## Analysis III for engineering study programs

Ingenuin Gasser

Departments of Mathematics Universität Hamburg

Technische Universität Hamburg–Harburg Wintersemester 2021/22

based on slides of Prof. Jens Struckmeier from Wintersemster 2020/21

イロト イロト イヨト イヨト

# Content of the course Analysis III.

- Partial derivatives, differential operators.
- Vector fields, total differential, directional derivative.
- Mean value theorems, Taylor's theorem.
- Extrem values, implicit function theorem.
- Implicit rapresentation of curves and surfces.
- Extrem values under equality constraints.
- Wewton-method, non-linear equations and the least squares method.
- Multiple integrals, Fubini's theorem, transformation theorem.
- Potentials, Green's theorem, Gauß's theorem.
- Oreen's formulas, Stokes's theorem.

ヘロト ヘヨト ヘヨト ヘヨト

# Chapter 1. Multi variable differential calculus

#### 1.1 Partial derivatives

Let

 $f(x_1,\ldots,x_n)$  a scalar function depending *n* variables

**Example:** The constitutive law of an ideal gas pV = RT.

Each of the 3 quantities p (pressure), V (volume) and T (emperature) can be expressed as a function of the others (R is the gas constant)

$$p = p(V, t) = \frac{RT}{V}$$
$$V = V(p, T) = \frac{RT}{p}$$
$$T = T(p, V) = \frac{pV}{R}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

**Definition:** Let  $D \subset \mathbb{R}^n$  be open,  $f : D \to \mathbb{R}$ ,  $x^0 \in D$ .

• f is called partially differentiable in  $x^0$  with respect to  $x_i$  if the limit

$$\begin{aligned} \frac{\partial f}{\partial x_i}(x^0) &:= \lim_{t \to 0} \frac{f(x^0 + te_i) - f(x^0)}{t} \\ &= \lim_{t \to 0} \frac{f(x_1^0, \dots, x_i^0 + t, \dots, x_n^0) - f(x_1^0, \dots, x_i^0, \dots, x_n^0)}{t} \end{aligned}$$

exists. e<sub>i</sub> denotes the *i*-th unit vector. The limit is called partial derivative of f with respect to  $x_i$  at  $x^0$ .

If at every point x<sup>0</sup> the partial derivatives with respect to every variable x<sub>i</sub>, i = 1,..., n exist and if the partial derivatives are continuous functions then we call f continuous partial differentiable or a C<sup>1</sup>-function.

イロト イポト イヨト イヨト 二日

Consider the function

$$f(x_1, x_2) = x_1^2 + x_2^2$$

At any point  $x^0\in\mathbb{R}^2$  there exist both partial derivatives and both partial derivatives are continuous:

$$\frac{\partial f}{\partial x_1}(x^0) = 2x_1, \qquad \frac{\partial f}{\partial x_2}(x^0) = 2x_2$$

Thus f is a  $C^1$ -function.

• The function

$$f(x_1, x_2) = x_1 + |x_2|$$

at  $x^0 = (0,0)^T$  is partial differentiable with respect to  $x_1$ , but the partial derivative with respect to  $x_2$  does **not** exist!

< 口 > < 同 > < 三 > < 三 > < □ > <

## An engineering example.

The acoustic pressure of a one dimensional acoustic wave is given by

$$p(x,t) = A\sin(\alpha x - \omega t)$$

The partial derivative

$$\frac{\partial p}{\partial x} = \alpha A \cos(\alpha x - \omega t)$$

describes at a given time t the spacial rate of change of the pressure. The partial derivative

$$\frac{\partial p}{\partial t} = -\omega A \cos(\alpha x - \omega t)$$

describes for a fixed position x the temporal rate of change of the acoustic pressure.

イロト イヨト イヨト

# Rules for differentiation

• Let f, g be differentiable with respect to  $x_i$  and  $\alpha, \beta \in \mathbb{R}$ , then we have the rules

$$\frac{\partial}{\partial x_i} \left( \alpha f(\mathbf{x}) + \beta g(\mathbf{x}) \right) = \alpha \frac{\partial f}{\partial x_i}(\mathbf{x}) + \beta \frac{\partial g}{\partial x_i}(\mathbf{x})$$
$$\frac{\partial}{\partial x_i} \left( f(\mathbf{x}) \cdot g(\mathbf{x}) \right) = \frac{\partial f}{\partial x_i}(\mathbf{x}) \cdot g(\mathbf{x}) + f(\mathbf{x}) \cdot \frac{\partial g}{\partial x_i}(\mathbf{x})$$
$$\frac{\partial}{\partial x_i} \left( \frac{f(\mathbf{x})}{g(\mathbf{x})} \right) = \frac{\frac{\partial f}{\partial x_i}(\mathbf{x}) \cdot g(\mathbf{x}) - f(\mathbf{x}) \cdot \frac{\partial g}{\partial x_i}(\mathbf{x})}{g(\mathbf{x})^2} \quad \text{for } g(\mathbf{x}) \neq 0$$

• An alternative notation for the partial derivatives of f with respect to  $x_i$  at  $x^0$  is given by

$$D_i f(x^0)$$
 oder  $f_{x_i}(x^0)$ 

<ロ> <四> <四> <四> <三</p>

### Gradient and nabla-operator.

**Definition:** Let  $D \subset \mathbb{R}^n$  be an open set and  $f : D \to \mathbb{R}$  partial differentiable.

• We denote the row vector

grad 
$$f(x^0) := \left(\frac{\partial f}{\partial x_1}(x^0), \dots, \frac{\partial f}{\partial x_n}(x^0)\right)$$

as gradient of f at  $x^0$ .

• We denote the symbolic vector

$$\nabla := \left(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}\right)^T$$

as nabla-operator.

Thus we obtain the column vector

$$abla f(\mathsf{x}^0) := \left( \frac{\partial f}{\partial x_1}(\mathsf{x}^0), \dots, \frac{\partial f}{\partial x_n}(\mathsf{x}^0) \right)^T$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

# More rules on differentiation.

Let f and g be partial differentiable. Then the following rules on differentiation hold true:

$$grad (\alpha f + \beta g) = \alpha \cdot grad f + \beta \cdot grad g$$

$$grad (f \cdot g) = g \cdot grad f + f \cdot grad g$$

$$grad \left(\frac{f}{g}\right) = \frac{1}{g^2} (g \cdot grad f - f \cdot grad g), \quad g \neq 0$$

**Examples:** 

• Let 
$$f(x, y) = e^x \cdot \sin y$$
. Then:  
 $\operatorname{grad} f(x, y) = (e^x \cdot \sin y, e^x \cdot \cos y) = e^x(\sin y, \cos y)$   
• For  $r(x) := ||x||_2 = \sqrt{x_1^2 + \dots + x_n^2}$  we have  
 $\operatorname{grad} r(x) = \frac{x}{r(x)} = \frac{x}{||x||_2}$  für  $x \neq 0$ ,

where  $x = (x_1, \ldots, x_n)$  denotes a row vector.

<ロ> <四> <四> <四> <三</p>

# Partial differentiability does not imply continuity.

**Observation:** A partial differentiable function (with respect to all coordinates) is not necessarily a continuous function.

