right\|^{2}\right) .
$$

The Hesse-matrix.

The matrix

$$
\operatorname{Hf} f\left(x_{0}\right):=\left(\begin{array}{ccc}
f_{x_{1} x_{1}}\left(x_{0}\right) & \ldots & f_{x_{1} x_{n}}\left(x_{0}\right) \\
\vdots & & \vdots \\
f_{x_{n} x_{1}}\left(x_{0}\right) & \ldots & f_{x_{n} x_{n}}\left(x_{0}\right)
\end{array}\right)
$$

is called Hesse-matrix of f at x_{0}.
Hesse-matrix $=$ Jacobi-matrix of the gradient ∇f
The Taylor-expansion of a \mathcal{C}^{3}-function can be written as

$$
f(x)=f\left(x_{0}\right)+\operatorname{grad} f\left(x_{0}\right)\left(x-x_{0}\right)+\frac{1}{2}\left(x-x_{0}\right)^{T} H f\left(x_{0}\right)\left(x-x_{0}\right)+O\left(\left\|x-x_{0}\right\|^{3}\right)
$$

The Hesse-matrix of a \mathcal{C}^{2}-function is symmetric.

Chapter 2. Applications of multivariate differential calculus

2.1 Extrem values of multivariate functions

Definition: Let $D \subset \mathbb{R}^{n}, f: D \rightarrow \mathbb{R}$ and $x^{0} \in D$. Then at x^{0} the function f has

- a global maximum if $f(x) \leq f\left(x^{0}\right)$ for all $x \in D$.
- a strict global maximum if $f(x)<f\left(x^{0}\right)$ for all $x \in D$.
- a local maximum if there exists an $\varepsilon>0$ such that

$$
f(x) \leq f\left(x^{0}\right) \quad \text { for all } x \in D \text { with }\left\|x-x^{0}\right\|<\varepsilon
$$

- a strict local maximum if there exists an $\varepsilon>0$ such that

$$
f(x)<f\left(x^{0}\right) \quad \text { for all } x \in D \text { with }\left\|x-x^{0}\right\|<\varepsilon
$$

Analogously we define the different forms of minima.

Necessary conditions for local extrem values.

Theorem: If a \mathcal{C}^{1}-function $f(x)$ has a local extrem value (minimum or maximum) at $x^{0} \in D^{0}$, then

$$
\operatorname{grad} f\left(x^{0}\right)=0 \in \mathbb{R}^{n}
$$

Proof: For an arbitrary $v \in \mathbb{R}^{n}, v \neq 0$ the function

$$
\varphi(t):=f\left(x^{0}+t v\right)
$$

is differentiable in a neighborhood of $t^{0}=0$.
$\varphi(t)$ has a local extrem value at $t^{0}=0$. We conclude:

$$
\varphi^{\prime}(0)=\operatorname{grad} f\left(x^{0}\right) v=0
$$

Since this holds true for all $v \neq 0$ we obtain

$$
\operatorname{grad} f\left(x^{0}\right)=(0, \ldots, 0)^{T}
$$

Remarks to local extrem values.

Bemerkungen:

- Typically the condition grad $f\left(x^{0}\right)=0$ gives a non-linear system of n equations for n unknwons for the calculation of $x=x^{0}$.
- The points $x^{0} \in D^{0}$ with grad $f\left(x^{0}\right)=0$ are called stationary points of f. Stationary points are not necessarily local extram values. As an example take

$$
f(x, y):=x^{2}-y^{2}
$$

with the gradient

$$
\operatorname{grad} f(x, y)=2(x,-y)
$$

and therefore with the only stationary point $x^{0}=(0,0)^{T}$. However, the point x^{0} is a saddel point of f, i.e. in every neighborhood of x^{0} there exist two points x^{1} and x^{2} with

$$
f\left(x^{1}\right)<f\left(x^{0}\right)<f\left(x^{2}\right) .
$$

Classification of stationary points.

Theorem: Let $f(x)$ be a \mathcal{C}^{2}-function on D^{0} and let $x^{0} \in D^{0}$ be a stationary point of $f(x)$, i.e. $\operatorname{grad} f\left(x^{0}\right)=0$.
a) necessary condition

If x^{0} is a local extrem value of f, then:
x^{0} local minimum $\Rightarrow \mathrm{H} f\left(\mathrm{x}^{0}\right)$ positiv semidefinit x^{0} local maximum $\Rightarrow \mathrm{H} f\left(\mathrm{x}^{0}\right)$ negativ semidefinit
b) sufficient condition

If $\mathrm{H} f\left(x^{0}\right)$ is positiv definit (negativ definit) then x^{0} is a strict local minimum (maximum) of f.
If $\mathrm{H} f\left(x^{0}\right)$ is indefinit then x^{0} is a saddel point, i.e. in every neighborhood of x^{0} there exist points x^{1} and x^{2} with $f\left(x^{1}\right)<f\left(x^{0}\right)<f\left(x^{2}\right)$.

Proof of the theorem, part a).

Let x^{0} be a local minimum. For $v \neq 0$ and $\varepsilon>0$ sufficiently small we conclude from the Taylor-expansion

$$
\begin{equation*}
f\left(x^{0}+\varepsilon v\right)-f\left(x^{0}\right)=\frac{1}{2}(\varepsilon v)^{T} H f\left(x^{0}+\theta \varepsilon v\right)(\varepsilon v) \geq 0 \tag{1}
\end{equation*}
$$

with $\theta=\theta(\varepsilon, \mathrm{v}) \in(0,1)$.
The gradient in the Taylor expansion grad $f\left(x^{0}\right)=0$ vanishes since x^{0} is stationary.

From (1) it follows

$$
\begin{equation*}
\mathrm{v}^{\top} \mathrm{H} f\left(\mathrm{x}^{0}+\theta \varepsilon \mathrm{v}\right) \mathrm{v} \geq 0 \tag{2}
\end{equation*}
$$

Since f is a \mathcal{C}^{2}-function, the Hesse-matrix is a continuous map. In the limit $\varepsilon \rightarrow 0$ we conclude from (2),

$$
v^{\top} H f\left(x^{0}\right) v \geq 0
$$

i.e. $\mathrm{H} f\left(\mathrm{x}^{0}\right)$ is positiv semidefinit.

Proof of the theorem, part b).

If $\mathrm{H} f\left(x^{0}\right)$ is positiv definit, then $\mathrm{H} f(\mathrm{x})$ is positiv definit in a sufficiently small neighborhood $\mathrm{x} \in K_{\varepsilon}\left(\mathrm{x}^{0}\right) \subset D$ around x^{0}. This follows from the continuity of the second partial derivatives.

For $x \in K_{\varepsilon}\left(x^{0}\right), x \neq x^{0}$ we have

$$
\begin{aligned}
f(x)-f\left(x^{0}\right) & =\frac{1}{2}\left(x-x^{0}\right)^{T} H f\left(x^{0}+\theta\left(x-x^{0}\right)\right)\left(x-x^{0}\right) \\
& >0
\end{aligned}
$$

with $\theta \in(0,1)$, i.e. f has a strict local minimum at x^{0}.
If $\mathrm{H} f\left(x^{0}\right)$ is indefinit, then there exist Eigenvectors v, w for Eigenvalues of $\mathrm{H} f\left(x^{0}\right)$ with opposite sign with

$$
v^{\top} H f\left(x^{0}\right) v>0 \quad w^{\top} H f\left(x^{0}\right) w<0
$$

and thus x^{0} is a saddel point.

Remarks.

- A stationary point x^{0} with $\operatorname{det} \mathrm{Hf}\left(\mathrm{x}^{0}\right)=0$ is called degenerate. The Hesse-matrix has an Eigenvalue $\lambda=0$.
- If x^{0} is not degenerate, then there exist 3 cases for the Eigenvalues of $\mathrm{H} f\left(\mathrm{x}^{0}\right)$:
all Eigenvalues are strictly positive $\Rightarrow x^{0}$ is a strict local mir
all Eigenvalues are strictly negative $\Rightarrow x^{0}$ is a strict local ma
there are strictly positive and negative Eigenvalues $\Rightarrow x^{0}$ saddel point
- The following implications are true (but not the inverse)
x^{0} local minimum $\Leftarrow x^{0}$ strict local minimum
\Downarrow 介 $\mathrm{H} f\left(\mathrm{x}^{0}\right)$ positiv semidefinit $\Leftarrow \mathrm{H} f\left(\mathrm{x}^{0}\right)$ positiv definit

Further remarks.

- If f is a \mathcal{C}^{3}-function, x^{0} a stationary point of f and $\mathrm{H} f\left(x^{0}\right)$ positiv definit. Then the following estimate is true:

$$
\left(x-x^{0}\right)^{T} H f\left(x^{0}\right)\left(x-x^{0}\right) \geq \lambda_{\min } \cdot\left\|x-x^{0}\right\|^{2}
$$

where $\lambda_{\text {min }}$ denoted the smallest Eigenvalue ot the Hesse-matrix.
Using the Taylor theorem we obtain:

$$
\begin{aligned}
f(x)-f\left(x^{0}\right) & \geq \frac{1}{2} \lambda_{\min }\left\|x-x^{0}\right\|^{2}+R_{3}\left(x ; x^{0}\right) \\
& \geq\left\|x-x^{0}\right\|^{2}\left(\frac{\lambda_{\min }}{2}-C\left\|x-x^{0}\right\|\right)
\end{aligned}
$$

with an appropriate constant $C>0$.
The function f grows at least quadratically around x^{0}.

Example .

