Analysis III for engineering study programs

Ingenuin Gasser
Departments of Mathematics
Universität Hamburg
Technische Universität Hamburg-Harburg
Wintersemester 2021/22
based on slides of Prof. Jens Struckmeier from Wintersemster 2020/21

Content of the course Analysis III.

(1) Partial derivatives, differential operators.
(2) Vector fields, total differential, directional derivative.
(3) Mean value theorems, Taylor's theorem.
(4) Extrem values, implicit function theorem.
(5) Implicit rapresentaion of curves and surfces.
(6) Extrem values under equality constraints.
(1) Newton-method, non-linear equations and the least squares method.
(8) Multiple integrals, Fubini's theorem, transformation theorem.
(9) Potentials, Green's theorem, Gauß's theorem.
(10) Green's formulas, Stokes's theorem.

Chapter 1. Multi variable differential calculus

1.1 Partial derivatives

Let

$$
f\left(x_{1}, \ldots, x_{n}\right) \text { a scalar function depending } n \text { variables }
$$

Example: The constitutive law of an ideal gas $p V=R T$.
Each of the 3 quantities p (pressure), V (volume) and T (emperature) can be expressed as a function of the others (R is the gas constant)

$$
\begin{aligned}
p & =p(V, t)=\frac{R T}{V} \\
V & =V(p, T)=\frac{R T}{p} \\
T & =T(p, V)=\frac{p V}{R}
\end{aligned}
$$

1.1. Partial derivatives

Definition: Let $D \subset \mathbb{R}^{n}$ be open, $f: D \rightarrow \mathbb{R}, x^{0} \in D$.

- f is called partially differentiable in x^{0} with respect to x_{i} if the limit

$$
\begin{aligned}
\frac{\partial f}{\partial x_{i}}\left(x^{0}\right) & :=\lim _{t \rightarrow 0} \frac{f\left(x^{0}+t \mathrm{e}_{i}\right)-f\left(x^{0}\right)}{t} \\
& =\lim _{t \rightarrow 0} \frac{f\left(x_{1}^{0}, \ldots, x_{i}^{0}+t, \ldots, x_{n}^{0}\right)-f\left(x_{1}^{0}, \ldots, x_{i}^{0}, \ldots, x_{n}^{0}\right)}{t}
\end{aligned}
$$

exists. e_{i} denotes the i-th unit vector. The limit is called partial derivative of f with respect to x_{i} at x^{0}.

- If at every point x^{0} the partial derivatives with respect to every variable $x_{i}, i=1, \ldots, n$ exist and if the partial derivatives are continuous functions then we call f continuous partial differentiable or a \mathcal{C}^{1}-function.

Examples.

- Consider the function

$$
f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}
$$

At any point $x^{0} \in \mathbb{R}^{2}$ there exist both partial derivatives and both partial derivatives are continuous:

$$
\frac{\partial f}{\partial x_{1}}\left(x^{0}\right)=2 x_{1}, \quad \frac{\partial f}{\partial x_{2}}\left(x^{0}\right)=2 x_{2}
$$

Thus f is a \mathcal{C}^{1}-function.

- The function

$$
f\left(x_{1}, x_{2}\right)=x_{1}+\left|x_{2}\right|
$$

at $x^{0}=(0,0)^{T}$ is partial differentiable with respect to x_{1}, but the partial derivative with respect to x_{2} does not exist!

An engineering example.

The acoustic pressure of a one dimensional acoustic wave is given by

$$
p(x, t)=A \sin (\alpha x-\omega t)
$$

The partial derivative

$$
\frac{\partial p}{\partial x}=\alpha A \cos (\alpha x-\omega t)
$$

describes at a given time t the spacial rate of change of the pressure.
The partial derivative

$$
\frac{\partial p}{\partial t}=-\omega A \cos (\alpha x-\omega t)
$$

describes for a fixed position x the temporal rate of change of the acoustic pressure.

Rules for differentiation

- Let f, g be differentiable with respect to x_{i} and $\alpha, \beta \in \mathbb{R}$, then we have the rules

$$
\begin{aligned}
\frac{\partial}{\partial x_{i}}(\alpha f(\mathrm{x})+\beta g(\mathrm{x})) & =\alpha \frac{\partial f}{\partial x_{i}}(\mathrm{x})+\beta \frac{\partial g}{\partial x_{i}}(\mathrm{x}) \\
\frac{\partial}{\partial x_{i}}(f(\mathrm{x}) \cdot g(\mathrm{x})) & =\frac{\partial f}{\partial x_{i}}(\mathrm{x}) \cdot g(\mathrm{x})+f(\mathrm{x}) \cdot \frac{\partial g}{\partial x_{i}}(\mathrm{x}) \\
\frac{\partial}{\partial x_{i}}\left(\frac{f(\mathrm{x})}{g(\mathrm{x})}\right) & =\frac{\frac{\partial f}{\partial x_{i}}(\mathrm{x}) \cdot g(\mathrm{x})-f(\mathrm{x}) \cdot \frac{\partial g}{\partial x_{i}}(\mathrm{x})}{g(\mathrm{x})^{2}} \text { for } g(\mathrm{x}) \neq 0
\end{aligned}
$$

- An alternative notation for the partial derivatives of f with respect to x_{i} at x^{0} is given by

$$
D_{i} f\left(x^{0}\right) \quad \text { oder } \quad f_{x_{i}}\left(x^{0}\right)
$$

Gradient and nabla-operator.