**Example:** Consider the function  $f : \mathbb{R}^2 \to \mathbb{R}$  defined as

$$f(x,y) := \begin{cases} \frac{x \cdot y}{(x^2 + y^2)^2} & : & \text{for } (x,y) \neq 0 \\ 0 & : & \text{for } (x,y) = 0 \end{cases}$$

The function is partial differntiable on the **entire**  $\mathbb{R}^2$  and we have

$$f_{x}(0,0) = f_{y}(0,0) = 0$$

$$\frac{\partial f}{\partial x}(x,y) = \frac{y}{(x^{2}+y^{2})^{2}} - 4\frac{x^{2}y}{(x^{2}+y^{2})^{3}}, \quad (x,y) \neq (0,0)$$

$$\frac{\partial f}{\partial y}(x,y) = \frac{x}{(x^{2}+y^{2})^{2}} - 4\frac{xy^{2}}{(x^{2}+y^{2})^{3}}, \quad (x,y) \neq (0,0)$$

# Example (continuation).

We calculate the partial derivatives at the origin (0,0):

$$\frac{\partial f}{\partial x}(0,0) = \lim_{t \to 0} \frac{f(t,0) - f(0,0)}{t} = \frac{\frac{t \cdot 0}{(t^2 + 0^2)^2} - 0}{t} = 0$$

$$\frac{\partial f}{\partial y}(0,0) = \lim_{t \to 0} \frac{f(0,t) - f(0,0)}{t} = \frac{\frac{0 \cdot t}{(0^2 + t^2)^2} - 0}{t} = 0$$

But: At (0,0) the function is **not** continuous since

$$\lim_{n \to \infty} f\left(\frac{1}{n}, \frac{1}{n}\right) = \frac{\frac{1}{n} \cdot \frac{1}{n}}{\left(\frac{1}{n} \cdot \frac{1}{n} + \frac{1}{n} \cdot \frac{1}{n}\right)^2} = \frac{\frac{1}{n^2}}{\frac{4}{n^4}} = \frac{n^2}{4} \to \infty$$

and thus we have

$$\lim_{(x,y)\to(0,0)} f(x,y) \neq f(0,0) = 0$$

Ingenuin Gasser (Mathematik, UniHH)

3

<ロト < 回ト < 回ト < 回ト < 回ト -

To guarantee the continuity of a partial differentiable function we need additional conditions on f.

**Theorem:** Let  $D \subset \mathbb{R}^n$  be an open set. Let  $f : D \to \mathbb{R}$  be partial differentiable in a neighborhood of  $x^0 \in D$  and let the partial derivatives  $\frac{\partial f}{\partial x_i}$ ,  $i = 1, \ldots, n$ , be bounded. Then f is continuous in  $x^0$ .

**Attention:** In the previous example the partial derivatives are not bounded in a neighborhood of (0,0) since

$$\frac{\partial f}{\partial x}(x,y) = \frac{y}{(x^2 + y^2)^2} - 4\frac{x^2y}{(x^2 + y^2)^3} \quad \text{für } (x,y) \neq (0,0)$$

#### Proof of the theorem.

For  $||x - x^0||_{\infty} < \varepsilon$ ,  $\varepsilon > 0$  sufficiently small we write:  $f(x) - f(x^0) = (f(x_1, \dots, x_{n-1}, x_n) - f(x_1, \dots, x_{n-1}, x_n^0))$  $+ (f(x_1, \dots, x_{n-1}, x_n^0) - f(x_1, \dots, x_{n-2}, x_{n-1}^0, x_n^0))$ 

+ 
$$(f(x_1, x_2^0, \dots, x_n^0) - f(x_1^0, \dots, x_n^0))$$

For any difference on the right hand side we consider f as a function in one single variable:

$$g(x_n) - g(x_n^0) := f(x_1, \dots, x_{n-1}, x_n) - f(x_1, \dots, x_{n-1}, x_n^0)$$

Since f is partial differentiable g is differentiable and we can apply the mean value theorem on g:

$$g(x_n) - g(x_n^0) = g'(\xi_n)(x_n - x_n^0)$$

for an appropriate  $\xi_n$  between  $x_n$  and  $x_n^0$ .

Ingenuin Gasser (Mathematik, UniHH)

# Proof of the theorem (continuation).

Applying the mean value theorem to every term in the right hand side we obtain

$$\begin{aligned} f(\mathbf{x}) - f(\mathbf{x}^{0}) &= \frac{\partial f}{\partial x_{n}}(x_{1}, \dots, x_{n-1}, \xi_{n}) \cdot (x_{n} - x_{n}^{0}) \\ &+ \frac{\partial f}{\partial x_{n-1}}(x_{1}, \dots, x_{n-2}, \xi_{n-1}, x_{n}^{0}) \cdot (x_{n-1} - x_{n-1}^{0}) \end{aligned}$$

$$+ \quad \frac{\partial f}{\partial x_1}(\xi_1, x_2^0, \dots, x_n^0) \cdot (x_1 - x_1^0)$$

Using the boundedness of the partial derivatives

$$|f(x) - f(x^0)| \le C_1 |x_1 - x_1^0| + \dots + C_n |x_n - x_n^0|$$

for  $\|\mathbf{x} - \mathbf{x}^0\|_{\infty} < \varepsilon$ , we obtain the continuity of f at  $\mathbf{x}^0$  since

$$f(\mathbf{x}) \to f(\mathbf{x}^0)$$
 für  $\|\mathbf{x} - \mathbf{x}^0\|_{\infty} \to 0$ 

## Higher order derivatives.

**Definition:** Let f be a scalar function and partial differentiable on an open set  $D \subset \mathbb{R}^n$ . If the partial derivatives are differentiable we obtain (by differentiating) the partial derivatives of second order of f with

$$\frac{\partial^2 f}{\partial x_j \partial x_i} := \frac{\partial}{\partial x_j} \left( \frac{\partial f}{\partial x_i} \right)$$

**Example:** Second order partial derivatives of a function f(x, y):

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left( \frac{\partial f}{\partial x} \right), \quad \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left( \frac{\partial f}{\partial x} \right), \quad \frac{\partial^2 f}{\partial x \partial y}, \quad \frac{\partial^2 f}{\partial y^2}$$

Let  $i_1, \ldots, i_k \in \{1, \ldots, n\}$ . Then we define recursively

$$\frac{\partial^k f}{\partial x_{i_k} \partial x_{i_{k-1}} \dots \partial x_{i_1}} := \frac{\partial}{\partial x_{i_k}} \left( \frac{\partial^{k-1} f}{\partial x_{i_{k-1}} \partial x_{i_{k-2}} \dots \partial x_{i_1}} \right)$$

イロト 不得 トイヨト イヨト 二日

# Higher order derivatives.

**Definition:** The function f is called k-times partial differentiable, if all derivatives of order k,

 $\frac{\partial^k f}{\partial x_{i_k} \partial x_{i_{k-1}} \dots \partial x_{i_1}} \quad \text{for all } i_1, \dots, i_k \in \{1, \dots, n\},$ 

exist on D.

Alternative notation:

$$\frac{\partial^k f}{\partial x_{i_k} \partial x_{i_{k-1}} \dots \partial x_{i_1}} = D_{i_k} D_{i_{k-1}} \dots D_{i_1} f = f_{x_{i_1} \dots x_{i_k}}$$

If all the derivatives of k-th order are continuous the function f is called k-times continuous partial differentiable or called a  $C^k$ -function on D. Continuous functions f are called  $C^0$ -functions.

**Example:** For the function 
$$f(x_1, \ldots, x_n) = \prod_{i=1}^n x_i^i$$
 we have  $\frac{\partial^n f}{\partial x_n \ldots \partial x_1} = ?$ 

イロト イポト イヨト イヨト 二日

#### Partial derivaratives are not arbitrarely exchangeable.

ATTENTION: The order how to execute partial derivatives is in general not arbitrarely exchangeable!