We consider the function

$$
f(x, y):=y^{2}(x-1)+x^{2}(x+1)
$$

and look for stationary points :

$$
\operatorname{grad} f(x, y)=\left(y^{2}+x(3 x+2), 2 y(x-1)\right)^{T}
$$

The condition grad $f(x, y)=0$ gives two stationary points

$$
x^{0}=(0,0)^{T} \quad \text { und } \quad x^{1}=(-2 / 3,0)^{T} .
$$

The related Hesse-matrices of f at x^{0} and x^{1} are

$$
H f\left(x^{0}\right)=\left(\begin{array}{rr}
2 & 0 \\
0 & -2
\end{array}\right) \quad \text { and } \quad H f\left(x^{1}\right)=\left(\begin{array}{rc}
-2 & 0 \\
0 & -10 / 3
\end{array}\right)
$$

The matrix $\mathrm{H} f\left(\mathrm{x}^{0}\right)$ is indefinit, therefore x^{0} is a saddel point. $\mathrm{H} f\left(\mathrm{x}^{1}\right)$ is negativ definit and thus x^{1} is a strict local ein strenges maximum of f.

Chapter 2. Applications of multivariate differential calculus

2.2 Implicitely defined functions

Aim: study the set of solutions of the system of non-linear equations of the form

$$
g(x)=0
$$

with $\mathrm{g}: D \rightarrow \mathbb{R}^{m}, D \subset \mathbb{R}^{n}$. I.e. we consider m equations for n unknowns with

$$
m<n
$$

Thus: there are less equations than unknowns.
We call such a system of equations underdetermined and the set of solutions $G \subset \mathbb{R}^{n}$ contains typically infinitely many points.

Solvability of (non-linear) equations.

Question: can we solve the system $\mathrm{g}(\mathrm{x})=0$ with respect to certain unknowns, i.e. with respect to the last m variables x_{n-m+1}, \ldots, x_{n} ?

In other words: is there a function $f\left(x_{1}, \ldots, x_{n-m}\right)$ with

$$
\mathrm{g}(\mathrm{x})=0 \quad \Longleftrightarrow \quad\left(x_{n-m+1}, \ldots, x_{n}\right)^{T}=\mathrm{f}\left(x_{1}, \ldots, x_{n-m}\right)
$$

Terminology: "solve" means express the last m variables by the first $n-m$ variables?

Other question: with respect to which m variables can we solve the system? Is the solution possible globally on the domain of defintion D ? Or only locally on a subdomain $\tilde{D} \subset D$?

Geometrical interpretation: The set of solution G of $g(x)=0$ can be expressed (at least locally) as graph of a function $f: \mathbb{R}^{n-m} \rightarrow \mathbb{R}^{m}$.

Example.

The equation for a circle

$$
g(x, y)=x^{2}+y^{2}-r^{2}=0 \quad \text { mit } r>0
$$

defines an underdetermined non-linear system of equations since we have two unknowns (x, y), but only one scalar equation.
The equation for the circle can be solved locally and defines the four functions :

$$
\begin{aligned}
& y=\sqrt{r^{2}-x^{2}}, \quad-r \leq x \leq r \\
& y=-\sqrt{r^{2}-x^{2}}, \quad-r \leq x \leq r \\
& x=\sqrt{r^{2}-y^{2}}, \quad-r \leq y \leq r \\
& x=-\sqrt{r^{2}-y^{2}}, \quad-r \leq y \leq r
\end{aligned}
$$

Example.

Let g be an affin-linear function, i.e. g has the form

$$
\mathrm{g}(\mathrm{x})=\mathrm{Cx}+\mathrm{b} \quad \text { for } \mathrm{C} \in \mathbb{R}^{m \times n}, \mathrm{~b} \in \mathbb{R}^{m}
$$

We split the variables x into two vectors

$$
x^{(1)}=\left(x_{1}, \ldots, x_{n-m}\right)^{T} \in \mathbb{R}^{n-m} \quad \text { and } \quad x^{(2)}=\left(x_{n-m+1}, \ldots, x_{n}\right)^{T} \in \mathbb{R}^{n}
$$

Splitting of the matrix $C=[B, A]$ gives the form

$$
g(x)=B x^{(1)}+A x^{(2)}+b
$$

with $\mathrm{B} \in \mathbb{R}^{m \times(n-m)}, \mathrm{A} \in \mathbb{R}^{m \times m}$.
The system of equations $g(x)=0$ can be solved (uniquely) with respect to the variables $x^{(2)}$, if A is regular. Then

$$
g(x)=0 \quad \Longleftrightarrow \quad x^{(2)}=-A^{-1}\left(B x^{(1)}+b\right)=f\left(x^{(1)}\right)
$$

Continuation of the example.

Question: How can we write the matrix A as dependent of g ?
From the equation

$$
g(x)=B x^{(1)}+A x^{(2)}+b
$$

we see that

$$
\mathrm{A}=\frac{\partial \mathrm{g}}{\partial \mathrm{x}^{(2)}}\left(\mathrm{x}^{(1)}, \mathrm{x}^{(2)}\right)
$$

holds, i.e. A is the Jacobian of the map

$$
x^{(2)} \rightarrow g\left(x^{(1)}, x^{(2)}\right)
$$

for fixed $x^{(1)}$!
We conclude: Solvability is given if the Jacobian is regular (invertible).

Implicit function theorem.

Theorem: Let $g: D \rightarrow \mathbb{R}^{m}$ be a \mathcal{C}^{1}-function, $D \subset \mathbb{R}^{n}$ open. We denote the variables in D by (x, y) with $\mathrm{x} \in \mathbb{R}^{n-m}$ und $\mathrm{y} \in \mathbb{R}^{m}$. Let $\operatorname{Der}\left(\mathrm{x}^{0}, \mathrm{y}^{0}\right) \in D$ be a solution of $\mathrm{g}\left(\mathrm{x}^{0}, \mathrm{y}^{0}\right)=0$.
If the Jacobi-matrix

$$
\frac{\partial \mathrm{g}}{\partial \mathrm{y}}\left(\mathrm{x}^{0}, \mathrm{y}^{0}\right):=\left(\begin{array}{ccc}
\frac{\partial g_{1}}{\partial y_{1}}\left(\mathrm{x}^{0}, \mathrm{y}^{0}\right) & \ldots & \frac{\partial g_{1}}{\partial y_{m}}\left(x^{0}, y^{0}\right) \\
\vdots & & \vdots \\
\frac{\partial g_{m}}{\partial y_{1}}\left(\mathrm{x}^{0}, \mathrm{y}^{0}\right) & \ldots & \frac{\partial g_{m}}{\partial y_{m}}\left(x^{0}, y^{0}\right)
\end{array}\right)
$$

is regular, then there exist neighborhoods U of x^{0} and V of $y^{0}, U \times V \subset D$ and a uniquely determined continuous differentiable function $f: U \rightarrow V$ with

$$
f\left(x^{0}\right)=y^{0} \quad \text { und } \quad g(x, f(x))=0 \quad \text { für alle } x \in U
$$

and

$$
J f(x)=-\left(\frac{\partial g}{\partial y}(x, f(x))\right)^{-1}\left(\frac{\partial g}{\partial x}(x, f(x))\right)
$$

Example.

For the equation of a circle $g(x, y)=x^{2}+y^{2}-r^{2}=0, r>0$ we have at $\left(x^{0}, y^{0}\right)=(0, r)$

$$
\frac{\partial g}{\partial x}(0, r)=0, \quad \frac{\partial g}{\partial y}(0, r)=2 r \neq 0
$$

Thus we can solve the equation of a circle in a neighborhod of $(0, r)$ with respect to y :

$$
f(x)=\sqrt{r^{2}-x^{2}}
$$

The derivative $f^{\prime}(x)$ can be calculated by implicit diffentiation:

$$
g(x, y(x))=0 \quad \Longrightarrow \quad g_{x}(x, y(x))+g_{y}(x, y(x)) y^{\prime}(x)=0
$$

and therefore

$$
2 x+2 y(x) y^{\prime}(x)=0 \quad \Rightarrow \quad y^{\prime}(x)=f^{\prime}(x)=-\frac{x}{y(x)}
$$

Another example.

Consider the equation $g(x, y)=e^{y-x}+3 y+x^{2}-1=0$.
It is

$$
\frac{\partial g}{\partial y}(x, y)=e^{y-x}+3>0 \quad \text { for all } x \in \mathbb{R}
$$

Therefore the equation con be solved fpr every $x \in \mathbb{R}$ with respect to $y=: f(x)$ and $f(x)$ is a continuous differentiable function. Implicit differentiation ives

$$
e^{y-x}\left(y^{\prime}-1\right)+3 y^{\prime}+2 x=0 \quad \Longrightarrow \quad y^{\prime}=\frac{e^{y-x}-2 x}{e^{y-x}+3}
$$

Differentiating again gives

$$
e^{y-x} y^{\prime \prime}+e^{y-x}\left(y^{\prime}-1\right)^{2}+3 y^{\prime \prime}+2=0 \quad \Longrightarrow \quad y^{\prime}=-\frac{2+e^{y-x}\left(y^{\prime}-1\right)^{2}}{e^{y-x}+3}
$$

But: Solving the equation with respect to y (in terms of elementary functions) is not possible in this case!

general remark.

Implicit differentiation of a implicitely defined function

$$
g(x, y)=0, \quad \frac{\partial g}{\partial y} \neq 0
$$

$y=f(x)$, with $x, y \in \mathbb{R}$, gives

$$
\begin{aligned}
f^{\prime}(x) & =-\frac{g_{x}}{g_{y}} \\
f^{\prime \prime}(x) & =-\frac{g_{x x} g_{y}^{2}-2 g_{x y} g_{x} g_{y}+g_{y y} g_{x}^{2}}{g_{y}^{3}}
\end{aligned}
$$

Therefore the opint x^{0} is a stationary point of $f(x)$ if

$$
g\left(x^{0}, y^{0}\right)=g_{x}\left(x^{0}, y^{0}\right)=0 \quad \text { and } \quad g_{y}\left(x^{0}, y^{0}\right) \neq 0
$$

And x^{0} is a local maximum (minimum) if

$$
\frac{g_{x x}\left(x^{0}, y^{0}\right)}{g_{y}\left(x^{0}, y^{0}\right)}>0 \quad\left(\text { bzw. } \frac{g_{x x}\left(x^{0}, y^{0}\right)}{g_{y}\left(x^{0}, y^{0}\right)}<0\right)
$$

Implicit representation of curves.