Definition: Let $D \subset \mathbb{R}^{n}$ be an open set and $f: D \rightarrow \mathbb{R}$ partial differentiable.

- We denote the row vector

$$
\operatorname{grad} f\left(x^{0}\right):=\left(\frac{\partial f}{\partial x_{1}}\left(x^{0}\right), \ldots, \frac{\partial f}{\partial x_{n}}\left(x^{0}\right)\right)
$$

as gradient of f at x^{0}.

- We denote the symbolic vector

$$
\nabla:=\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}\right)^{T}
$$

as nabla-operator.

- Thus we obtain the column vector

$$
\nabla f\left(x^{0}\right):=\left(\frac{\partial f}{\partial x_{1}}\left(x^{0}\right), \ldots, \frac{\partial f}{\partial x_{n}}\left(x^{0}\right)\right)^{T}
$$

More rules on differentiation.

Let f and g be partial differentiable. Then the following rules on differentiation hold true:

$$
\begin{aligned}
\operatorname{grad}(\alpha f+\beta g) & =\alpha \cdot \operatorname{grad} f+\beta \cdot \operatorname{grad} g \\
\operatorname{grad}(f \cdot g) & =g \cdot \operatorname{grad} f+f \cdot \operatorname{grad} g \\
\operatorname{grad}\left(\frac{f}{g}\right) & =\frac{1}{g^{2}}(g \cdot \operatorname{grad} f-f \cdot \operatorname{grad} g), \quad g \neq 0
\end{aligned}
$$

Examples:

- Let $f(x, y)=e^{x} \cdot \sin y$. Then:

$$
\operatorname{grad} f(x, y)=\left(e^{x} \cdot \sin y, e^{x} \cdot \cos y\right)=e^{x}(\sin y, \cos y)
$$

- For $r(\mathrm{x}):=\|\mathrm{x}\|_{2}=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}$ we have

$$
\operatorname{grad} r(\mathrm{x})=\frac{\mathrm{x}}{r(\mathrm{x})}=\frac{\mathrm{x}}{\|\mathrm{x}\|_{2}} \quad \text { für } \mathrm{x} \neq 0
$$

where $\mathrm{x}=\left(x_{1}, \ldots, x_{n}\right)$ denotes a row vector.

Partial differentiability does not imply continuity.

Observation: A partial differentiable function (with respect to all coordinates) is not necessarily a continuous function.
Example: Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined as

$$
f(x, y):=\left\{\begin{array}{ccc}
\frac{x \cdot y}{\left(x^{2}+y^{2}\right)^{2}} & : & \text { for }(x, y) \neq 0 \\
0 & : & \text { for }(x, y)=0
\end{array}\right.
$$

The function is partial differntiable on the entire \mathbb{R}^{2} and we have

$$
\begin{aligned}
f_{x}(0,0) & =f_{y}(0,0)=0 \\
\frac{\partial f}{\partial x}(x, y) & =\frac{y}{\left(x^{2}+y^{2}\right)^{2}}-4 \frac{x^{2} y}{\left(x^{2}+y^{2}\right)^{3}}, \quad(x, y) \neq(0,0) \\
\frac{\partial f}{\partial y}(x, y) & =\frac{x}{\left(x^{2}+y^{2}\right)^{2}}-4 \frac{x y^{2}}{\left(x^{2}+y^{2}\right)^{3}}, \quad(x, y) \neq(0,0)
\end{aligned}
$$

Example (continuation).

We calculate the partial derivatives at the origin $(0,0)$:

$$
\begin{aligned}
& \frac{\partial f}{\partial x}(0,0)=\lim _{t \rightarrow 0} \frac{f(t, 0)-f(0,0)}{t}=\frac{\frac{t \cdot 0}{\left(t^{2}+0^{2}\right)^{2}}-0}{t}=0 \\
& \frac{\partial f}{\partial y}(0,0)=\lim _{t \rightarrow 0} \frac{f(0, t)-f(0,0)}{t}=\frac{\frac{0 \cdot t}{\left(0^{2}+t^{2}\right)^{2}}-0}{t}=0
\end{aligned}
$$

But: At $(0,0)$ the function is not continuous since

$$
\lim _{n \rightarrow \infty} f\left(\frac{1}{n}, \frac{1}{n}\right)=\frac{\frac{1}{n} \cdot \frac{1}{n}}{\left(\frac{1}{n} \cdot \frac{1}{n}+\frac{1}{n} \cdot \frac{1}{n}\right)^{2}}=\frac{\frac{1}{n^{2}}}{\frac{4}{n^{4}}}=\frac{n^{2}}{4} \rightarrow \infty
$$

and thus we have

$$
\lim _{(x, y) \rightarrow(0,0)} f(x, y) \neq f(0,0)=0
$$

Boundedness of the derivatives implies continuity.

To guarantee the continuity of a partial differentiable function we need additional conditions on f.

Theorem: Let $D \subset \mathbb{R}^{n}$ be an open set. Let $f: D \rightarrow \mathbb{R}$ be partial differentiable in a neighborhood of $x^{0} \in D$ and let the partial derivatives $\frac{\partial f}{\partial x_{i}}, i=1, \ldots, n$, be bounded. Then f is continuous in x^{0}.