Example: For the function

$$f(x,y) := \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2} & : \text{ for } (x,y) \neq (0,0) \\ 0 & : \text{ for } (x,y) = (0,0) \end{cases}$$

we calculate

$$f_{xy}(0,0) = \frac{\partial}{\partial y} \left( \frac{\partial f}{\partial x}(0,0) \right) = -1$$
$$f_{yx}(0,0) = \frac{\partial}{\partial x} \left( \frac{\partial f}{\partial y}(0,0) \right) = +1$$

i.e.  $f_{xy}(0,0) \neq f_{yx}(0,0)$ .

**Satz:** Let  $D \subset \mathbb{R}^n$  be open and let  $f : D \to \mathbb{R}$  be a  $\mathcal{C}^2$ -function. Then it holds

$$\frac{\partial^2 f}{\partial x_j \partial x_i}(x_1,\ldots,x_n) = \frac{\partial^2 f}{\partial x_i \partial x_j}(x_1,\ldots,x_n)$$

for all  $i, j \in \{1, \ldots, n\}$ .

#### Idea of the proof:

Apply the men value theorem twice.

#### **Conclusion:**

If f is a  $C^k$ -function, then we can exchange the differentiation in order to calculate partial derivatives up to order k arbitrarely!

イロト 不得 トイラト イラト 二日

## Example for the exchangeability of partial derivatives.

Calculate the partial derivative of third order  $f_{xyz}$  for the function

$$f(x, y, z) = y^2 z \sin(x^3) + (\cosh y + 17e^{x^2})z^2$$

The order of execution is exchangealbe since  $f \in C^3$ .

• Differentiate first with respect to z:

$$\frac{\partial f}{\partial z} = y^2 \sin(x^3) + 2z(\cosh y + 17e^{x^2})$$

• Differentiate then  $f_z$  with respect to x (then  $\cosh y$  disappears):

$$f_{zx} = \frac{\partial}{\partial x} \left( y^2 \sin(x^3) + 2z(\cosh y + 17e^{x^2}) \right)$$
$$= 3x^2 y^2 \cos(x^3) + 68xze^{x^2}$$

• For the partial derivative of  $f_{zx}$  with respect to y we obtain

$$f_{xyz} = 6x^2y\cos(x^3)$$

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

## The Laplace operator.

The Laplace-operator or Laplacian is defined as

$$\Delta := \sum_{i=1}^{n} \frac{\partial^2}{\partial x_i^2}$$

For a scalar function  $u(x) = u(x_1, \ldots, x_n)$  we have

$$\Delta u = \sum_{i=1}^{n} \frac{\partial^2 u}{\partial x_i^2} = u_{x_1 x_1} + \dots + u_{x_n x_n}$$

Examples of important partial differential equations of second order (i.e. equations containing partial derivatives up to order two):

 $\Delta u - \frac{1}{c^2} u_{tt} = 0 \quad (\text{wave equation})$   $\Delta u - \frac{1}{k} u_t = 0 \quad (\text{heat equation})$   $\Delta u = 0 \quad (\text{Laplace-equation or equation for the potential})$   $(\text{Ingenuin Gasser (Mathematik, UniHH)} \quad (\text{Analysis III for students in engineering} \qquad 20/54$ 

## Vector valued functions.

**Definition:** Let  $D \subset \mathbb{R}^n$  be open and let  $f : D \to \mathbb{R}^m$  be a vector valued function.

The function f is called partial differentiable on  $x^0 \in D$ , if for all i = 1, ..., n the limits

$$\frac{\partial f}{\partial x_i}(x^0) = \lim_{t \to 0} \frac{f(x^0 + te_i) - f(x^0)}{t}$$

exist. The calculation is done componentwise

$$\frac{\partial f}{\partial x_i}(x^0) = \begin{pmatrix} \frac{\partial f_1}{\partial x_i} \\ \vdots \\ \frac{\partial f_m}{\partial x_i} \end{pmatrix} \quad \text{for } i = 1, \dots, n$$

イロト イポト イヨト イヨト 三日

# Vectorfields.

**Definition:** If m = n the function  $f: D \to \mathbb{R}^n$  is called a vectorfield on D. If every (coordinate-) function  $f_i(x)$  of  $f = (f_1, \ldots, f_n)^T$  is a  $\mathcal{C}^k$ -function, then f is called  $\mathcal{C}^k$ -vectorfield.

#### Examples of vectorfields:

- velocity fields of liquids or gases;
- elektromagnetic fields;
- temperature gradients in solid states.

**Definition:** Let  $f : D \to \mathbb{R}^n$  be a partial differentiable vector field. The divergence on  $x \in D$  is defined as

$$\operatorname{div} f(x^0) := \sum_{i=1}^n \frac{\partial f_i}{\partial x_i}(x^0)$$

or

$$\operatorname{div} f(x) = \nabla^{T} f(x) = (\nabla, f(x))$$

3

# Rules of computation and the rotation.

The following rules hold true:

$$\operatorname{div} (\alpha f + \beta g) = \alpha \operatorname{div} f + \beta \operatorname{div} g \quad \text{for } f, g : D \to \mathbb{R}^n$$

 $\operatorname{div} \left( \varphi \cdot \mathsf{f} \right) \;\; = \;\; \left( \nabla \varphi, \mathsf{f} \right) + \varphi \operatorname{div} \mathsf{f} \quad \text{for } \varphi : D \to \mathbb{R}, \mathsf{f} : D \to \mathbb{R}^n$ 

**Remark:** Let  $f : D \to \mathbb{R}$  be a  $C^2$ -function, then for the Laplacian we have

$$\Delta f = \operatorname{div} (\nabla f)$$

**Definition:** Let  $D \subset \mathbb{R}^3$  open and  $f : D \to \mathbb{R}^3$  a partial differentiable vector field. We define the rotation as

$$\operatorname{rot} f(x^{0}) := \left( \frac{\partial f_{3}}{\partial x_{2}} - \frac{\partial f_{2}}{\partial x_{3}}, \frac{\partial f_{1}}{\partial x_{3}} - \frac{\partial f_{3}}{\partial x_{1}}, \frac{\partial f_{2}}{\partial x_{1}} - \frac{\partial f_{1}}{\partial x_{2}} \right)^{T} \Big|_{x^{0}}$$

イロト イポト イヨト イヨト 二日

#### Alternative notations and additional rules.

$$\operatorname{rot} f(x) = \nabla \times f(x) = \begin{vmatrix} e_1 & e_2 & e_3 \\ \frac{\partial}{\partial x_1} & \frac{\partial}{\partial x_2} & \frac{\partial}{\partial x_3} \\ f_1 & f_2 & f_3 \end{vmatrix}$$

Remark: The following rules hold true:

$$\operatorname{rot} (\alpha \, \mathbf{f} + \beta \, \mathbf{g}) = \alpha \operatorname{rot} \mathbf{f} + \beta \operatorname{rot} \mathbf{g}$$
$$\operatorname{rot} (\varphi \cdot \mathbf{f}) = (\nabla \varphi) \times \mathbf{f} + \varphi \operatorname{rot} \mathbf{f}$$

**Remark:** Let  $D \subset \mathbb{R}^3$  and  $\varphi : D \to \mathbb{R}$  be a  $\mathcal{C}^2$ -function. Then

$$\mathsf{rot}\,(
ablaarphi)=\mathsf{0}\,,$$

using the exchangeability theorem of Schwarz. I.e. gradient fileds are rotation-free everywhere.

<ロト < 回ト < 回ト < 回ト < 回ト = 三回</p>

#### 1.2 The total differential

**Definition:** Let  $D \subset \mathbb{R}^n$  open,  $x^0 \in D$  and  $f : D \to \mathbb{R}^m$ . The function f(x) is called differentiable in  $x^0$  (or totally differentiable in  $x_0$ ), if there exists a linear map

$$|(x,x^0) := A \cdot (x-x^0)$$

with a matrix  $\mathsf{A} \in \mathbb{R}^{m \times n}$  which satisfies the following approximation property

$$f(x) = f(x^0) + A \cdot (x - x^0) + o(\|x - x^0\|)$$

i.e.

$$\lim_{x \to x^0} \frac{f(x) - f(x^0) - A \cdot (x - x^0)}{\|x - x^0\|} = 0.$$

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

**Notation:** We call the linear map I the differential or the total differential of f(x) at the point  $x^0$ . We denote I by  $df(x^0)$ .