Consider the set of solutions of a scalar equation

$$
g(x, y)=0
$$

If

$$
\operatorname{grad} g=\left(g_{x}, g_{y}\right) \neq 0
$$

then $g(x, y)$ defines locally a function $y=f(x)$ or $x=\bar{f}(y)$.
Definition: A solution point $\left(x^{0}, y^{0}\right)$ of the equation $g(x, y)=0$ with

- $\operatorname{grad} g\left(x^{0}, y^{0}\right) \neq 0$ is called regular point,
- $\operatorname{grad} g\left(x^{0}, y^{0}\right)=0$ is called singular point.

Example: Consider (again) the equation for a circle

$$
g(x, y)=x^{2}+y^{2}-r=0 \quad \text { mit } r>0 .
$$

on the circle there are no singular points!

Horizontal and vertical tangents.

Remarks:

a) If for a regular point $\left(x^{0}, y^{0}\right)$ we have

$$
g_{x}\left(x^{0}\right)=0 \quad \text { und } \quad g_{y}\left(x^{0}\right) \neq 0
$$

then the set of solutions contains a horizontal tangent in x^{0}.
b) If for a regular point $\left(x^{0}, y^{0}\right)$ we have

$$
g_{x}\left(x^{0}\right) \neq 0 \quad \text { und } \quad g_{y}\left(x^{0}\right)=0
$$

then the set of solutions contains a vertical tangent in x^{0}.
c) If x^{0} is a singular point, then the set of solutions is approximated at x^{0} "in second order" by the following quadratic equation

$$
g_{x x}\left(x^{0}\right)\left(x-x^{0}\right)^{2}+2 g_{x y}\left(x^{0}\right)\left(x-x^{0}\right)\left(y-y^{0}\right)+g_{y y}\left(x^{0}\right)\left(y-y^{0}\right)^{2}=0
$$

Remarks.

Due to c) for $g_{x x}, g_{x y}, g_{y y} \neq 0$ we obtain:
$\operatorname{det} \mathrm{Hg}\left(\mathrm{x}^{0}\right)>0 \quad: \quad x^{0}$ is an isolated point of the set of solutions $\operatorname{det} \operatorname{Hg}\left(x^{0}\right)<0 \quad: \quad x^{0}$ is a double point $\operatorname{det} \mathrm{Hg}\left(\mathrm{x}^{0}\right)=0 \quad: \quad x^{0}$ is a return point or a cusp

Geometric interpretation:

a) If $\operatorname{det} \mathrm{Hg}\left(\mathrm{x}^{0}\right)>0$, then both Eigenvalues of $\mathrm{Hg}\left(\mathrm{x}^{0}\right)$ are or strictly positiv or strictly negativ, i.e. x^{0} is a strict local minimum or maximum of $g(x)$.
b) If $\operatorname{det} \mathrm{Hg}\left(\mathrm{x}^{0}\right)<0$, then both Eigenvalues of $\mathrm{Hg}\left(\mathrm{x}^{0}\right)$ have opposite sign, i.e. x^{0} is a saddel point of $g(x)$.
c) If $\operatorname{det} \operatorname{Hg}\left(x^{0}\right)=0$, then the stationary point x^{0} of $g(x)$ is degenerate.

Example 1.

Consider the singular point $x^{0}=0$ of the implicit equation

$$
g(x, y)=y^{2}(x-1)+x^{2}(x-2)=0
$$

Calculate the partial derivatives up to order 2:

$$
\begin{aligned}
g_{x} & =y^{2}+3 x^{2}-4 x \\
g_{y} & =2 y(x-1) \\
g_{x x} & =6 x-4 \\
g_{x y} & =2 y \\
g_{y y} & =2(x-1) \\
H g(0) & =\left(\begin{array}{rr}
-4 & 0 \\
0 & -2
\end{array}\right)
\end{aligned}
$$

Therefore $x^{0}=0$ is an isolated point.

Example 2.

Consider the singular point $x^{0}=0$ of the implicit equation

$$
g(x, y)=y^{2}(x-1)+x^{2}\left(x+q^{2}\right)=0
$$

Calculate the partial derivatives up to order 2:

$$
\begin{aligned}
g_{x} & =y^{2}+3 x^{2}+2 x q^{2} \\
g_{y} & =2 y(x-1) \\
g_{x x} & =6 x+2 q^{2} \\
g_{x y} & =2 y \\
g_{y y} & =2(x-1) \\
\operatorname{Hg}(0) & =\left(\begin{array}{rr}
2 q^{2} & 0 \\
0 & -2
\end{array}\right)
\end{aligned}
$$

Therefore $x^{0}=0$ is an double point.

Example 3.

Consider the singular point $x^{0}=0$ of the implicit equation

$$
g(x, y)=y^{2}(x-1)+x^{3}=0
$$

Calculate the partial derivatives up to order 2:

$$
\begin{aligned}
g_{x} & =y^{2}+3 x^{2} \\
g_{y} & =2 y(x-1) \\
g_{x x} & =6 x \\
g_{x y} & =2 y \\
g_{y y} & =2(x-1) \\
H g(0) & =\left(\begin{array}{rr}
0 & 0 \\
0 & -2
\end{array}\right)
\end{aligned}
$$

Therefore $\mathrm{x}^{0}=0$ is a cusp (or a return point).

Implicit representation of surfaces.

- The set of solutions of a scalar equation $g(x, y, z)=0$ for $\operatorname{grad} g \neq 0$ is locally a surface in \mathbb{R}^{3}.
- For the tangential in $x^{0}=\left(x^{0}, y^{0}, z^{0}\right)^{T}$ with $g\left(x^{0}\right)=0$ and $\operatorname{grad} g\left(x^{0}\right) \neq 0^{T}$ we obtain by Taylor expanding (denoting $\Delta x^{0}=x-x^{0}$)

$$
\operatorname{grad} g \cdot \Delta x^{0}=g_{x}\left(x^{0}\right)\left(x-x^{0}\right)+g_{y}\left(x^{0}\right)\left(y-y^{0}\right)+g_{z}\left(x^{0}\right)\left(z-z_{0}\right)=0
$$

i.e. the gradient is vertical to the surface $g(x, y, z)=0$.

- If for example $g_{z}\left(x^{0}\right) \neq 0$, then locally there exists a a representation at x^{0} of the form

$$
z=f(x, y)
$$

and for the partial derivatives of $f(x, y)$ we obtain

$$
\operatorname{grad} f(x, y)=\left(f_{x}, f_{y}\right)=-\frac{1}{g_{z}}\left(g_{x}, g_{y}\right)=\left(-\frac{g_{x}}{g_{z}}, \frac{g_{y}}{g_{z}}\right)
$$

using the implicit function theorem.

The inverted Problem.

Question: Given the set of equations

$$
y=f(x)
$$

with $f: D \rightarrow \mathbb{R}^{n}, D \subset \mathbb{R}^{n}$ open. Can we solve it with respect to x, i.e. can we invert the probem?

Theorem: (Inversion theorem)
Let $D \subset \mathbb{R}^{n}$ be open and $\mathrm{f}: D \rightarrow \mathbb{R}^{n}$ a \mathcal{C}^{1}-function. If the Jacobian-matrix $J f\left(x^{0}\right)$ is regular for an $x^{0} \in D$, then there exist neighborhoods U and V of x^{0} and $y^{0}=f\left(x^{0}\right)$ such that f maps U on V bijectively.
The inverse function $f^{-1}: V \rightarrow U$ is also \mathcal{C}^{1} and for all $x \in U$ we have:

$$
J f^{-1}(y)=(J f(x))^{-1}, \quad y=f(x)
$$

Remark: We call f locally a \mathcal{C}^{1}-diffeomorphism.

Chapter 2. Applications of multivariate differential calculus

2.3 Extrem value problems under constraints

Question: What is the size of a metallic cylindrical can in order to minimize the material amount by given volume?
Ansatz for solution: Let $r>0$ be the radius and $h>0$ the height of the can. Then

$$
\begin{aligned}
& V=\pi r^{2} h \\
& O=2 \pi r^{2}+2 \pi r h
\end{aligned}
$$

Let $c \in \mathbb{R}_{+}$be the given volume (with $x:=r, y:=h$),

$$
\begin{aligned}
& f(x, y)=2 \pi x^{2}+2 \pi x y \\
& g(x, y)=\pi x^{2} y-c=0
\end{aligned}
$$

Determine the minimum of the function $f(x, y)$ on the set

$$
G:=\left\{(x, y) \in \mathbb{R}_{+}^{2} \mid g(x, y)=0\right\}
$$

Solution of the constraint minimisation problem.

From $g(x, y)=\pi x^{2} y-c=0$ follows

$$
y=\frac{c}{\pi x^{2}}
$$

We plug this into $f(x, y)$ and obtain

$$
h(x):=2 \pi x^{2}+2 \pi x \frac{c}{\pi x^{2}}=2 \pi x^{2}+\frac{2 c}{x}
$$

Determine the minimum of the function $h(x)$:

$$
h^{\prime}(x)=4 \pi x-\frac{2 c}{x^{2}}=0 \quad \Rightarrow \quad 4 \pi x=\frac{2 c}{x^{2}} \quad \Rightarrow \quad x=\left(\frac{c}{2 \pi}\right)^{1 / 3}
$$

Sufficient condition

$$
h^{\prime \prime}(x)=4 \pi+\frac{4 c}{x^{3}} \Rightarrow h^{\prime \prime}\left(\left(\frac{c}{\pi}\right)^{1 / 3}\right)=12 \pi>0
$$

General formulation of the problem.

Determine the extrem values of the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ under the constraint

$$
g(x)=0
$$

where $\mathrm{g}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.
The constraints are

$$
\begin{aligned}
g_{1}\left(x_{1}, \ldots, x_{n}\right) & =0 \\
& \vdots \\
g_{m}\left(x_{1}, \ldots, x_{n}\right) & =0
\end{aligned}
$$

Alternatively: Determine the extrem values of the function $f(x)$ on the set

$$
G:=\left\{x \in \mathbb{R}^{n} \mid g(x)=0\right\}
$$

The Lagrange-function and the Lagrange-Lemma.