Attention: In the previous example the partial derivatives are not bounded in a neighborhood of $(0,0)$ since

$$
\frac{\partial f}{\partial x}(x, y)=\frac{y}{\left(x^{2}+y^{2}\right)^{2}}-4 \frac{x^{2} y}{\left(x^{2}+y^{2}\right)^{3}} \quad \text { für }(x, y) \neq(0,0)
$$

Proof of the theorem.

For $\left\|\mathrm{x}-\mathrm{x}^{0}\right\|_{\infty}<\varepsilon, \varepsilon>0$ sufficiently small we write:

$$
\begin{aligned}
f(x)-f\left(x^{0}\right) & =\left(f\left(x_{1}, \ldots, x_{n-1}, x_{n}\right)-f\left(x_{1}, \ldots, x_{n-1}, x_{n}^{0}\right)\right) \\
& +\left(f\left(x_{1}, \ldots, x_{n-1}, x_{n}^{0}\right)-f\left(x_{1}, \ldots, x_{n-2}, x_{n-1}^{0}, x_{n}^{0}\right)\right) \\
& \vdots \\
& +\left(f\left(x_{1}, x_{2}^{0}, \ldots, x_{n}^{0}\right)-f\left(x_{1}^{0}, \ldots, x_{n}^{0}\right)\right)
\end{aligned}
$$

For any difference on the right hand side we consider f as a function in one single variable:

$$
g\left(x_{n}\right)-g\left(x_{n}^{0}\right):=f\left(x_{1}, \ldots, x_{n-1}, x_{n}\right)-f\left(x_{1}, \ldots, x_{n-1}, x_{n}^{0}\right)
$$

Since f is partial differentiable g is differentiable and we can apply the mean value theorem on g :

$$
g\left(x_{n}\right)-g\left(x_{n}^{0}\right)=g^{\prime}\left(\xi_{n}\right)\left(x_{n}-x_{n}^{0}\right)
$$

for an appropriate ξ_{n} between x_{n} and x_{n}^{0}.

Proof of the theorem (continuation).

Applying the mean value theorem to every term in the right hand side we obtain

$$
\begin{aligned}
f(x)-f\left(x^{0}\right) & =\frac{\partial f}{\partial x_{n}}\left(x_{1}, \ldots, x_{n-1}, \xi_{n}\right) \cdot\left(x_{n}-x_{n}^{0}\right) \\
& +\frac{\partial f}{\partial x_{n-1}}\left(x_{1}, \ldots, x_{n-2}, \xi_{n-1}, x_{n}^{0}\right) \cdot\left(x_{n-1}-x_{n-1}^{0}\right) \\
& \vdots \\
& +\frac{\partial f}{\partial x_{1}}\left(\xi_{1}, x_{2}^{0}, \ldots, x_{n}^{0}\right) \cdot\left(x_{1}-x_{1}^{0}\right)
\end{aligned}
$$

Using the boundedness of the partial derivatives

$$
\left|f(\mathrm{x})-f\left(\mathrm{x}^{0}\right)\right| \leq C_{1}\left|x_{1}-x_{1}^{0}\right|+\cdots+C_{n}\left|x_{n}-x_{n}^{0}\right|
$$

for $\left\|\mathrm{x}-\mathrm{x}^{0}\right\|_{\infty}<\varepsilon$, we obtain the continuity of f at x^{0} since

$$
f(x) \rightarrow f\left(x^{0}\right) \quad \text { für }\left\|x-x^{0}\right\|_{\infty} \rightarrow 0
$$

Higher order derivatives.

Definition: Let f be a scalar function and partial differentiable on an open set $D \subset \mathbb{R}^{n}$. If the partial derivatives are differentiable we obtain (by differentiating) the partial derivatives of second order of f with

$$
\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}:=\frac{\partial}{\partial x_{j}}\left(\frac{\partial f}{\partial x_{i}}\right)
$$

Example: Second order partial derivatives of a function $f(x, y)$:

$$
\frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right), \quad \frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right), \quad \frac{\partial^{2} f}{\partial x \partial y}, \quad \frac{\partial^{2} f}{\partial y^{2}}
$$

Let $i_{1}, \ldots, i_{k} \in\{1, \ldots, n\}$. Then we define recursively

$$
\frac{\partial^{k} f}{\partial x_{i_{k}} \partial x_{i_{k-1}} \ldots \partial x_{i_{1}}}:=\frac{\partial}{\partial x_{i_{k}}}\left(\frac{\partial^{k-1} f}{\partial x_{i_{k-1}} \partial x_{i_{k-2}} \ldots \partial x_{i_{1}}}\right)
$$

Higher order derivatives.