The related matrix A is called Jacobi–matrix of f(x) at the point  $x^0$  and is denoted by  $Jf(x^0)$  (or  $Df(x^0)$  or  $f'(x^0)$ ).

**Remark:** For m = n = 1 we obtain the well known relation

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + o(|x - x_0|)$$

for the derivative  $f'(x_0)$  at the point  $x_0$ .

**Remark:** In case of a scalar function (m = 1) the matrix A = a is a row vextor and  $a(x - x^0)$  a scalar product  $\langle a^T, x - x^0 \rangle$ .

<□> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

# Total and partial differentiability.

**Theorem:** Let  $f : D \to \mathbb{R}^m$ ,  $x^0 \in D \subset \mathbb{R}^n$ , D open.

- a) If f(x) is differentiable in  $x^0$ , then f(x) is continuous in  $x^0$ .
- b) If f(x) is differentiable in  $x^0$ , then the (total) differential and thus the Jacobi-matrix are uniquely determined and we have

$$\mathsf{J} \mathsf{f}(\mathsf{x}^{0}) = \begin{pmatrix} \frac{\partial f_{1}}{\partial x_{1}}(\mathsf{x}^{0}) & \dots & \frac{\partial f_{1}}{\partial x_{n}}(\mathsf{x}^{0}) \\ \vdots & & \vdots \\ \frac{\partial f_{m}}{\partial x_{1}}(\mathsf{x}^{0}) & \dots & \frac{\partial f_{m}}{\partial x_{n}}(\mathsf{x}^{0}) \end{pmatrix} = \begin{pmatrix} Df_{1}(\mathsf{x}^{0}) \\ \vdots \\ Df_{m}(\mathsf{x}^{0}) \end{pmatrix}$$

c) If f(x) is a  $C^1$ -function on D, then f(x) is differentiable on D.

イロト 不得 トイヨト イヨト 二日

# Proof of a).

If f is differentiable in  $x^0$ , then by definition

$$\lim_{x \to x^0} \frac{f(x) - f(x^0) - A \cdot (x - x^0)}{\|x - x^0\|} = 0$$

Thus we conclude

$$\lim_{x\to x^0} \|f(x) - f(x^0) - A \cdot (x - x^0)\| = 0$$

and we obtain

$$\begin{split} \|f(x) - f(x^0)\| &\leq \|f(x) - f(x^0) - A \cdot (x - x^0)\| + \|A \cdot (x - x^0)\| \\ &\to 0 \quad \text{ as } x \to x^0 \end{split}$$

Therefore the function f is continuous at  $x^0$ .

(日) (图) (문) (문) (문)

# Proof of b).

Let  $x = x^0 + te_i$ ,  $|t| < \varepsilon$ ,  $i \in \{1, ..., n\}$ . Since f in differentiable at  $x^0$ , we have

$$\lim_{x \to x^0} \frac{f(x) - f(x^0) - A \cdot (x - x^0)}{\|x - x^0\|_{\infty}} = 0$$

We write

$$\frac{f(x) - f(x^{0}) - A \cdot (x - x^{0})}{\|x - x^{0}\|_{\infty}} = \frac{f(x^{0} + te_{i}) - f(x^{0})}{|t|} - \frac{tAe_{i}}{|t|}$$
$$= \frac{t}{|t|} \cdot \left(\frac{f(x^{0} + te_{i}) - f(x^{0})}{t} - Ae_{i}\right)$$
$$\to 0 \quad \text{as } t \to 0$$

Thus

$$\lim_{t \to 0} \frac{f(x^0 + te_i) - f(x^0)}{t} = Ae_i \qquad i = 1, \dots, n$$

3

# Examples.

• Consider the scalar function  $f(x_1, x_2) = x_1 e^{2x_2}$ . Then the Jacobian is given by:

$$Jf(x_1, x_2) = Df(x_1, x_2) = e^{2x_2}(1, 2x_1)$$

 $\bullet$  Consider the function  $f:\mathbb{R}^3\to\mathbb{R}^2$  defined by

$$f(x_1, x_2, x_3) = \begin{pmatrix} x_1 x_2 x_3 \\ \sin(x_1 + 2x_2 + 3x_3) \end{pmatrix}$$

The Jacobian is given by

$$\mathsf{Jf}(x_1, x_2, x_3) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \frac{\partial f_1}{\partial x_3} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \frac{\partial f_2}{\partial x_3} \end{pmatrix} = \begin{pmatrix} x_2 x_3 & x_1 x_3 & x_1 x_2 \\ \cos(s) & 2\cos(s) & 3\cos(s) \end{pmatrix}$$

with  $s = x_1 + 2x_2 + 3x_3$ .

イロト 不得 トイラト イラト 二日

#### Further examples.

$$\frac{\partial f}{\partial x_i} = \langle e_i, Ax \rangle + \langle x, Ae_i \rangle$$
$$= e_i^T Ax + x^T Ae_i$$
$$= x^T (A^T + A)e_i$$

We conclude

$$\mathsf{J}f(\mathsf{x}) = \mathsf{grad}f(\mathsf{x}) = \mathsf{x}^T(\mathsf{A}^T + \mathsf{A})$$

E

イロト イヨト イヨト イヨト

# Rules for the differentiation.

#### Theorem:

a) Linearität: LET f,g :  $D \to \mathbb{R}^m$  be differentiable in  $x^0 \in D$ , D open. Then  $\alpha f(x^0) + \beta g(x^0)$ , and  $\alpha, \beta \in \mathbb{R}$  are differentiable in  $x^0$  and we have

$$d(\alpha f + \beta g)(x^{0}) = \alpha df(x^{0}) + \beta dg(x^{0})$$
$$J(\alpha f + \beta g)(x^{0}) = \alpha Jf(x^{0}) + \beta Jg(x^{0})$$

b) Chain rule: Let  $f: D \to \mathbb{R}^m$  be differentiable in  $x^0 \in D$ , D open. Let  $g: E \to \mathbb{R}^k$  be differentiable in  $y^0 = f(x^0) \in E \subset \mathbb{R}^m$ , E open. Then  $g \circ f$  is differentiable in  $x^0$ .

For the differentials it holds

$$\mathsf{d}(\mathsf{g}\circ\mathsf{f})(\mathsf{x}^0)=\mathsf{d}\mathsf{g}(\mathsf{y}^0)\circ\mathsf{d}\mathsf{f}(\mathsf{x}^0)$$

and analoglously for the Jacobian matrix

$$\mathsf{J}(\mathsf{g}\circ\mathsf{f})(\mathsf{x}^0)=\mathsf{J}\mathsf{g}(\mathsf{y}^0)\cdot\mathsf{J}\mathsf{f}(\mathsf{x}^0)$$

・ロト ・ 四ト ・ ヨト ・ ヨト - ヨ

#### Examples for the chain rule.

Let  $I \subset \mathbb{R}$  be an intervall. Let  $h: I \to \mathbb{R}^n$  be a curve, differentiable in  $t_0 \in I$  with values in  $D \subset \mathbb{R}^n$ , D open. Let  $f: D \to \mathbb{R}$  be a scalar function, differentiable in  $x^0 = h(t_0)$ .