We define the Lagrange-function

$$
F(x):=f(x)+\sum_{i=1}^{m} \lambda_{i} g_{i}(x)
$$

and look for the extrem values of $F(\mathrm{x})$ for fixed $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)^{T}$.
The numbers $\lambda_{i}, i=1, \ldots, m$ are called Lagrange-multiplier.
Theorem: (Lagrange-Lemma) If x^{0} minimizes (or maximizes) the Lagrange-function $F(x)$ (for a fixed λ) on D and if $g\left(x^{0}\right)=0$ holds, then x^{0} is the minimum (or maximum) of $f(x)$ on $G:=\{x \in D \mid g(x)=0\}$.

Proof: For an arbitrary $\mathrm{x} \in D$ we have

$$
f\left(x^{0}\right)+\lambda^{T} g\left(x^{0}\right) \leq f(x)+\lambda^{T} g(x)
$$

If we choose $x \in G$, then $g(x)=g\left(x^{0}\right)=0$, thus $f\left(x^{0}\right) \leq f(x)$.

A necessary condition for local extrema.

Let f and $g_{i}, i=1, \ldots, m, \mathcal{C}^{1}$-functions, then a necessary condition for an extrem value x^{0} of $F(x)$ is given by

$$
\operatorname{grad} F(x)=\operatorname{grad} f(x)+\sum_{i=1}^{m} \lambda_{i} \operatorname{grad} g_{i}(x)=0
$$

Together with the constraints $g(x)=0$ we obtain a set of (non-linear) equations with $(n+m)$ equations and ($n+m$) unknowns \times and λ.
The solutions ($\mathrm{x}^{0}, \lambda^{0}$) are the candidates for the extrem values, since these solutions satisfy the above necessary condition.

Alternatively: Define a Langrange-function

$$
G(x, \lambda):=f(x)+\sum_{i=1}^{m} \lambda_{i} g_{i}(x)
$$

and look for the extrem values of $G(x, \lambda)$ with respect to x and λ.

Some remarks on suffiecient conditions.

(1) We can formulate a sufficient condition:

If the functions f and g are \mathcal{C}^{2}-functions and if the Hesse-matrix $\mathrm{HF}\left(\mathrm{x}^{0}\right)$ of the Lagrange-function is positiv (negativ) definit, then x^{0} is a strict local minimum (maximum) of $f(x)$ on G.
(2) In most of the applications the necessary condition are not satisfied, allthough x^{0} is a strict local extremum.
(3) And from the indefinitness of the Hesse-matrix $\mathrm{HF}\left(\mathrm{x}^{0}\right)$ we cannot conclude, that x^{0} is not an extremum.
(9) We have a similar problem with the necessary condition which is obtained from the Hesse-matrix of the Lagrange-function $G(x, \lambda)$ with respect to x and λ.

An example of a minimisation problem with constraints.

We look for extrem values of $f(x, y):=x y$ on the disc

$$
K:=\left\{(x, y)^{T} \mid x^{2}+y^{2} \leq 1\right\}
$$

Since the function f is continuous and $K \subset \mathbb{R}^{2}$ compact we conclude from the min-max-property the existence of global maxima and minima on K.
We consider first the interior K^{0} of K, i.e. the open set

$$
K^{0}:=\left\{(x, y)^{T} \mid x^{2}+y^{2}<1\right\}
$$

The necessary condition for an extrem value is given by

$$
\operatorname{grad} f=(y, x)=0
$$

Thus the origin $x^{0}=0$ is a candidate for a (local) extrem value.

continuation of the example.

The Hesse-matrix at the origin is given by

$$
\mathrm{Hf}(0)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

and is indefinit. Thus x^{0} is a saddel point.
Therefore the extrem values have to be on the boundary which is represented by a constraint equation:

$$
g(x, y)=x^{2}+y^{2}-1=0
$$

Therefore we look for the extrem values of $f(x, y)=x y$ under the constraint $g(x, y)=0$.

The Lagrange-function is given by

$$
F(x, y)=x y+\lambda\left(x^{2}+y^{2}-1\right)
$$

Completion of the example.

We obtain the non-linear system of equations

$$
\begin{aligned}
y+2 \lambda x & =0 \\
x+2 \lambda y & =0 \\
x^{2}+y^{2} & =1
\end{aligned}
$$

with the four solution

$$
\begin{aligned}
& \lambda=\frac{1}{2} \quad: \quad x^{(1)}=(\sqrt{1 / 2},-\sqrt{1 / 2})^{T} \quad x^{(2)}=(-\sqrt{1 / 2}, \sqrt{1 / 2})^{T} \\
& \lambda=-\frac{1}{2} \quad: \quad x^{(3)}=(\sqrt{1 / 2}, \sqrt{1 / 2})^{T} \quad x^{(4)}=(-\sqrt{1 / 2},-\sqrt{1 / 2})^{T}
\end{aligned}
$$

Minima and Maxima can be concluded from the values of the function

$$
f\left(x^{(1)}\right)=f\left(x^{(2)}\right)=-1 / 2 \quad f\left(x^{(3)}\right)=f\left(x^{(4)}\right)=1 / 2
$$

i.e. minima are $x^{(1)}$ and $x^{(2)}$, maxima are $x^{(3)}$ and $x^{(4)}$.

Lagrange-multiplier-rule.

Satz: Let $f, g_{1}, \ldots, g_{m}: D \rightarrow \mathbb{R}$ be \mathcal{C}^{1}-functions, und let $x^{0} \in D$ a local extrem value of $f(\mathrm{x})$ under the constraint $\mathrm{g}(\mathrm{x})=0$. In addition let the regularity condition

$$
\operatorname{rang}\left(\operatorname{Jg}\left(x^{0}\right)\right)=m
$$

hold true. Then there exist Lagrange-multiplier $\lambda_{1}, \ldots, \lambda_{m}$, such that for the Lagrange function

$$
F(x):=f(x)+\sum_{i=1}^{m} \lambda_{i} g_{i}(x)
$$

the following first order necessary condition holds true:

$$
\operatorname{grad} F\left(x^{0}\right)=0
$$

Necessary condition of second order and sufficient condition.

Theorem: 1) Let $x^{0} \in D$ a local minimum of $f(x)$ under the constraint $g(x)=0$, let the regularity condition be satisfied and let $\lambda_{1}, \ldots, \lambda_{m}$ be the related Lagrange-multiplier. Then the Hesse-matrix $\mathrm{HF}\left(\mathrm{x}^{0}\right)$ of the Lagrange-function is positiv semi-definit on the tangential space

$$
T G\left(x^{0}\right):=\left\{y \in \mathbb{R}^{n} \mid \operatorname{grad} g_{i}\left(x^{0}\right) \cdot \mathrm{y}=0 \text { for } i=1, \ldots, m\right\}
$$

i.e. it is $y^{T} H F\left(x^{0}\right) y \geq 0$ for all $y \in T G\left(x^{0}\right)$.
2) Let the regularity condition for a point $x^{0} \in G$ be staisfied. If there exist Lagrange-multiplier $\lambda_{1}, \ldots, \lambda_{m}$, such that x^{0} is a stationary point of the related Lagrange-function. Let the Hesse-matrix $\mathrm{HF}\left(\mathrm{x}^{0}\right)$ be positiv definit on the tangential space $T G\left(x^{0}\right)$, i.e. it holds

$$
\mathrm{y}^{T} \mathrm{HF}\left(\mathrm{x}^{0}\right) \mathrm{y}>0 \quad \forall \mathrm{y} \in T G\left(\mathrm{x}^{0}\right) \backslash\{0\},
$$

then x^{0} is a strict local minimum of $f(\mathrm{x})$ under the constraint $\mathrm{g}(\mathrm{x})=0$.

Example.

Determine the global maximum of the function

$$
f(x, y)=-x^{2}+8 x-y^{2}+9
$$

under the constraint

$$
g(x, y)=x^{2}+y^{2}-1=0
$$

The Lagrange-function is given by

$$
F(x)=-x^{2}+8 x-y^{2}+9+\lambda\left(x^{2}+y^{2}-1\right)
$$

From the necessary condition we obtain the non-linear system

$$
\begin{aligned}
-2 x+8 & =-2 \lambda x \\
-2 y & =-2 \lambda y \\
x^{2}+y^{2} & =1
\end{aligned}
$$

Continuation of the example.

From the necessary condition we obtain the non-linear system

$$
\begin{aligned}
-2 x+8 & =-2 \lambda x \\
-2 y & =-2 \lambda y \\
x^{2}+y^{2} & =1
\end{aligned}
$$

The first equation gives $\lambda \neq 1$. Using this in the second equation we get $y=0$. From the third equation we obtain $x= \pm 1$.
Therefore the two points $(x, y)=(1,0)$ and $(x, y)=(-1,0)$ are candidates for a global maximum. Since

$$
f(1,0)=16 \quad f(-1,0)=0
$$

the global maximum of $f(x, y)$ under the constraint $g(x, y)=0$ is given at the point $(x, y)=(1,0)$.

Another example.

Determine the local extrem values of

$$
f(x, y, z)=2 x+3 y+2 z
$$

on the intersection of the cylinder surface

$$
M_{z}:=\left\{(x, y, z)^{T} \in \mathbb{R}^{3} \mid x^{2}+y^{2}=2\right\}
$$

with the plane

$$
E:=\left\{(x, y, z)^{T} \in \mathbb{R}^{3} \mid x+z=1\right\}
$$

Reformulation: Determine the extrem values of the function $f(x, y, z)$ under the constraint

$$
\begin{aligned}
& g_{1}(x, y, z):=x^{2}+y^{2}-2=0 \\
& g_{2}(x, y, z):=x+z-1=0
\end{aligned}
$$

Continuation of the example.