Definition: The function f is called k-times partial differentiable, if all derivatives of order k,

$$
\frac{\partial^{k} f}{\partial x_{i_{k}} \partial x_{i_{k-1}} \ldots \partial x_{i_{1}}} \quad \text { for all } i_{1}, \ldots, i_{k} \in\{1, \ldots, n\},
$$

exist on D.
Alternative notation:

$$
\frac{\partial^{k} f}{\partial x_{i_{k}} \partial x_{i_{k-1}} \ldots \partial x_{i_{1}}}=D_{i_{k}} D_{i_{k-1}} \ldots D_{i_{1}} f=f_{x_{i_{1}} \ldots x_{i_{k}}}
$$

If all the derivatives of k-th order are continuous the function f is called k-times continuous partial differentiable or called a \mathcal{C}^{k}-function on D. Continuous functions f are called \mathcal{C}^{0}-functions.
Example: For the function $f\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} x_{i}^{i}$ we have $\frac{\partial^{n} f}{\partial x_{n} \ldots \partial x_{1}}=$?

Partial derivaratives are not arbitrarely exchangeable.

ATTENTION: The order how to execute partial derivatives is in general not arbitrarely exchangeable!

Example: For the function

$$
f(x, y):=\left\{\begin{array}{ccc}
x y \frac{x^{2}-y^{2}}{x^{2}+y^{2}} & : & \text { for }(x, y) \neq(0,0) \\
0 & : & \text { for }(x, y)=(0,0)
\end{array}\right.
$$

we calculate

$$
\begin{aligned}
f_{x y}(0,0) & =\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}(0,0)\right)=-1 \\
f_{y x}(0,0) & =\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}(0,0)\right)=+1
\end{aligned}
$$

i.e. $f_{x y}(0,0) \neq f_{y x}(0,0)$.

Theorem of Schwarz on exchangeablity.

Satz: Let $D \subset \mathbb{R}^{n}$ be open and let $f: D \rightarrow \mathbb{R}$ be a \mathcal{C}^{2}-function. Then it holds

$$
\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}\left(x_{1}, \ldots, x_{n}\right)=\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\left(x_{1}, \ldots, x_{n}\right)
$$

for all $i, j \in\{1, \ldots, n\}$.

Idea of the proof:

Apply the men value theorem twice.

Conclusion:

If f is a C^{k}-function, then we can exchange the differentiation in order to calculate partial derivatives up to order k arbitrarely!

Example for the exchangeability of partial derivatives.

Calculate the partial derivative of third order $f_{x y z}$ for the function

$$
f(x, y, z)=y^{2} z \sin \left(x^{3}\right)+\left(\cosh y+17 e^{x^{2}}\right) z^{2}
$$

The order of execution is exchangealbe since $f \in \mathcal{C}^{3}$.

- Differentiate first with respect to z :

$$
\frac{\partial f}{\partial z}=y^{2} \sin \left(x^{3}\right)+2 z\left(\cosh y+17 e^{x^{2}}\right)
$$

- Differentiate then f_{z} with respect to x (then cosh y disappears):

$$
\begin{aligned}
f_{z x} & =\frac{\partial}{\partial x}\left(y^{2} \sin \left(x^{3}\right)+2 z\left(\cosh y+17 e^{x^{2}}\right)\right) \\
& =3 x^{2} y^{2} \cos \left(x^{3}\right)+68 x z e^{x^{2}}
\end{aligned}
$$

- For the partial derivative of $f_{z x}$ with respect to y we obtain

$$
f_{x y z}=6 x^{2} y \cos \left(x^{3}\right)
$$

The Laplace operator.

The Laplace-operator or Laplacian is defined as

$$
\Delta:=\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}
$$

For a scalar function $u(\mathrm{x})=u\left(x_{1}, \ldots, x_{n}\right)$ we have

$$
\Delta u=\sum_{i=1}^{n} \frac{\partial^{2} u}{\partial x_{i}^{2}}=u_{x_{1} x_{1}}+\cdots+u_{x_{n} x_{n}}
$$

Examples of important partial differential equations of second order (i.e. equations containing partial derivatives up to order two):

$$
\begin{array}{rll}
\Delta u-\frac{1}{c^{2}} u_{t t} & =0 & \text { (wave equation) } \\
\Delta u-\frac{1}{k} u_{t} & =0 & \text { (heat equation) } \\
\Delta u & =0 & \text { (Laplace-equation or equation for the potential) }
\end{array}
$$

Vector valued functions.

Definition: Let $D \subset \mathbb{R}^{n}$ be open and let $f: D \rightarrow \mathbb{R}^{m}$ be a vector valued function.

The function f is called partial differentiable on $\mathrm{x}^{0} \in D$, if for all $i=1, \ldots, n$ the limits

$$
\frac{\partial f}{\partial x_{i}}\left(x^{0}\right)=\lim _{t \rightarrow 0} \frac{f\left(x^{0}+t \mathrm{e}_{i}\right)-\mathrm{f}\left(\mathrm{x}^{0}\right)}{t}
$$

exist. The calculation is done componentwise

$$
\frac{\partial f}{\partial x_{i}}\left(x^{0}\right)=\left(\begin{array}{c}
\frac{\partial f_{1}}{\partial x_{i}} \\
\vdots \\
\frac{\partial f_{m}}{\partial x_{i}}
\end{array}\right) \quad \text { for } i=1, \ldots, n
$$

Vectorfields.

Definition: If $m=n$ the function $\mathrm{f}: D \rightarrow \mathbb{R}^{n}$ is called a vectorfield on D. If every (coordinate-) function $f_{i}(x)$ of $f=\left(f_{1}, \ldots, f_{n}\right)^{T}$ is a \mathcal{C}^{k}-function, then f is called \mathcal{C}^{k}-vectorfield.