Then the composition

$$(f \circ h)(t) = f(h_1(t), \ldots, h_n(t))$$

is differentiable in  $t_0$  and we have for the derivative:

$$(f \circ h)'(t_0) = Jf(h(t_0)) \cdot Jh(t_0)$$

$$= \operatorname{grad} f(\mathsf{h}(t_0)) \cdot \mathsf{h}'(t_0)$$

$$= \sum_{k=1}^{n} \frac{\partial f}{\partial x_k}(\mathbf{h}(t_0)) \cdot h'_k(t_0)$$

イロト 人間ト イヨト イヨト

#### Directional derivative.

**Definition:** Let  $f : D \to \mathbb{R}$ ,  $D \subset \mathbb{R}^n$  open,  $x^0 \in D$ , and  $v \in \mathbb{R} \setminus \{0\}$  a vector. Then

$$D_{v} f(x^{0}) := \lim_{t \to 0} \frac{f(x^{0} + tv) - f(x^{0})}{t}$$

is called the directional derivative (Gateaux-derivative) of f(x) in the direction of v.

**Example:** Let  $f(x, y) = x^2 + y^2$  and  $v = (1, 1)^T$ . Then the directional derivative in the direction of v is given by:

$$D_{v} f(x, y) = \lim_{t \to 0} \frac{(x+t)^{2} + (y+t)^{2} - x^{2} - y^{2}}{t}$$
$$= \lim_{t \to 0} \frac{2xt + t^{2} + 2yt + t^{2}}{t}$$
$$= 2(x+y)$$

#### Remarks.

 For v = e<sub>i</sub> the directional derivative in the direction of v is given by the partial derivative with respect to x<sub>i</sub>:

$$D_{v} f(x^{0}) = \frac{\partial f}{\partial x_{i}}(x^{0})$$

- If v is a unit vector, i.e. ||v|| = 1, then the directional derivative D<sub>v</sub> f(x<sup>0</sup>) describes the slope of f(x) in the direction of v.
- If f(x) is differentiable in x<sup>0</sup>, then all directional derivatives of f(x) in x<sup>0</sup> exist. With h(t) = x<sup>0</sup> + tv we have

$$D_{\mathsf{v}} f(\mathsf{x}^0) = rac{d}{dt} (f \circ \mathsf{h})|_{t=0} = \operatorname{grad} f(\mathsf{x}^0) \cdot \mathsf{v}$$

This follows directely applying the chain rule.

イロト イポト イヨト イヨト 二日

## Properties of the gradient.

**Theorem:** Let  $D \subset \mathbb{R}^n$  open,  $f : D \to \mathbb{R}$  differentiable in  $x^0 \in D$ . Then we have

a) The gradient vector grad  $f(\mathsf{x}^0) \in \mathbb{R}^n$  is orthogonal in the level set

$$N_{x^0} := \{ x \in D \mid f(x) = f(x^0) \}$$

In the case of n = 2 we call the level sets contour lines, in n = 3 we call the level sets equipotential surfaces.

The gradient grad f(x<sup>0</sup>) gives the direction of the steepest slope of f(x) in x<sup>0</sup>.

#### Idea of the proof:

- a) application of the chain rule.
- b) for an arbitrary direction v we conclude with the Cauchy–Schwarz inequality

$$|D_{v} f(x^{0})| = |(\operatorname{grad} f(x^{0}), v)| \le ||\operatorname{grad} f(x^{0})||_{2}$$

Equality is obtained for  $v = \text{grad } f(x^0) / \|\text{grad } f(x^0)\|_2$ .

# Curvilinear coordinates.

**Definition:** Let  $U, V \subset \mathbb{R}^n$  be open and  $\Phi : U \to V$  be a  $\mathcal{C}^1$ -map, for which the Jacobimatrix  $J\Phi(u^0)$  is regular (invertible) at every  $u^0 \in U$ . In addition there exists the inverse map  $\Phi^{-1} : V \to U$  and the inverse map is also a  $\mathcal{C}^1$ -map. Then  $x = \Phi(u)$  defines a coordinate transformation from the coordinates u

Rh Rn

to x.

**Example:** Consider for n = 2 the polar coordinates  $u = (r, \varphi)$  with r > 0 and  $-\pi < \varphi < \pi$  and set



with the cartesian coordinates x = (x, y).



# Calculation of the partial derivatives.

For all  $u \in U$  with  $x = \Phi(u)$  the following relations hold  $\Phi^{-1}(\Phi(u)) = u$  $J \Phi^{-1}(x) \cdot J \Phi(u) = I_n \quad \text{(chain rule)}$   $J \Phi^{-1}(x) = (J \Phi(u))^{-1}$  $\frac{\partial U_{i}}{\partial u_{i}} = \left( \prod_{n} \right)_{i}$ Let  $\tilde{f}: V \to \mathbb{R}$  be a given function. Set Side  $f(\mathbf{u}) := \tilde{f}(\Phi(\mathbf{u})) = \widetilde{f}(\mathbf{x})$ -> gred f. 76 the by using the chain rule we obtain with  $g^{ij} := \frac{\partial \Phi_j}{\partial u}, \qquad \mathsf{G}(\mathsf{u}) := (g^{ij}) = (\mathsf{J} \Phi(\mathsf{u}))^T$ 

#### Notations.

We use the short notation

Analogously we can express the partial derivatives with respect to  $x_i$  by the partial derivatives with respect to  $u_i$ 

$$\frac{\partial}{\partial x_{i}} = \sum_{j=1}^{n} g_{ij} \frac{\partial}{\partial u_{j}} \qquad \forall \chi = \langle j \phi^{-\gamma} \rangle^{\uparrow} \forall_{i}$$
$$(j \phi_{i} \phi^{+})^{-\gamma}$$
$$(g^{ij})^{-1} = \langle j \phi \rangle^{-T} = (j \phi^{-1})^{T}$$

where

$$(g_{ij}) := (g^{ij})^{-1} = (\mathsf{J} \Phi)^{-T} = (\mathsf{J} \Phi^{-1})^T$$

We obtain these relations by applying the chain rule on  $\Phi^{-1}$ .

# Example: polar coordinates.

We consider polar coordinates

. . .

$$\mathbf{x} = \Phi(\mathbf{u}) = \begin{pmatrix} r \cos \varphi \\ r \sin \varphi \end{pmatrix}$$

We calculate  

$$J \Phi(u) = \begin{pmatrix} \cos \varphi & -r \sin \varphi \\ \sin \varphi & r \cos \varphi \end{pmatrix}$$
and thus  

$$(\exists \phi(u))^{-T} = \underbrace{\bigwedge_{p \in [n], p \in [n]}^{n \le p \notin [n], p \in [n]}}_{(n \le p \notin [n], p \in [n], p$$

## Partial derivatives for polar coordinates.

The calculation of the partial derivatives gives

$$\frac{\partial}{\partial x} = \cos \varphi \frac{\partial}{\partial r} - \frac{1}{r} \sin \varphi \frac{\partial}{\partial \varphi}$$
$$\frac{\partial}{\partial y} = \sin \varphi \frac{\partial}{\partial r} + \frac{1}{r} \cos \varphi \frac{\partial}{\partial \varphi}$$