The Jacobi-matrix

$$
\operatorname{Jg}(x)=\left(\begin{array}{ccc}
2 x & 2 y & 0 \\
1 & 0 & 1
\end{array}\right)
$$

has rank 2, i.e. we can determine extrem values using the Lagrange-function:

$$
F(x, y, z)=2 x+3 y+2 z+\lambda_{1}\left(x^{2}+y^{2}-2\right)+\lambda_{2}(x+z-1)
$$

The necessary condition gives the non-linear system

$$
\begin{aligned}
2+2 \lambda_{1} x+\lambda_{2} & =0 \\
3+2 \lambda_{1} y & =0 \\
2+\lambda_{2} & =0 \\
x^{2}+y^{2} & =2 \\
x+z & =1
\end{aligned}
$$

Continuation of the example.

The necessary condition gives the non-linear system

$$
\begin{array}{r}
2+2 \lambda_{1} x+\lambda_{2}=0 \\
3+2 \lambda_{1} y=0 \\
2+\lambda_{2}=0 \\
x^{2}+y^{2}=2 \\
x+z=1
\end{array}
$$

From the first and the third equation it follows

$$
2 \lambda_{1} x=0
$$

From the second equation it follows $\lambda_{1} \neq 0$, i.e. $x=0$. Thus we have possible extrem values

$$
(x, y, z)=(0, \sqrt{2}, 1) \quad(x, y, z)=(0,-\sqrt{2}, 1)
$$

Completion if the example.

The possible extrem values are

$$
(x, y, z)=(0, \sqrt{2}, 1) \quad(x, y, z)=(0,-\sqrt{2}, 1)
$$

and lie on the cylinder surface M_{Z} of the cylinder Z with

$$
\begin{aligned}
z & =\left\{(x, y, z)^{T} \in \mathbb{R}^{3} \mid x^{2}+y^{2} \leq 2\right\} \\
M_{z} & =\left\{(x, y, z)^{T} \in \mathbb{R}^{3} \mid x^{2}+y^{2}=2\right\}
\end{aligned}
$$

We calculate the related functiuon values

$$
\begin{aligned}
f(0, \sqrt{2}, 1) & =3 \sqrt{2}+2 \\
f(0,-\sqrt{2}, 1) & =-3 \sqrt{2}+2
\end{aligned}
$$

Thus the point $(x, y, z)=(0, \sqrt{2}, 1)$ is a maximum an the point $(x, y, z)=(0,-\sqrt{2}, 1)$ a minimum.

Chapter 2. Applications of multivariate differential calculus

2.4 the Newton-method

Aim: We look for the zero's of a function $f: D \rightarrow \mathbb{R}^{n}, D \subset \mathbb{R}^{n}$:

$$
f(x)=0
$$

- We already know the fixed-point iteration

$$
x^{k+1}:=\Phi\left(x^{k}\right)
$$

with starting point x^{0} and iteration map $\Phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.

- Convergence results are given by the Banach Fixed Point Theorem.

Advantage: this method is derivative-free.

Disadvantages:

- the numerical scheme converges to slow (only linear),
- there is no unique iteratin map.

The construction of the Newton method.

Starting point: Let \mathcal{C}^{1}-function $\mathrm{f}: D \rightarrow \mathbb{R}^{n}, D \subset \mathbb{R}^{n}$ open.
We look for a zero of f, i.e. a $x^{*} \in D$ with

$$
f\left(x^{*}\right)=0
$$

Construction of the Newton-method:
The Taylor-expansion of $f(x)$ at x^{0} is given by

$$
f(x)=f\left(x^{0}\right)+J f\left(x^{0}\right)\left(x-x^{0}\right)+o\left(\left\|x-x^{0}\right\|\right)
$$

Setting $x=x^{*}$ we obtain

$$
\operatorname{Jf}\left(x^{0}\right)\left(x^{*}-x^{0}\right) \approx-f\left(x^{0}\right)
$$

An approximative solution for x^{*} is given by $x^{1}, x^{1} \approx x^{*}$, the solution of the linear system of equations

$$
\operatorname{Jf}\left(x^{0}\right)\left(x^{1}-x^{0}\right)=-f\left(x^{0}\right)
$$

The Newton-method as algorithm.

The Newton-method can be formulated as algorithm.

Algorithm (Newton-method):
(1) $\operatorname{FOR} k=0,1,2, \ldots$
(2a) Solve $\operatorname{Jf}\left(x^{k}\right) \cdot \Delta x^{k}=-f\left(x^{k}\right)$;
(2b) Set $x^{k+1}=x^{k}+\Delta x^{k}$;

- In every Newton-step we solve a set of linear equations.
- The solution Δx^{k} is called Newton-correction.
- The Newton-method is scaling-invariant.

Scaling-invariance of the Newton-method.

Theorem: the Newton-method is invariant under linear transformations of the form

$$
f(x) \rightarrow g(x)=A f(x) \quad \text { for } A \in \mathbb{R}^{n \times n} \text { regular, }
$$

i.e. the iterates for f and g are identical.

Proof: Constructing the Newton-method for $\mathrm{g}(\mathrm{x})$, then the Newton-correction is given by

$$
\begin{aligned}
\Delta x^{k} & =-\left(J g\left(x^{k}\right)\right)^{-1} \cdot g\left(x^{k}\right) \\
& =-\left(\operatorname{AJf}\left(x^{k}\right)\right)^{-1} \cdot \operatorname{Af}\left(x^{k}\right) \\
& =-\left(J f\left(x^{k}\right)\right)^{-1} \cdot A^{-1} A \cdot f\left(x^{k}\right) \\
& =-\left(J f\left(x^{k}\right)\right)^{-1} \cdot f\left(x^{k}\right)
\end{aligned}
$$

and thus the Newton-correction of f and g conincide. Using the same starting point x^{0} we obtain the same iterates x^{k}.

Local convergence of the Newton-method.

Theorem: Let $\mathrm{f}: D \rightarrow \mathbb{R}^{n}$ be a \mathcal{C}^{1}-function, $D \subset \mathbb{R}^{n}$ open and convex. Let $x^{*} \in D$ a zero of f, i.e. $f\left(x^{*}\right)=0$.
Let the Jacobi-matrix $\operatorname{Jf}(x)$ be regular for $x \in D$, and suppose the Lipschitz-condition

$$
\|\left(J f(x)^{-1}(J f(y)-J f(x))\|\leq L\| y-x \| \quad \text { for all } x, y \in D\right.
$$

holds true with $L>0$. Then the Newton-method is well defined for all starting points $x^{0} \in D$ with

$$
\left\|x^{0}-x^{*}\right\|<\frac{2}{L}=: r \quad \text { and } \quad K_{r}\left(x^{*}\right) \subset D
$$

with $x^{k} \in K_{r}\left(x^{*}\right), k=0,1,2, \ldots$, and the Newton-iterates x^{k} converge quadratically to x^{*}, i.e.

$$
\left\|x^{k+1}-x^{*}\right\| \leq \frac{L}{2}\left\|x^{k}-x^{*}\right\|^{2}
$$

x^{*} is the unique zero of $f(x)$ within the ball $K_{r}\left(x^{*}\right)$.

The damped Newton-method.

Additional obserrvations:

- The Newton-method converges quadratically, but only locally.
- Global convergence can be obtained - if applicable - by a damping term:

Algorithm (Damped Newton-method):
(1) FOR $k=0,1,2, \ldots$
(2a) Solve $\operatorname{Jf}\left(x^{k}\right) \cdot \Delta x^{k}=-f\left(x^{k}\right)$;
(2b) Set $x^{k+1}=x^{k}+\lambda_{k} \Delta x^{k}$;

Frage: How should we choose the damping parameters λ_{k} ?

Choice of the damping paramter.

Strategy: Use a testfunction $T(x)=\|f(x)\|$ such that

$$
\begin{aligned}
& T(\mathrm{x}) \geq 0, \quad \forall x \in D \\
& T(\mathrm{x})=0 \Leftrightarrow f(\mathrm{x})=0
\end{aligned}
$$

Choose $\lambda_{k} \in(0,1)$ such that the sequence $T\left(x^{k}\right)$ decreases strictly monotonically, i.e.

$$
\left\|f\left(x^{k+1}\right)\right\|<\left\|f\left(x^{k}\right)\right\| \quad \text { für } k \geq 0 \text {. }
$$

Close to the solution x^{*} we should choose $\lambda_{k}=1$ to guarantee (local) quadratic convergence.

The following Theorem guarantees the existence of damping parameters.
Theorem: Let f a \mathcal{C}^{1}-function on the open and convex set $D \subset \mathbb{R}^{n}$. For $x^{k} \in D$ with $\mathrm{f}\left(\mathrm{x}^{k}\right) \neq 0$ there exists a $\mu_{k}>0$ such that

$$
\left\|\mathfrak{f}\left(x^{k}+\lambda \Delta x^{k}\right)\right\|_{2}^{2}<\left\|\mathfrak{f}\left(x^{k}\right)\right\|_{2}^{2} \quad \text { for all } \lambda \in\left(0, \mu_{k}\right)
$$

Damping strategy.

For the initial iteration $k=0$: Choose $\lambda_{0} \in\left\{1, \frac{1}{2}, \frac{1}{4}, \ldots, \lambda_{\text {min }}\right\}$ as big as possible such that

$$
\left\|f\left(x^{0}\right)\right\|_{2}>\left\|f\left(x^{0}+\lambda_{0} \Delta x^{0}\right)\right\|_{2}
$$

holds. For subsequent iterations $k>0$: Set $\lambda_{k}=\lambda_{k-1}$.
IF $\left\|f\left(x^{k}\right)\right\|_{2}>\left\|f\left(x^{k}+\lambda_{k} \Delta x^{k}\right)\right\|_{2}$ THEN

- $x^{k+1}:=x^{k}+\lambda_{k} \Delta x^{k}$
- $\lambda_{k}:=2 \lambda_{k}$, falls $\lambda_{k}<1$.