Examples of vectorfields:

- velocity fields of liquids or gases;
- elektromagnetic fields;
- temperature gradients in solid states.

Definition: Let $\mathrm{f}: D \rightarrow \mathbb{R}^{n}$ be a partial differentiable vector field. The divergence on $x \in D$ is defined as

$$
\operatorname{div} f\left(x^{0}\right):=\sum_{i=1}^{n} \frac{\partial f_{i}}{\partial x_{i}}\left(x^{0}\right)
$$

or

$$
\operatorname{div} f(x)=\nabla^{T} f(x)=(\nabla, f(x))
$$

Rules of computation and the rotation.

The following rules hold true:

$$
\begin{aligned}
\operatorname{div}(\alpha \mathrm{f}+\beta \mathrm{g}) & =\alpha \operatorname{div} \mathrm{f}+\beta \operatorname{div} \mathrm{g} \text { for } \mathrm{f}, \mathrm{~g}: D \rightarrow \mathbb{R}^{n} \\
\operatorname{div}(\varphi \cdot \mathrm{f}) & =(\nabla \varphi, \mathrm{f})+\varphi \operatorname{div} \mathrm{f} \text { for } \varphi: D \rightarrow \mathbb{R}, \mathrm{f}: D \rightarrow \mathbb{R}^{n}
\end{aligned}
$$

Remark: Let $f: D \rightarrow \mathbb{R}$ be a \mathcal{C}^{2}-function, then for the Laplacian we have

$$
\Delta f=\operatorname{div}(\nabla f)
$$

Definition: Let $D \subset \mathbb{R}^{3}$ open and $\mathrm{f}: D \rightarrow \mathbb{R}^{3}$ a partial differentiable vector field. We define the rotation as

$$
\operatorname{rot} f\left(x^{0}\right):=\left.\left(\frac{\partial f_{3}}{\partial x_{2}}-\frac{\partial f_{2}}{\partial x_{3}}, \frac{\partial f_{1}}{\partial x_{3}}-\frac{\partial f_{3}}{\partial x_{1}}, \frac{\partial f_{2}}{\partial x_{1}}-\frac{\partial f_{1}}{\partial x_{2}}\right)^{T}\right|_{x^{0}}
$$

Alternative notations and additional rules.

$$
\operatorname{rot} f(x)=\nabla \times f(x)=\left|\begin{array}{ccc}
e_{1} & e_{2} & e_{3} \\
\frac{\partial}{\partial x_{1}} & \frac{\partial}{\partial x_{2}} & \frac{\partial}{\partial x_{3}} \\
f_{1} & f_{2} & f_{3}
\end{array}\right|
$$

Remark: The following rules hold true:

$$
\begin{aligned}
\operatorname{rot}(\alpha \mathrm{f}+\beta \mathrm{g}) & =\alpha \operatorname{rot} \mathrm{f}+\beta \operatorname{rot} \mathrm{g} \\
\operatorname{rot}(\varphi \cdot \mathrm{f}) & =(\nabla \varphi) \times \mathrm{f}+\varphi \operatorname{rot} \mathrm{f}
\end{aligned}
$$

Remark: Let $D \subset \mathbb{R}^{3}$ and $\varphi: D \rightarrow \mathbb{R}$ be a \mathcal{C}^{2}-function. Then

$$
\operatorname{rot}(\nabla \varphi)=0,
$$

using the exchangeability theorem of Schwarz. I.e. gradient fileds are rotation-free everywhere.

Chapter 1. Multivariate differential calculus

1.2 The total differential

Definition: Let $D \subset \mathbb{R}^{n}$ open, $\mathrm{x}^{0} \in D$ and $\mathrm{f}: D \rightarrow \mathbb{R}^{m}$. The function $\mathrm{f}(\mathrm{x})$ is called differentiable in x^{0} (or totally differentiable in x_{0}), if there exists a linear map

$$
I\left(x, x^{0}\right):=A \cdot\left(x-x^{0}\right)
$$

with a matrix $A \in \mathbb{R}^{m \times n}$ which satisfies the following approximation property

$$
f(x)=f\left(x^{0}\right)+A \cdot\left(x-x^{0}\right)+o\left(\left\|x-x^{0}\right\|\right)
$$

i.e.

$$
\lim _{x \rightarrow x^{0}} \frac{f(x)-f\left(x^{0}\right)-A \cdot\left(x-x^{0}\right)}{\left\|x-x^{0}\right\|}=0
$$

The total differential and the Jacobian matrix.

Notation: We call the linear map I the differential or the total differential of $f(x)$ at the point x^{0}. We denote I by $\operatorname{df}\left(x^{0}\right)$.

The related matrix A is called Jacobi-matrix of $f(x)$ at the point x^{0} and is denoted by $\mathrm{Jf}\left(\mathrm{x}^{0}\right)$ (or $\operatorname{Df}\left(\mathrm{x}^{0}\right)$ or $\mathrm{f}^{\prime}\left(\mathrm{x}^{0}\right)$).

Remark: For $m=n=1$ we obtain the well known relation

$$
f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+o\left(\left|x-x_{0}\right|\right)
$$

for the derivative $f^{\prime}\left(x_{0}\right)$ at the point x_{0}.
Remark: In case of a scalar function $(m=1)$ the matrix $A=a$ is a row vextor and $a\left(x-x^{0}\right)$ a scalar product $\left\langle a^{T}, x-x^{0}\right\rangle$.