Example: Calculation of the Laplacian-operator in polar coordinates

$$\frac{\partial^2}{\partial x^2} = \cos^2 \varphi \frac{\partial^2}{\partial r^2} - \frac{\sin(2\varphi)}{r} \frac{\partial^2}{\partial r \partial \varphi} + \frac{\sin^2 \varphi}{r^2} \frac{\partial^2}{\partial \varphi^2} + \frac{\sin(2\varphi)}{r^2} \frac{\partial}{\partial \varphi} + \frac{\sin^2 \varphi}{r} \frac{\partial}{\partial r}$$
$$\frac{\partial^2}{\partial y^2} = \sin^2 \varphi \frac{\partial^2}{\partial r^2} + \frac{\sin(2\varphi)}{r} \frac{\partial^2}{\partial r \partial \varphi} + \frac{\cos^2 \varphi}{r^2} \frac{\partial^2}{\partial \varphi^2} - \frac{\sin(2\varphi)}{r^2} \frac{\partial}{\partial \varphi} + \frac{\cos^2 \varphi}{r} \frac{\partial}{\partial r}$$
$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} = \frac{\partial^2}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2}{\partial \varphi^2} + \frac{1}{r} \frac{\partial}{\partial r}$$

Ingenuin Gasser (Mathematik, UniHH)

$$\frac{\partial}{\partial x} = G_{4}(\frac{\partial}{\partial x} - \frac{1}{n} \operatorname{Sm} q) \frac{\partial}{\partial q}$$

$$\frac{\partial}{\partial x^{2}} = \frac{\partial}{\partial x}(\frac{\partial}{\partial x}) = \left(G_{5}(\frac{\partial}{\partial x} - \frac{1}{n} \operatorname{Sm} q) \frac{\partial}{\partial q}\right) \left(G_{5}(\frac{\partial}{\partial x} - \frac{1}{n} \operatorname{Sm} q) \frac{\partial}{\partial q}\right) = G_{5}$$

$$G_{7}(\frac{\partial}{\partial x} + \frac{1}{n^{2}} \operatorname{Sm} q) \frac{\partial}{\partial q} = \frac{1}{n^{2}} \operatorname{Sm} q \frac{\partial}{\partial q} = \frac{1}{n^{2}} \operatorname{Sm} q \frac{\partial}{\partial q} = \frac{1}{n^$$

Example: spherical coordinates.

$$e^{\langle 0,\infty\rangle}, \varphi \in [0,2\pi), \Theta \in [0,\pi]_{U} = \begin{pmatrix} n \\ \varphi \\ \Theta \end{pmatrix}$$
  
Ve consider spherical coordinates  
$$x = \Phi(u) = \begin{pmatrix} r \cos \varphi \cos \theta \\ r \sin \varphi \cos \theta \\ \end{pmatrix}$$

イロト イヨト イヨト

The Jacobian-matrix is given by:

$$J\Phi(u) = \begin{pmatrix} \cos\varphi\cos\theta & -r\sin\varphi\cos\theta & -r\cos\varphi\sin\theta \\ \sin\varphi\cos\theta & r\cos\varphi\cos\theta & -r\sin\varphi\sin\theta \\ \sin\theta & 0 & r\cos\theta \end{pmatrix}$$

 $r\sin\theta$ 

Э

Calculating the partial derivatives gives

$$\frac{\partial}{\partial x} = \cos\varphi\,\cos\theta\,\frac{\partial}{\partial r} - \frac{\sin\varphi}{r\cos\theta}\,\frac{\partial}{\partial\varphi} - \frac{1}{r}\,\cos\varphi\,\sin\theta\,\frac{\partial}{\partial\theta}$$

$$\frac{\partial}{\partial y} = \sin \varphi \, \cos \theta \, \frac{\partial}{\partial r} + \frac{\cos \varphi}{r \cos \theta} \, \frac{\partial}{\partial \varphi} - \frac{1}{r} \, \sin \varphi \, \sin \theta \, \frac{\partial}{\partial \theta}$$

$$\frac{\partial}{\partial z} = \sin \theta \, \frac{\partial}{\partial r} + \frac{1}{r} \cos \theta \, \frac{\partial}{\partial \theta}$$

Example: calculation of the Laplace-operator in spherical coordinates

$$\Delta = \frac{\partial^2}{\partial r^2} + \frac{1}{r^2 \cos^2 \theta} \frac{\partial^2}{\partial \varphi^2} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} + \frac{2}{r} \frac{\partial}{\partial r} - \frac{\tan \theta}{r^2} \frac{\partial}{\partial \theta}$$

イロト 人間ト イヨト イヨト



# Kapitel 1. Multivariate differential calculus

#### 1.3 Mean value theorems and Taylor expansion

**Theorem** (Mean value theorem): Let  $f : D \to \mathbb{R}$  be a scalar differentiable function on an open set  $D \subset \mathbb{R}^n$ . Let  $a, b \in D$  be points in D such that the connecting line segment

$$[a,b] := \{a + t(b-a) \mid t \in [0,1]\} + = 1$$

nx1

イロト イポト イヨト イヨト 二日

lies entirely in D. Then there exits a number  $\theta \in (0,1)$  with

$$f(b) - f(a) = \operatorname{grad} f(a + \theta(b - a)) \cdot (b - a)$$

Proof: We set

$$h(t) := f(\mathsf{a} + t(\mathsf{b} - \mathsf{a}))$$

with the mean value theorem for a single variable and the chain rules we conclude Adimensional mean voting theorem

$$f(b) - f(a) = h(1) - h(0) \stackrel{\checkmark}{=} h'(\theta) \cdot (1 - 0)$$
  
= grad  $f(a + \theta(b - a)) \cdot (b - a)$ 

**Definition:** If the condition  $[a, b] \subset D$  holds true for **all** points  $a, b \in D$ , then the set D is called convex.

Example for the mean value theorem: Given a scalar function

$$f(x,y) := \cos x + \sin y \qquad f: R^2 \to R$$
  
It is  

$$f(0,0) = f(\pi/2,\pi/2) = 1 \qquad \Rightarrow \qquad f(\pi/2,\pi/2) - f(0,0) = 0$$
  
Applying the mean value theorem there exists a  $\theta \in (0,1)$  with  
 $\left(-\frac{f^2}{2}f^2_{-2}\right) \cdot \left(\frac{f^2}{\pi}\right) = \operatorname{grad} f\left(\theta\left(\frac{\pi/2}{\pi/2}\right)\right) \cdot \left(\frac{\pi/2}{\pi/2}\right) = 0$   
Indeed this is true for  $\theta = \frac{1}{2}$ .  
 $\operatorname{grad} f = \left(-\frac{\sin x}{\cos y}\right) = \operatorname{grad} f\left(\frac{\pi}{2}f\left(\frac{\pi}{2}\right)\right) + \left(\frac{\pi}{2}f\left(\frac{\pi}{2}\right)\right) = 0$ 

45 / 54

# Mean value theorem is only true for scalar functions.

**Attention:** The mean value theorem for multivariate functions is only true for scalar functions but in general not for vector-valued functions!

**Examples:** Consider the vector-valued Function  $f: R \rightarrow R^2$   $1 + \Xi$  $f'(f) = \begin{pmatrix} -smt \\ smt \end{pmatrix} \qquad f(t) := \begin{pmatrix} cos t \\ sin t \end{pmatrix}, \qquad t \in [0, \pi/2]$  $\left| f(\pi/2) - f(0) \right| = \left| \begin{pmatrix} 0 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right| = \left| \begin{pmatrix} -1 \\ 1 \end{pmatrix} \right| \ge \frac{1}{\sqrt{2}}$ It is and  $\left| f'\left(\theta \frac{\pi}{2}\right) \cdot \left(\frac{\pi}{2} - 0\right) \right| = \left| \frac{\pi}{2} \left( \begin{array}{c} -\sin(\theta \pi/2) \\ \cos(\theta \pi/2) \end{array} \right) \right| \simeq \frac{\pi}{2}$ 

**BUT:** the vectors on the right hand side have lenght  $\sqrt{2}$  and  $\pi/2$  !

# A mean value estimate for vector-valued functions.

**Theorem:** Let  $f: D \to \mathbb{R}^m$  be differentiable on an open set  $D \subset \mathbb{R}^p$ . Let a, b bei points in D with  $[a, b] \subset D$ . Then there exists a  $\theta \in (0, 1)$  with

$$\|f(b) - f(a)\|_2 \leq \|Jf(a + \theta(b - a)) \cdot (b - a)\|_2$$

**Idea of the proof:** Application of the mean value theorem to the scalar function g(x) definid as

$$g(x) := (f(b) - f(a))^T f(x) \qquad (\text{scalar product!})$$

Remark: Another (weaker) for of the mean value estimate is

$$\|\mathsf{f}(\mathsf{b}) - \mathsf{f}(\mathsf{a})\| \stackrel{\mathsf{d}}{\leq} \sup_{\xi \in [\mathsf{a},\mathsf{b}]} \|\mathsf{J}\mathsf{f}(\xi))\| \cdot \|(\mathsf{b}-\mathsf{a})\|$$

where  $\|\cdot\|$  denotes an arbitrary vector norm with related matrix norm.