ELSE

- Determine $\mu=\max \left\{\lambda_{k} / 2, \lambda_{k} / 4, \ldots, \lambda_{\min }\right\}$ with

$$
\left\|f\left(x^{k}\right)\right\|_{2}>\left\|f\left(x^{k}+\lambda_{k} \Delta x^{k}\right)\right\|_{2}
$$

- $\lambda_{k}:=\mu$

END

Chapter 3. Integration in higher dimensions

3.1 Area integrals

Given a function $f: D \rightarrow \mathbb{R}$ with domain of defintion $D \subset \mathbb{R}^{n}$.
Aim: Calculate the volume under the graph of $f(x)$:

$$
V=\int_{D} f(x) d x
$$

Remember (Analysis II): Riemann-Integral of a function f on the interval $[a, b]$:

$$
I=\int_{a}^{b} f(x) d x
$$

The integral / is defined as limit of Riemann upper- and lower-sums, if the limits exist and coincide.

Construction of area integrals.

Procedure: Same as in the one dimensional case.
But: the domain of definition D is more complex.
Starting point: consider the case of two variables $n=2$ and a domain of definition $D \subset \mathbb{R}^{2}$ of the form

$$
D=\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right] \subset \mathbb{R}^{2}
$$

i.e. D is compact cuboid (rectangle).

Let $f: D \rightarrow \mathbb{R}$ be a bounded function.
Definition: We call $Z=\left\{\left(x_{0}, x_{1}, \ldots, x_{n}\right),\left(y_{0}, y_{1}, \ldots, y_{m}\right)\right\}$ a partition of the cuboid $D=\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right]$ if it holds

$$
\begin{aligned}
& a_{1}=x_{0}<x_{1}<\cdots<x_{n}=b_{1} \\
& a_{2}=y_{0}<y_{1}<\cdots<y_{m}=b_{2}
\end{aligned}
$$

$Z(D)$ denotes the set of partitions of D.

Partitions and Riemann sums.

Definition:

- The fineness of a partition $Z \in Z(D)$ is given by

$$
\|Z\|:=\max _{i, j}\left\{\left|x_{i+1}-x_{i}\right|,\left|y_{j+1}-y_{j}\right|\right\}
$$

- For a given partition Z the sets

$$
Q_{i j}:=\left[x_{i}, x_{i+1}\right] \times\left[y_{j}, y_{j+1}\right]
$$

are called the subcuboid of the partition Z. The volume of the subcuboid $Q_{i j}$ is given by

$$
\operatorname{vol}\left(Q_{i j}\right):=\left(x_{i+1}-x_{i}\right) \cdot\left(y_{j+1}-y_{j}\right)
$$

- For arbitrary points $x_{i j} \in Q_{i j}$ of the subcuboids we call

$$
R_{f}(Z):=\sum_{i, j} f\left(\mathrm{x}_{i j}\right) \cdot \operatorname{vol}\left(Q_{i j}\right)
$$

a Riemann sum of the partition Z.

Riemann upper and lower sums.

Definition:

In analogy to the integral for the univariate case we call for a partition Z

$$
\begin{aligned}
& U_{f}(Z):=\sum_{i, j} \inf _{x \in Q_{i j}} f(x) \cdot \operatorname{vol}\left(Q_{i j}\right) \\
& O_{f}(Z):=\sum_{i, j} \sup _{x \in Q_{i j}} f(x) \cdot \operatorname{vol}\left(Q_{i j}\right)
\end{aligned}
$$

the Riemann lower sum and the Riemann upper sum of $f(x)$, respectively.

Remark:

A Riemann sum for the partition Z lies always between the lower and the upper sum of that partition i.e.

$$
U_{f}(Z) \leq R_{f}(Z) \leq O_{f}(Z)
$$

Remark.

If a partition Z_{2} is obtained from a partition Z_{1} by adding additional intermediate points x_{i} and/or y_{j}, then

$$
U_{f}\left(Z_{2}\right) \geq U_{f}\left(Z_{1}\right) \quad \text { and } \quad O_{f}\left(Z_{2}\right) \leq O_{f}\left(Z_{1}\right)
$$

For arbitrary two partitions Z_{1} and Z_{2} we always have:

$$
U_{f}\left(Z_{1}\right) \leq O_{f}\left(Z_{2}\right)
$$

Question: what happens to the lower and upper sums in the limit $\|Z\| \rightarrow 0$:

$$
\begin{aligned}
& U_{f}:=\sup \left\{U_{f}(Z): Z \in Z(D)\right\} \\
& O_{f}:=\inf \left\{O_{f}(Z): Z \in Z(D)\right\}
\end{aligned}
$$

Observation: Both values U_{f} and O_{f} exist since lower and upper sum are monoton and bounded.

Riemann upper and lower integrals.

Definition:

(1) The Riemann lower and upper integral of a function $f(x)$ on D is given by

$$
\begin{aligned}
& \int_{\underline{D}} f(x) d x:=\sup \left\{U_{f}(Z): Z \in Z(D)\right\} \\
& \int_{\bar{D}} f(x) d x:=\inf \left\{O_{f}(Z): Z \in Z(D)\right\}
\end{aligned}
$$

(2) The function $f(x)$ is called Riemann-integrable on D, if lower and upper intergral conincide. The Riemann-integral of $f(x)$ on D is then given by

$$
\int_{D} f(x) d x:=\int_{\underline{D}} f(x) d x=\int_{\bar{D}} f(x) d x
$$

Remark.

Up to now we habe "only" considered the case of two variables:

$$
f: D \rightarrow \mathbb{R}, \quad D \in \mathbb{R}^{2}
$$

In higher dimensions, $n>2$, the procdeure is the same.
Notation: for $n=2$ and $n=3$

$$
\int_{D} f(x, y) d x d y \text { bzw. } \int_{D} f(x, y, z) d x d y d z
$$

or

$$
\iint_{D} f(x, y) d x d y \text { bzw. } \iiint_{D} f(x, y, z) d x d y d z
$$

respectively.

Elementary properties of the integral.

Theorem:

a) Linearity

$$
\int_{D}(\alpha f(x)+\beta g(x)) d x=\alpha \int_{D} f(x) d x+\beta \int_{D} g(x) d x
$$

b) Monotonicity

If $f(x) \leq g(x)$ for all $x \in D$, then:

$$
\int_{D} f(x) d x \leq \int_{D} g(x) d x
$$

c) Positivity

If for all $x \in D$ the relation $f(x) \geq 0$ holds, i.e. $f(x)$ is non-negativ, then

$$
\int_{D} f(x) d x \geq 0
$$

Additional properties of the integral.

Theorem:

a) Let D_{1}, D_{2} and D be cuboids, $D=D_{1} \cup D_{2}$ and $\operatorname{vol}\left(D_{1} \cap D_{2}\right)=0$, then $f(x)$ is on D integrable if and only if $f(x)$ is integrable on D_{1} and D_{2}. And we have

$$
\int_{D} f(x) d x=\int_{D_{1}} f(x) d x+\int_{D_{2}} f(x) d x
$$

b) The following estimate holds for the integral

$$
\left|\int_{D} f(x) d x\right| \leq \sup _{x \in D}|f(x)| \cdot \operatorname{vol}(D)
$$

c) Riemann criterion $f(x)$ is integrable on D if and only if :

$$
\forall \varepsilon>0 \quad \exists Z \in Z(D) \quad: \quad O_{f}(Z)-U_{f}(Z)<\varepsilon
$$

Fubini's theorem.

Theorem: (Fubini's theorem) Let $f: D \rightarrow \mathbb{R}$ be integrable, $D=\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right]$ be a cuboid. If the integrals

$$
F(x)=\int_{a_{2}}^{b_{2}} f(x, y) d y \quad \text { und } \quad G(y)=\int_{a_{1}}^{b_{1}} f(x, y) d x
$$

exist for all $x \in\left[a_{1}, b_{1}\right]$ and $y \in\left[a_{2}, b_{2}\right]$, respectively, then

$$
\begin{aligned}
\int_{D} f(x) d x & =\int_{a_{1}}^{b_{1}} \int_{a_{2}}^{b_{2}} f(x, y) d y d x \\
\int_{D} f(x) d x & =\int_{a_{2}}^{b_{2}} \int_{a_{1}}^{b_{1}} f(x, y) d x d y
\end{aligned}
$$

holds true.
Importance:
Fubini's theorem allows to reduce higher-dimensional integrals to one-dimensional integrals.

Example.

Given the cuboid $D=[0,1] \times[0,2]$ and the function

$$
f(x, y)=2-x y
$$

We will show that continuous functions are integrable on cuboids. Thus we can apply Fubini's theorem:

$$
\begin{aligned}
\int_{D} f(x) d x & =\int_{0}^{2} \int_{0}^{1} f(x, y) d x d y=\int_{0}^{2}\left[2 x-\frac{x^{2} y}{2}\right]_{x=0}^{x=1} d y \\
& =\int_{0}^{2}\left(2-\frac{y}{2}\right) d y=\left[2 y-\frac{y^{2}}{4}\right]_{y=0}^{y=2}=3
\end{aligned}
$$

Remark: Fubini's theorem requires the integrability of $f(x)$. The existence of the two integrals $F(x)$ and $G(y)$ does not guarantee the integrability of $f(x)$!

The characteristic function.

Definition: Let $D \subset \mathbb{R}^{n}$ compact and $f: D \rightarrow \mathbb{R}$ bounded. We set

$$
f^{*}(x):=\left\{\begin{array}{cl}
f(x) & : \\
\text { if } x \in D \\
0 & : \\
\text { if } x \in \mathbb{R}^{n} \backslash D
\end{array}\right.
$$

In particular for $f(x)=1$ we call $f^{*}(x)$ the characteristic function of D. The characteristic function of D is called $\mathcal{X}_{D}(x)$.

Let Q be the smallest cuboid with $D \subset Q$. The function $f(x)$ is called integrable on D, if $f^{*}(x)$ is integrable on Q. We set

$$
\int_{D} f(x) d x:=\int_{Q} f^{*}(x) d x
$$

Measurability and null sets.