Total and partial differentiability.

Theorem: Let $\mathrm{f}: D \rightarrow \mathbb{R}^{m}, \mathrm{x}^{0} \in D \subset \mathbb{R}^{n}, D$ open.
a) If $f(x)$ is differentiable in x^{0}, then $f(x)$ is continuous in x^{0}.
b) If $f(x)$ is differentiable in x^{0}, then the (total) differential and thus the Jacobi-matrix are uniquely determined and we have

$$
\mathrm{Jf}\left(\mathrm{x}^{0}\right)=\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}}\left(\mathrm{x}^{0}\right) & \cdots & \frac{\partial f_{1}}{\partial x_{n}}\left(\mathrm{x}^{0}\right) \\
\vdots & & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}}\left(\mathrm{x}^{0}\right) & \cdots & \frac{\partial f_{m}}{\partial x_{n}}\left(\mathrm{x}^{0}\right)
\end{array}\right)=\left(\begin{array}{c}
D f_{1}\left(\mathrm{x}^{0}\right) \\
\vdots \\
D f_{m}\left(\mathrm{x}^{0}\right)
\end{array}\right)
$$

c) If $f(x)$ is a \mathcal{C}^{1}-function on D, then $f(x)$ is differentiable on D.

Proof of a).

If f is differentiable in x^{0}, then by definition

$$
\lim _{x \rightarrow x^{0}} \frac{f(x)-f\left(x^{0}\right)-A \cdot\left(x-x^{0}\right)}{\left\|x-x^{0}\right\|}=0
$$

Thus we conclude

$$
\lim _{x \rightarrow x^{0}}\left\|f(x)-f\left(x^{0}\right)-A \cdot\left(x-x^{0}\right)\right\|=0
$$

and we obtain

$$
\begin{aligned}
\left\|f(x)-f\left(x^{0}\right)\right\| & \leq\left\|f(x)-f\left(x^{0}\right)-A \cdot\left(x-x^{0}\right)\right\|+\left\|A \cdot\left(x-x^{0}\right)\right\| \\
& \rightarrow 0 \quad \text { as } x \rightarrow x^{0}
\end{aligned}
$$

Therefore the function f is continuous at x^{0}.

Proof of b).

Let $\mathrm{x}=\mathrm{x}^{0}+t \mathrm{e}_{\mathrm{i}},|t|<\varepsilon, i \in\{1, \ldots, n\}$. Since f in differentiable at x^{0}, we have

$$
\lim _{x \rightarrow x^{0}} \frac{f(x)-f\left(x^{0}\right)-A \cdot\left(x-x^{0}\right)}{\left\|x-x^{0}\right\|_{\infty}}=0
$$

We write

$$
\begin{aligned}
\frac{f(x)-f\left(x^{0}\right)-A \cdot\left(x-x^{0}\right)}{\left\|x-x^{0}\right\|_{\infty}} & =\frac{f\left(x^{0}+t e_{i}\right)-f\left(x^{0}\right)}{|t|}-\frac{t \mathrm{Ae}_{i}}{|t|} \\
& =\frac{t}{|t|} \cdot\left(\frac{f\left(\mathrm{x}^{0}+t e_{i}\right)-f\left(\mathrm{x}^{0}\right)}{t}-\mathrm{Ae}_{i}\right) \\
& \rightarrow 0 \quad \text { as } t \rightarrow 0
\end{aligned}
$$

Thus

$$
\lim _{t \rightarrow 0} \frac{f\left(x^{0}+t e_{i}\right)-f\left(x^{0}\right)}{t}=A e_{i} \quad i=1, \ldots, n
$$

Examples.

- Consider the scalar function $f\left(x_{1}, x_{2}\right)=x_{1} e^{2 x_{2}}$. Then the Jacobian is given by:

$$
J f\left(x_{1}, x_{2}\right)=D f\left(x_{1}, x_{2}\right)=e^{2 x_{2}}\left(1,2 x_{1}\right)
$$

- Consider the function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ defined by

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\binom{x_{1} x_{2} x_{3}}{\sin \left(x_{1}+2 x_{2}+3 x_{3}\right)}
$$

The Jacobian is given by

$$
\operatorname{Jf}\left(x_{1}, x_{2}, x_{3}\right)=\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \frac{\partial f_{1}}{\partial x_{3}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \frac{\partial f_{2}}{\partial x_{3}}
\end{array}\right)=\left(\begin{array}{ccc}
x_{2} x_{3} & x_{1} x_{3} & x_{1} x_{2} \\
\cos (s) & 2 \cos (s) & 3 \cos (s)
\end{array}\right)
$$

with $s=x_{1}+2 x_{2}+3 x_{3}$.

Further examples.

- Let $f(x)=A x, A \in \mathbb{R}^{m \times n}$ and $x \in \mathbb{R}^{n}$. Then

$$
\operatorname{Jf}(x)=A \quad \text { for all } x \in \mathbb{R}^{n}
$$

- Let $f(x)=x^{T} A x=\langle x, A x\rangle, A \in \mathbb{R}^{n \times n}$ and $x \in \mathbb{R}^{n}$.