(ロ) (四) (日) (日) (日) (日)

$$\begin{split} & h = \Lambda \quad Taylon \\ & f(x) = f(x_0) + \frac{f(x_0)}{\Lambda!}(x - x_0) + \frac{f'(x_0)}{2!}(x - x_0)^2 + R_2[x_1 + x_0] \\ & f(x) = f(x_0) + \frac{f(x_0)}{\Lambda!}(x - x_0) + \frac{f(x_0)}{2!}(x - x_0)^2 + R_2[x_1 + x_0] \\ & h = 2 \quad f(x) = f(x_0) + \frac{f(x_0)}{\Lambda!}(x - x_0) + \frac{f(x_0)}{(0,1)!}(x - x_0)^4 + \frac{f(x_0)}{(0,1)!}(x - x_0) \\ & + \frac{f(x_0)}{\Lambda!}(x - x_0) + \frac{f(x_0)}{\Lambda!}(x - x_0) + \frac{f(x_0)}{\Lambda!}(x - x_0) \\ & + \frac{f(x_0)}{\Lambda!}(x - x_0)^2 + \frac{f(x_0)}{\Lambda!}(x - x_0)(x - x_0)(x - x_0) + \frac{f(x_0)}{\Lambda!}(x - x_0)^2 + \frac{f(x_0)}{\Lambda!}(x - x_0)^2 + \frac{f(x_0)}{\Lambda!}(x - x_0)(x - x_0)(x - x_0) + \frac{f(x_0)}{\Lambda!}(x - x_0)^2 + \frac{f(x_0)}{\Lambda!}(x - x_0)(x - x_0)(x - x_0)(x - x_0)(x - x_0)^2 + \frac{f(x_0)}{\Lambda!}(x - x_0)(x - x_0)(x - x_0)(x - x_0)(x - x_0)^2 + \frac{f(x_0)}{\Lambda!}(x - x_0)(x - x_0)(x - x_0)(x - x_0)(x - x_0)^2 + \frac{f(x_0)}{\Lambda!}(x - x_0)(x - x_0)(x - x_0)(x - x_0)(x - x_0)(x - x_0)^2 + \frac{f(x_0)}{\Lambda!}(x - x_0)(x - x_0)(x - x_0)(x - x_0)(x - x_0)(x - x_0)^2 + \frac{f(x_0)}{\Lambda!}(x - x_0)(x - x_0)(x - x_0)(x - x_0)(x - x_0)(x - x_0)(x - x_0)^2 + \frac{f(x_0)}{\Lambda!}(x - x_0)^2 + \frac{f(x_0)}{\Lambda!}(x - x_0)(x - x_0)(x - x_0)(x - x_0)(x - x_0)(x - x_0)^2 + \frac{f(x_0)}{\Lambda!}(x - x_0)^2 + \frac{f(x_0)}{\Lambda!}(x - x_0)(x - x_0)(x - x_0)(x - x_0)(x - x_0)(x - x_0)^2 + \frac{f(x_0)}{\Lambda!}(x - x_0)(x - x_0)(x - x_0)(x - x_0)(x - x_0)(x - x_0)^2 + \frac{f(x_0)}{\Lambda!}(x - x_0)(x - x_0)(x - x_0)(x - x_0)(x - x_0)(x - x_0)^2 + \frac{f(x_0)}{\Lambda!}(x - x_0)(x - x$$

# Taylor series: notations.

We define the multi-index 
$$\alpha \in \mathbb{N}_{0}^{n}$$
 as  

$$\left[\alpha\right] = \mathcal{A} \quad \alpha = (\alpha_{0}) \quad \beta = \alpha$$

$$\left[\alpha\right] = \mathcal{A} \quad \alpha = (\alpha_{0}) \quad \beta = \alpha$$

$$\left[\alpha\right] = \mathcal{A} \quad \alpha = (\alpha_{0}) \quad \beta = \alpha$$

$$\left[\alpha\right] = \mathcal{A} \quad \alpha = (\alpha_{0}) \quad \beta = \alpha$$

$$\left[\alpha\right] = \mathcal{A} \quad \alpha = (\alpha_{0}) \quad \beta = \alpha$$

$$\left[\alpha\right] = \mathcal{A} \quad \alpha = (\alpha_{0}) \quad \beta = \alpha$$

$$\left[\alpha\right] = \mathcal{A} \quad \alpha = (\alpha_{0}) \quad \beta = \alpha$$

$$\left[\alpha\right] = \mathcal{A} \quad \alpha = (\alpha_{0}) \quad \beta = \alpha$$

$$\left[\alpha\right] = \mathcal{A} \quad \alpha = (\alpha_{0}) \quad \beta = \alpha$$

$$\left[\alpha\right] = \mathcal{A} \quad \alpha = (\alpha_{0}) \quad \beta = \alpha$$

$$\left[\alpha\right] = \mathcal{A} \quad \alpha = (\alpha_{0}) \quad \beta = \alpha$$

$$\left[\alpha\right] = \mathcal{A} \quad \alpha = (\alpha_{0}) \quad \beta = \alpha$$

$$\left[\alpha\right] = \mathcal{A} \quad \alpha = (\alpha_{0}) \quad \beta = \alpha$$

$$\left[\alpha\right] = \mathcal{A} \quad \alpha = (\alpha_{0}) \quad \beta = \alpha$$

$$\left[\alpha\right] = \mathcal{A} \quad \alpha = (\alpha_{0}) \quad \beta = \alpha$$

$$\left[\alpha\right] = \mathcal{A} \quad \alpha = (\alpha_{0}) \quad \beta = \alpha$$

$$\left[\alpha\right] = \mathcal{A} \quad \alpha = (\alpha_{0}) \quad \beta = \alpha$$

$$\left[\alpha\right] = \mathcal{A} \quad \alpha = (\alpha_{0}) \quad \beta = \alpha$$

$$\left[\alpha\right] = \mathcal{A} \quad \alpha = (\alpha_{0}) \quad \beta = \alpha$$

$$\left[\alpha\right] = \mathcal{A} \quad \alpha = (\alpha_{0}) \quad \beta = \alpha$$

$$\left[\alpha\right] = \mathcal{A} \quad \alpha = (\alpha_{0}) \quad \beta = \alpha$$

$$\left[\alpha\right] = \mathcal{A} \quad \alpha = (\alpha_{0}) \quad \beta = \alpha$$

$$\left[\alpha\right] = \mathcal{A} \quad \alpha = (\alpha_{0}) \quad \beta = \alpha$$

$$\left[\alpha\right] = \mathcal{A} \quad \alpha = (\alpha_{0}) \quad \beta = \alpha$$

$$\left[\alpha\right] = \mathcal{A} \quad \alpha = (\alpha_{0}) \quad \beta = \alpha$$

$$\left[\alpha\right] = \mathcal{A} \quad \alpha = (\alpha_{0}) \quad \beta = \alpha$$

$$\left[\alpha\right] = \mathcal{A} \quad \alpha = (\alpha_{0}) \quad \beta = \alpha$$

$$\left[\alpha\right] = \mathcal{A} \quad \alpha = (\alpha_{0}) \quad \beta = \alpha$$

$$\left[\alpha\right] = \mathcal{A} \quad \alpha = (\alpha_{0}) \quad \beta = \alpha$$

$$\left[\alpha\right] = \mathcal{A} \quad \alpha = (\alpha_{0}) \quad \beta = \alpha$$

$$\left[\alpha\right] = \mathcal{A} \quad \alpha = (\alpha_{0}) \quad \beta = \alpha$$

$$\left[\alpha\right] = \mathcal{A} \quad \alpha = (\alpha_{0}) \quad \beta = \alpha$$

$$\left[\alpha\right] =$$

Ingenuin Gasser (Mathematik, UniHH)