Definition: The compact set $D \subset \mathbb{R}^{n}$ is called measurable, if the integral

$$
\operatorname{vol}(D):=\int_{D} 1 d x=\int_{Q} \mathcal{X}_{D}(\mathrm{x}) d \mathrm{x}
$$

exists. We call vol (D) the volume of D in \mathbb{R}^{n}.
The compact set D is called null set, if D is measurable and if $\operatorname{vol}(D)=0$ holds.

Remark:

- If D a cuboid, then $Q=D$ and thus

$$
\int_{D} f(x) d x=\int_{Q} f^{*}(x) d x=\int_{Q} f(x) d x
$$

i.e. the introduced concepts of integrability coincide.

- Cuboids are measurable sets.
- $\operatorname{vol}(D)$ is the volume of the cuboid on \mathbb{R}^{n}.

Three more properties of integration.

We have the following theorems for integrals in higher dimensions.

Theorem: Let $D \subset \mathbb{R}^{n}$ be compact. D is measurable if and only if the boundary ∂D of D is a null set.

Theorem: Let $D \subset \mathbb{R}^{n}$ be compact and measurable. Let $f: D \rightarrow \mathbb{R}$ be continuous. Then $f(x)$ is integrable on D.

Theorem: (Mean value theorem) Let $D \subset \mathbb{R}^{n}$ be compact, connected and measurable, and let $f: D \rightarrow \mathbb{R}$ be continuous, then there exist a point $\xi \in D$ with

$$
\int_{D} f(x) d x=f(\xi) \cdot \operatorname{vol}(D)
$$

"Normal" areas.

Definition:

- A subset $D \subset \mathbb{R}^{2}$ is called "normal" area, there exist continuous functions g, h and \tilde{g}, \tilde{h} with

$$
D=\{(x, y) \mid a \leq x \leq b \text { und } g(x) \leq y \leq h(x)\}
$$

and

$$
D=\{(x, y) \mid \tilde{a} \leq y \leq \tilde{b} \text { und } \tilde{g}(y) \leq x \leq \tilde{h}(y)\}
$$

respectively.

- A subset $D \subset \mathbb{R}^{3}$ is called "normal" area, if there is a representation

$$
\begin{aligned}
D= & \left\{\left(x_{1}, x_{2}, x_{3}\right) \mid a \leq x_{i} \leq b, g\left(x_{i}\right) \leq x_{j} \leq h\left(x_{i}\right)\right. \\
& \text { and } \left.\varphi\left(x_{i}, x_{j}\right) \leq x_{k} \leq \psi\left(x_{i}, x_{j}\right)\right\}
\end{aligned}
$$

with a permutation (i, j, k) of $(1,2,3)$ and continuos functions g, h, φ and ψ.

Projectable sets.

Definition: A subset $D \subset \mathbb{R}^{n}$ is called projectable in the direction x_{i}, $i \in\{1, \ldots . n\}$, if there exist a measurable set $B \subset \mathbb{R}^{n-1}$ and continuous functions φ, ψ such that

$$
\begin{gathered}
D=\left\{x \in \mathbb{R}^{n} \mid \tilde{x}=\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)^{T} \in B\right. \\
\text { und } \left.\varphi(\tilde{x}) \leq x_{i} \leq \psi(\tilde{x})\right\}
\end{gathered}
$$

Remark:

- Projectable sets are measurable sets. Since "normal" areas are projectable, "normal" areas are measurable.
- Often the area of integration D can be represented by a union of finite many "normal" areas. Such areas are then also measurable.

Integration on "normal" areas and projectable sets.

Theorem: If $f(x)$ is a continuous function on a "normal" area

$$
D=\left\{(x, y) \in \mathbb{R}^{2}: a \leq x \leq b \text { and } g(x) \leq y \leq h(x)\right\}
$$

then we have

$$
\int_{D} f(x) d x=\int_{a}^{b} \int_{g(x)}^{h(x)} f(x, y) d y d x
$$

Analogous relations hold in higher dimensions: If $D \subset \mathbb{R}^{n}$ is a projectable set in the direction x_{i}, i.e. D has a representation of the form

$$
\begin{gathered}
D=\left\{x \in \mathbb{R}^{n} \mid \tilde{x}=\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)^{T} \in B\right. \\
\text { and } \left.\varphi(\tilde{\mathrm{x}}) \leq x_{i} \leq \psi(\tilde{\mathrm{x}})\right\}
\end{gathered}
$$

then it holds

$$
\int_{D} f(x) d x=\int_{B}\left(\int_{\varphi(\tilde{\mathrm{x}})}^{\psi(\tilde{\mathrm{x}})} f(\mathrm{x}) d x_{i}\right) d \tilde{\mathrm{x}}
$$

Example.

Given a function

$$
f(x, y):=x+2 y
$$

Calculate the integral on the area bounded by two parabolas

$$
D:=\left\{(x, y) \mid-1 \leq x \leq 1 \text { und } x^{2} \leq y \leq 2-x^{2}\right\}
$$

The set D is a "normal" area and $f(x, y)$ is continuous. Thus

$$
\begin{aligned}
\int_{D} f(x, y) d x & =\int_{-1}^{1}\left(\int_{x^{2}}^{2-x^{2}}(x+2 y) d y\right) d x=\int_{-1}^{1}\left[x y+y^{2}\right]_{x^{2}}^{2-x^{2}} d x \\
& =\int_{-1}^{1}\left(x\left(2-x^{2}\right)+\left(2-x^{2}\right)^{2}-x^{3}-x^{4}\right) d x \\
& =\int_{-1}^{1}\left(-2 x^{3}-4 x^{2}+2 x+4\right) d x=\frac{16}{3}
\end{aligned}
$$

Example.

Calculate the volume of the rotational paraboloid

$$
V:=\left\{(x, y, z)^{T} \mid x^{2}+y^{2} \leq 1 \text { and } x^{2}+y^{2} \leq z \leq 1\right\}
$$

Representation of V as "normal" area
$V=\left\{(x, y, z)^{T} \mid-1 \leq x \leq 1,-\sqrt{1-x^{2}} \leq y \leq \sqrt{1-x^{2}}\right.$ and $\left.x^{2}+y^{2} \leq z \leq 1\right\}$
Then we have

$$
\begin{aligned}
\operatorname{vol}(V) & =\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \int_{x^{2}+y^{2}}^{1} d z d y d x=\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}}\left(1-x^{2}-y^{2}\right) d y d x \\
& =\int_{-1}^{1}\left[\left(1-x^{2}\right) y-\frac{y^{3}}{3}\right]_{y=-\sqrt{1-x^{2}}}^{y=\sqrt{1-x^{2}}} d x=\frac{4}{3} \int_{-1}^{1}\left(1-x^{2}\right)^{3 / 2} d x \\
& =\frac{1}{3}\left[x\left(\sqrt{1-x^{2}}\right)^{3}+\frac{3}{2} x \sqrt{1-x^{2}}+\frac{3}{2} \arcsin (x)\right]_{-1}^{1}=\frac{\pi}{2}
\end{aligned}
$$

Integration over arbitrary domains.

Definition: Let $D \subset \mathbb{R}^{n}$ ba a compact and measurable set. We call $Z=\left\{D_{1}, \ldots, D_{m}\right\}$ an universal partition of D, if the sets D_{k} are compact, measurable and connected and if

$$
\bigcup^{m} D_{j}=D \quad \text { and } \quad \forall i \neq j: D_{i}^{0} \cap D_{j}^{0}=\emptyset
$$

We call

$$
\operatorname{diam}\left(D_{j}\right):=\sup \left\{\|x-y\| \mid x, y \in D_{j}\right\}
$$

the diameter of the set D_{j} and

$$
\|Z\|:=\max \left\{\operatorname{diam}\left(D_{j}\right) \mid j=1, \ldots, m\right\}
$$

the fineness of the universal partition Z.

Riemann sums for universal partitions.

For a continuous function $f: D \rightarrow \mathbb{R}$ we define the Riemann sums

$$
R_{f}(Z)=\sum_{j=1}^{m} f\left(x^{j}\right) \operatorname{vol}\left(D_{j}\right)
$$

with arbitrary $x^{j} \in D_{j}, j=1, \ldots, m$.

Theorem: For any sequence $\left(Z_{k}\right)_{k \in \mathbb{N}}$ of universal partitons of D with $\left\|Z_{k}\right\| \rightarrow 0$ (as $\left.k \rightarrow \infty\right)$ and for ony sequence of related Riemann sums $R_{f}\left(Z_{k}\right)$ we have

$$
\lim _{k \rightarrow \infty} R_{f}\left(Z_{k}\right)=\int_{D} f(x) d x
$$

Center (of mass) of areas and solids.

An important application of the area integrals is the calculation of the centers (of mass) of areas and solids.

Definition: Let $D \subset \mathbb{R}^{2}$ (or \mathbb{R}^{3}) be a measurable set and $\rho(\mathrm{x}), \mathrm{x} \in D$, a given mass density. Then the center (of mass) of the area (or the solid) D is given by

$$
x_{s}:=\frac{\int_{D} \rho(\mathrm{x}) \mathrm{xdx}}{\int_{D} \rho(\mathrm{x}) d \mathrm{x}}
$$

The numerator integral (over a vector valued function) is intended componentwise (and gives as result a vector).

Example.