Then we have

$$
\begin{aligned}
\frac{\partial f}{\partial x_{i}} & =\left\langle\mathrm{e}_{i}, \mathrm{Ax}\right\rangle+\left\langle\mathrm{x}, \mathrm{Ae}_{i}\right\rangle \\
& =\mathrm{e}_{i}^{T} \mathrm{~A} x+x^{T} \mathrm{Ae}_{i} \\
& =x^{T}\left(\mathrm{~A}^{T}+\mathrm{A}\right) \mathrm{e}_{i}
\end{aligned}
$$

We conclude

$$
J f(x)=\operatorname{grad} f(x)=x^{T}\left(A^{T}+A\right)
$$

Rules for the differentiation.

Theorem:

a) Linearität: LET $f, g: D \rightarrow \mathbb{R}^{m}$ be differentiable in $x^{0} \in D, D$ open. Then $\alpha \mathrm{f}\left(\mathrm{x}^{0}\right)+\beta \mathrm{g}\left(\mathrm{x}^{0}\right)$, and $\alpha, \beta \in \mathbb{R}$ are differentiable in x^{0} and we have

$$
\begin{aligned}
& \mathrm{d}(\alpha \mathrm{f}+\beta \mathrm{g})\left(\mathrm{x}^{0}\right)=\alpha \mathrm{df}\left(\mathrm{x}^{0}\right)+\beta \mathrm{dg}\left(\mathrm{x}^{0}\right) \\
& \mathrm{J}(\alpha \mathrm{f}+\beta \mathrm{g})\left(\mathrm{x}^{0}\right)=\alpha \mathrm{Jf}\left(\mathrm{x}^{0}\right)+\beta \mathrm{Jg}\left(\mathrm{x}^{0}\right)
\end{aligned}
$$

b) Chain rule: Let $\mathrm{f}: D \rightarrow \mathbb{R}^{m}$ be differentiable in $x^{0} \in D, D$ open. Let $\mathrm{g}: E \rightarrow \mathbb{R}^{k}$ be differentiable in $\mathrm{y}^{0}=f\left(\mathrm{x}^{0}\right) \in E \subset \mathbb{R}^{m}, E$ open. Then $g \circ f$ is differentiable in x^{0}.
For the differentials it holds

$$
d(g \circ f)\left(x^{0}\right)=\operatorname{dg}\left(y^{0}\right) \circ \operatorname{df}\left(x^{0}\right)
$$

and analoglously for the Jacobian matrix

$$
J(g \circ f)\left(x^{0}\right)=\operatorname{Jg}\left(y^{0}\right) \cdot J f\left(x^{0}\right)
$$

Examples for the chain rule.

Let $I \subset \mathbb{R}$ be an intervall. Let $\mathrm{h}: I \rightarrow \mathbb{R}^{n}$ be a curve, differentiable in $t_{0} \in I$ with values in $D \subset \mathbb{R}^{n}, D$ open. Let $f: D \rightarrow \mathbb{R}$ be a scalar function, differentiable in $\mathrm{x}^{0}=\mathrm{h}\left(t_{0}\right)$.
Then the composition

$$
(f \circ h)(t)=f\left(h_{1}(t), \ldots, h_{n}(t)\right)
$$

is differentiable in t_{0} and we have for the derivative:

$$
\begin{aligned}
(f \circ \mathrm{~h})^{\prime}\left(t_{0}\right) & =\mathrm{J} f\left(\mathrm{~h}\left(t_{0}\right)\right) \cdot \mathrm{Jh}\left(t_{0}\right) \\
& =\operatorname{grad} f\left(\mathrm{~h}\left(t_{0}\right)\right) \cdot \mathrm{h}^{\prime}\left(t_{0}\right) \\
& =\sum_{k=1}^{n} \frac{\partial f}{\partial x_{k}}\left(\mathrm{~h}\left(t_{0}\right)\right) \cdot h_{k}^{\prime}\left(t_{0}\right)
\end{aligned}
$$

Directional derivative.

Definition: Let $f: D \rightarrow \mathbb{R}, D \subset \mathbb{R}^{n}$ open, $x^{0} \in D$, and $v \in \mathbb{R} \backslash\{0\}$ a vector. Then

$$
D_{v} f\left(x^{0}\right):=\lim _{t \rightarrow 0} \frac{f\left(x^{0}+t v\right)-f\left(x^{0}\right)}{t}
$$

is called the directional derivative (Gateaux-derivative) of $f(x)$ in the direction of v.

Example: Let $f(x, y)=x^{2}+y^{2}$ and $v=(1,1)^{T}$. Then the directional derivative in the direction of v is given by:

$$
\begin{aligned}
D_{v} f(x, y) & =\lim _{t \rightarrow 0} \frac{(x+t)^{2}+(y+t)^{2}-x^{2}-y^{2}}{t} \\
& =\lim _{t \rightarrow 0} \frac{2 x t+t^{2}+2 y t+t^{2}}{t} \\
& =2(x+y)
\end{aligned}
$$

Remarks.