## The Taylor theorem.

**Theorem:** (Taylor) Let  $D \subset \mathbb{R}^n$  be open and convex. Let  $f : D \to \mathbb{R}$  be a  $\mathcal{C}^{m+1}$ -function and  $x_0 \in D$ . Then the Taylor-expansion holds true in  $x \in D$ 

$$f(\mathbf{x}) = T_m(\mathbf{x}; \mathbf{x}_0) + R_m(\mathbf{x}; \mathbf{x}_0)$$

$$T_m(\mathbf{x}; \mathbf{x}_0) = \sum_{|\alpha| \le m} \frac{D^{\alpha} f(\mathbf{x}_0)}{\alpha!} (\mathbf{x} - \mathbf{x}_0)^{\alpha}$$

$$R_m(\mathbf{x}; \mathbf{x}_0) = \sum_{|\alpha| = m+1} \frac{D^{\alpha} f(\mathbf{x}_0 + \theta(\mathbf{x} - \mathbf{x}_0))}{\alpha!} (\mathbf{x} - \mathbf{x}_0)^{\alpha}$$

for an appropriate  $\theta \in (0, 1)$ .

**Notation:** In the Taylor–expansion we denote  $T_m(x; x_0)$  Taylor–polynom of degree *m* and  $R_m(x; x_0)$  Lagrange–remainder.

#### Derivation of the Taylor expansion.

We define a scalar function in one single variable  $t \in [0, 1]$  as

$$g(t) := f(\mathsf{x}_0 + t(\mathsf{x} - \mathsf{x}_0))$$

and calculate the (univariate) Taylor-expansion at t = 0. It is

$$g(1)=g(0)+g'(0)\cdot(1-0)+rac{1}{2}g''(\xi)\cdot(1-0)^2 \quad ext{for a } \xi\in(0,1).$$

The calculation of g'(0) is given by the chain rule

$$g'(0) = \frac{d}{dt} f(x_1^0 + t(x_1 - x_1^0), x_2^0 + t(x_2 - x_2^0), \dots, x_n^0 + t(x_n - x_n^0))\Big|_{t=0}$$
  
=  $D_1 f(x_0) \cdot (x_1 - x_1^0) + \dots + D_n f(x_0) \cdot (x_n - x_n^0)$   
=  $\sum_{|\alpha|=1} \frac{D^{\alpha} f(x_0)}{\alpha!} \cdot (x - x_0)^{\alpha}$ 

イロト イポト イヨト イヨト

## Continuation of the derivation.

Calculation of g''(0) gives

$$g''(0) = \frac{d^2}{dt^2} f(x_0 + t(x - x_0))\Big|_{t=0} = \frac{d}{dt} \sum_{k=1}^n D_k f(x^0 + t(x - x^0))(x_k - x_k^0)\Big|_{t=0}$$

$$= D_{11}f(x_0)(x_1 - x_1^0)^2 + D_{21}f(x_0)(x_1 - x_1^0)(x_2 - x_2^0)$$
  
+...+  $D_{ij}f(x_0)(x_i - x_i^0)(x_j - x_j^0)$  + ...+  
+ $D_{n-1,n}f(x_0)(x_{n-1} - x_{n-1}^0)(x_n - x_n^0)$  +  $D_{nn}f(x_0)(x_n - x_n^0)^2$ )

$$= \sum_{|\alpha|=2} \frac{D^{\alpha} f(\mathsf{x}_0)}{\alpha!} (\mathsf{x} - \mathsf{x}_0)^{\alpha} \qquad (\text{exchange theorem of Schwarz!})$$

Continuation: Proof of the Taylor-formula by (mathematical) induction!

Э

<ロト < 回ト < 回ト < 回ト < 回ト -

### Proof of the Taylor theorem.

The function

$$g(t) := f(x^0 + t(x - x^0))$$

is (m + 1)-times continuous differentiable and we have

$$g(1) = \sum_{k=0}^{m} rac{g^{(k)}(0)}{k!} + rac{g^{(m+1)}( heta)}{(m+1)!} \quad ext{for a } heta \in [0,1].$$

In addition we have (by induction over k)

$$\frac{g^{(k)}(0)}{k!} = \sum_{|\alpha|=k} \frac{D^{\alpha}f(\mathsf{x}^0)}{\alpha!} \, (\mathsf{x} - \mathsf{x}^0)^{\alpha}$$

and

$$\frac{g^{(m+1)}(\theta)}{(m+1)!} = \sum_{|\alpha|=m+1} \frac{D^{\alpha}f(\mathbf{x}^0 + \theta(\mathbf{x} - \mathbf{x}^0))}{\alpha!} (\mathbf{x} - \mathbf{x}^0)^{\alpha}$$

Ingenuin Gasser (Mathematik, UniHH)

#### Examples for the Taylor-expansion.

• Calculate the Taylor–polynom  $T_2(x; x_0)$  of degree 2 of the function

$$f(x,y,z) = x y^2 \sin z$$

at  $(x, y, z) = (1, 2, 0)^T$ .

- The calculation of T<sub>2</sub>(x; x<sub>0</sub>) requires the partial derivatives up to order 2.
- These derivatives have to be evaluated at  $(x, y, z) = (1, 2, 0)^T$ .
- The result is  $T_2(x; x_0)$  in the form

$$T_2(\mathbf{x};\mathbf{x}_0) = 4z(x+y-2)$$

O Details on extra slide.

<□> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

#### Remarks to the remainder of a Taylor-expansion.

**Remark:** The remainder of a Taylor–expansion contains **all** partial derivatives of order (m + 1):

$$\mathcal{R}_m(\mathsf{x};\mathsf{x}_0) = \sum_{|\alpha|=m+1} \frac{D^{\alpha} f(\mathsf{x}_0 + \theta(\mathsf{x} - \mathsf{x}_0))}{\alpha!} (\mathsf{x} - \mathsf{x}_0)^{\alpha}$$

If all these derivative are bounded by a constant C in a neighborhood of  $\mathsf{x}_0$  then the estimate for the remainder hold true

$$|R_m(x;x_0)| \le rac{n^{m+1}}{(m+1)!} C ||x-x_0||_{\infty}^{m+1}$$

We conlude for the quality of the approximation of a  $C^{m+1}$ -function by the Taylor–polynom

$$f(x) = T_m(x; x_0) + O(||x - x_0||^{m+1})$$

**Special case** m = 1: For a  $C^2$ -function f(x) we obtain

$$f(x) = f(x^{0}) + \operatorname{grad} f(x^{0}) \cdot (x - x^{0}) + O(||x - x^{0}||^{2}).$$

イロト 不得 トイラト イラト 二日