Calculate the center of mass of the pyramid P

$$
P:=\left\{(x, y, z)^{T} \left\lvert\, \max (|y|,|z|) \leq \frac{a x}{2 h}\right., \quad 0 \leq x \leq h\right\}
$$

Calculate the volume of P under assumption of constant mass density

$$
\begin{aligned}
\operatorname{vol}(P) & =\int_{0}^{h} \int_{-\frac{a x}{2 h}}^{\frac{a x}{2 h}} \int_{-\frac{a x}{2 h}}^{\frac{a x}{2 h}} d z d y d x \\
& =\int_{0}^{h} \int_{-\frac{a x}{2 h}}^{\frac{a x}{2 h}} \frac{a x}{h} d y d x \\
& =\int_{0}^{h}\left(\frac{a x}{h}\right)^{2} d x=\frac{1}{3} a^{2} h
\end{aligned}
$$

Continuation of the example.

and

$$
\int_{0}^{h} \int_{-\frac{a x}{2 h}}^{\frac{a x}{2 h}} \int_{-\frac{a x}{2 h}}^{\frac{a x}{2 h}}\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right) d z d y d x=\int_{0}^{h} \int_{-\frac{a x}{2 h}}^{\frac{a x}{2 h}}\left(\begin{array}{c}
\frac{a x^{2}}{h} \\
\frac{a x y}{h} \\
0
\end{array}\right) d y d x
$$

$$
=\int_{0}^{h}\left(\begin{array}{c}
\frac{a^{2} x^{3}}{h^{2}} \\
0 \\
0
\end{array}\right) d x
$$

$$
=\left(\begin{array}{c}
\frac{1}{4} a^{2} h^{2} \\
0 \\
0
\end{array}\right)
$$

The center of mass of P lies in the point $x_{s}=\left(\frac{3}{4} h, 0,0\right)^{T}$.

Moments of inertia of areas and solids.

Another important application of area integrals is the calculation of moments of inertia of areas and solids.

Definition: (moments of inertia with respect to an axis)
Let $D \subset \mathbb{R}^{2}$ (or \mathbb{R}^{3}) be a measurable set, $\rho(\mathrm{x})$ denotes for $\mathrm{x} \in D$ a mass density and $r(\mathrm{x})$ the distance of the point $\mathrm{x} \in D$ from the given axis of rotation.

Then the moment of inertia of D with respect to this axis is given by

$$
\Theta:=\int_{D} \rho(\mathrm{x}) r^{2}(\mathrm{x}) d \mathrm{x}
$$

Example.

We calculate the moment of inertia of a homogeneous cylinder

$$
Z:=\left\{(x, y, z)^{T}: x^{2}+y^{2} \leq r^{2},-1 / 2 \leq z \leq 1 / 2\right\}
$$

with respect to the x-axis assuming a constant density ρ.

$$
\begin{aligned}
\Theta & =\int_{Z} \rho\left(y^{2}+z^{2}\right) d(x, y, z)=\rho \int_{Z}\left(y^{2}+z^{2}\right) d(x, y, z) \\
& =\rho \int_{-r}^{r} \int_{-\sqrt{r^{2}-x^{2}}}^{\sqrt{r^{2}-x^{2}}} \int_{-1 / 2}^{1 / 2}\left(y^{2}+z^{2}\right) d z d y d x \\
& =\rho \int_{-r}^{r} \int_{-\sqrt{r^{2}-x^{2}}}^{\sqrt{r^{2}-x^{2}}}\left(1 y^{2}+\frac{\beta}{12}\right) d y d x \\
& =\rho \frac{\pi / r^{2}}{12}\left(3 r^{2}+l^{2}\right)
\end{aligned}
$$

The theorem of transformation.

Aim: A generalisation of the (one dimensional) rule of substitution

$$
\int_{\varphi(a)}^{\varphi(b)} f(x) d x=\int_{a}^{b} f(\varphi(t)) \varphi^{\prime}(t) d t
$$

Theorem: (Theorem of transformation) Let $\Phi: U \rightarrow \mathbb{R}^{n}, U \subset \mathbb{R}^{n}$ be open and a \mathcal{C}^{1}-map. Let $D \subset U$ be a compact, measurable set such that Φ is a
\mathcal{C}^{1}-diffeomorphisms on D^{0}. Then $\Phi(D)$ is compact and measurable and for any continuous function $f: \Phi(D) \rightarrow \mathbb{R}$ the rule of transformation

$$
\int_{\Phi(D)} f(\mathrm{x}) d \mathrm{x}=\int_{D} f(\Phi(\mathrm{u}))|\operatorname{det} \mathrm{J} \Phi(\mathrm{u})| d \mathrm{u}
$$

holds.
Remark: Note that the rule of transformation requires the bijectivety of Φ only on the inertior D^{0} of D - not on the boundary ∂D !

Example.

Calculate the center of mass of a homogeneous spherical octant

$$
V=\left\{(x, y, z,)^{T} \mid x^{2}+y^{2}+z^{2} \leq 1 \text { und } x, y, z \geq 0\right\}
$$

It is easier to calculate the center of mass using spherical coordinates Kugelkoordinaten:

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
r \cos \varphi \cos \psi \\
r \sin \varphi \cos \psi \\
r \sin \psi
\end{array}\right)=\Phi(r, \varphi, \psi)
$$

The transformation is defined on \mathbb{R}^{3} and with

$$
D=[0,1] \times\left[0, \frac{\pi}{2}\right] \times\left[0, \frac{\pi}{2}\right]
$$

we have $\Phi(D)=V$. It is Φ on D^{0} a \mathcal{C}^{1}-diffeomorphisms with

$$
\operatorname{det} J \Phi(r, \varphi, \psi)=r^{2} \cos \psi
$$

Continuation of the example.

According to the theorem of transformation it follows

$$
\operatorname{vol}(V)=\int_{V} d x=\int_{0}^{1} \int_{0}^{\pi / 2} \int_{0}^{\pi / 2} r^{2} \cos \psi d \psi d \varphi d r=\frac{\pi}{6}
$$

and

$$
\begin{aligned}
\operatorname{vol}(V) \cdot x_{s} & =\int_{V} x d x=\int_{0}^{1} \int_{0}^{\pi / 2} \int_{0}^{\pi / 2}(r \cos \varphi \cos \psi) r^{2} \cos \psi d \psi d \varphi d r \\
& =\int_{0}^{1} r^{3} d r \cdot \int_{0}^{\pi / 2} \cos \varphi d \varphi \cdot \int_{0}^{\pi / 2} \cos ^{2} \psi d \psi=\frac{\pi}{16}
\end{aligned}
$$

The it follows $x_{s}=\frac{3}{8}$.
In Analogy we calculate $y_{s}=z_{s}=\frac{3}{8}$.

The Theorem of Steiner.

Theorem: (Theorem of Steiner) For the moment of inertia of a homogeneous solid K with total mass m with respect to a given axis of rotation A we have

$$
\Theta_{A}=m d^{2}+\Theta_{S}
$$

S is the axis through to center of mass of the solid K parallel to the axis A and d the distance of the center of mass x_{s} from the axis A.

Idea of the proof: Set $\mathrm{x}:=\Phi(\mathrm{u})=\mathrm{x}_{s}+\mathrm{u}$. Then with the unit vector a in direction of the axis A

$$
\begin{aligned}
\Theta_{A} & =\rho \int_{K}\left(\langle x, x\rangle-\langle x, a\rangle^{2}\right) d x \\
& =\rho \int_{D}\left(\left\langle x_{s}+u, x_{s}+u\right\rangle-\left\langle x_{s}+u, a\right\rangle^{2}\right) d x
\end{aligned}
$$

where

$$
D:=\left\{x-x_{s} \mid x \in K\right\}
$$

Chapter 3. Integration over general areas

3.2 Line integrals

We already had a defintion of a line integral of a scalar field for a piecewise \mathcal{C}^{1}-curve $\mathrm{c}:[a, b] \rightarrow D, D \subset \mathbb{R}^{n}$, and a continuous scalar function $f: D \rightarrow \mathbb{R}$

$$
\int_{c} f(x) d s:=\int_{a}^{b} f(c(t))\|\dot{c}(t)\| d t
$$

where $\|\cdot\|$ denotes the Euklidian norm.
Generalisation: Line integrals of vector valued functions, i.e.

$$
\int_{c} f(x) d x:=?
$$

Application: A point mass is moving along $c(t)$ in a force field $f(x)$. Question: How much physical work has to be done along the curve?

Line integral on vector fields.

Definition: For a continuous vector field $\mathrm{f}: D \rightarrow \mathbb{R}^{n}, D \subset \mathbb{R}^{n}$ open, and a piecewise \mathcal{C}^{1}-curve $\mathrm{c}:[a, b] \rightarrow D$ we define the line integral on vector fields by

$$
\int_{c} \mathrm{f}(\mathrm{x}) \mathrm{dx}:=\int_{a}^{b}\langle\mathrm{f}(\mathrm{c}(t), \dot{\mathrm{c}}(t)\rangle d t
$$

Derivation: Approximate the curve be piecewise linear line segments with corners $\mathrm{c}\left(t_{i}\right)$, where

$$
Z=\left\{a=t_{0}<t_{1}<\cdots<t_{m}=b\right\}
$$

is a partition of the interval $[a, b]$.
Then the workload along the curve $c(t)$ in the force field $f(x)$ is approximately given by :

$$
A \approx \sum_{i=0}^{m-1}\left\langle\mathrm{f}\left(\mathrm{c}\left(t_{i}\right)\right), \mathrm{c}\left(t_{i+1}\right)-\mathrm{c}\left(t_{i}\right)\right\rangle
$$

Contiuation of the derivation.

Thus:

$$
\begin{aligned}
A & \approx \sum_{j=1}^{n} \sum_{i=0}^{m-1} f_{j}\left(c\left(t_{i}\right)\right)\left(c_{j}\left(t_{i+1}\right)-c_{j}\left(t_{i}\right)\right) \\
& =\sum_{j=1}^{n} \sum_{i=0}^{m-1} f_{j}\left(c\left(t_{i}\right)\right) \dot{c}_{j}\left(\tau_{i j}\right)\left(t_{i+1}-t_{i}\right)
\end{aligned}
$$

For a sequence of partitions Z with $\|Z\| \rightarrow 0$ the left side converges to the above defined line integral on vector fields.

Remarks: For a closed curve $c(t)$, i.e. $c(a)=c(b)$, we use the notation

$$
\oint_{c} f(x) d x
$$