- For $v=e_{i}$ the directional derivative in the direction of v is given by the partial derivative with respect to x_{i} :

$$
D_{v} f\left(x^{0}\right)=\frac{\partial f}{\partial x_{i}}\left(x^{0}\right)
$$

- If v is a unit vector, i.e. $\|v\|=1$, then the directional derivative $D_{v} f\left(x^{0}\right)$ describes the slope of $f(x)$ in the direction of v.
- If $f(x)$ is differentiable in x^{0}, then all directional derivatives of $f(x)$ in x^{0} exist. With $h(t)=x^{0}+t v$ we have

$$
D_{v} f\left(x^{0}\right)=\left.\frac{d}{d t}(f \circ h)\right|_{t=0}=\operatorname{grad} f\left(x^{0}\right) \cdot v
$$

This follows directely applying the chain rule.

Properties of the gradient.

Theorem: Let $D \subset \mathbb{R}^{n}$ open, $f: D \rightarrow \mathbb{R}$ differentiable in $x^{0} \in D$. Then we have
a) The gradient vector $\operatorname{grad} f\left(x^{0}\right) \in \mathbb{R}^{n}$ is orthogonal in the level set

$$
N_{x^{0}}:=\left\{x \in D \mid f(x)=f\left(x^{0}\right)\right\}
$$

In the case of $n=2$ we call the level sets contour lines, in $n=3$ we call the level sets equipotential surfaces.
2) The gradient grad $f\left(x^{0}\right)$ gives the direction of the steepest slope of $f(x)$ in x^{0}.

Idea of the proof:

a) application of the chain rule.
b) for an arbitrary direction v we conclude with the Cauchy-Schwarz inequality

$$
\left|D_{v} f\left(x^{0}\right)\right|=\left|\left(\operatorname{grad} f\left(x^{0}\right), v\right)\right| \leq\left\|\operatorname{grad} f\left(x^{0}\right)\right\|_{2}
$$

Equality is obtained for $v=\operatorname{grad} f\left(x^{0}\right) /\left\|\operatorname{grad} f\left(x^{0}\right)\right\|_{2}$.

Curvilinear coordinates.

$R^{n} \rightarrow R^{n}$

Definition: Let $U, V \subset \mathbb{R}^{n}$ be open and $\Phi: U \rightarrow V$ be a \mathcal{C}^{1}-map, for which the Jacobimatrix $J \Phi\left(u^{0}\right)$ is regular (invertible) at every $\mathrm{u}^{0} \in U$. In addition there exists the inverse map $\Phi^{-1}: V \rightarrow U$ and the inverse map is also a \mathcal{C}^{1}-map.
Then $x=\Phi(u)$ defines a coodinate transformation from the coordinates u to x .

Example: Consider for $n=2$ the polar coordinates $\mathrm{u}=(r, \varphi)$ with $r>0$ and $-\pi<\varphi<\pi$ and set

$$
\begin{aligned}
& x=r \cos \varphi \\
& y=r \sin \varphi
\end{aligned}
$$

with the cartesian coordinates $x=(x, y)$.

Calculation of the partial derivatives.

For all $u \in U$ with $x=\Phi(u)$ the following relations hold

$$
\begin{aligned}
\Phi^{-1}(\Phi(\mathrm{u})) & =\mathrm{u} \\
\mathrm{~J} \Phi^{-1}(\mathrm{x}) \cdot \mathrm{J} \Phi(\mathrm{u}) & =\mathrm{I}_{n} \quad \text { (chain rule) } \\
n \times n \times(\mathrm{u}) & =(\mathrm{J} \Phi(\mathrm{u}))^{-1}
\end{aligned}
$$

Let $\tilde{f}: V \rightarrow \mathbb{R}$ be a given function. Set

$$
f(\mathrm{u}):=\tilde{f}(\Phi(\mathrm{u}))=\tilde{f}(x)
$$

the by using the chain rule we obtain

$$
\frac{\partial f}{\partial u_{i}}=\sum_{j=1}^{n} \frac{\partial \tilde{f}}{\partial x_{j}} \frac{\partial \Phi_{j}}{\partial u_{i}}=: \sum_{j=1}^{n} g^{i j} \frac{\partial \tilde{f}}{\partial x_{j}} \quad J \phi(n)=\binom{\text { gral } \phi_{n}}{n-1 \phi_{n}}
$$

with

$$
g^{i j}:=\frac{\partial \Phi_{j}}{\partial u_{i}}, \quad \mathrm{G}(\mathrm{u}):=\left(g^{i j}\right)=(\mathrm{J} \Phi(\mathrm{u}))^{T}
$$

Notations.

We use the short notation

$$
\frac{\partial}{\partial u_{i}}=\sum_{j=1}^{n} g^{i j} \frac{\partial}{\partial x_{j}}{\underset{\mid}{\partial}{ }_{\frac{\partial}{\partial u_{n}}}^{\partial}}_{\substack{\frac{\partial}{1}}}=\nabla_{u}=\left(\partial_{(1)}\right)^{T} \nabla_{x}
$$

Analogously we can express the partial derivatives with respect to x_{i} by the partial derivatives with respect to u_{j}

$$
\frac{\partial}{\partial x_{i}}=\sum_{j=1}^{n} g_{i j} \frac{\partial}{\partial u_{j}} \quad \nabla_{x}=\left(\left.\sqrt{p^{-1}}\right|^{T} \nabla_{u}\right.
$$

where

$$
\left(J d\left(n_{1} T\right)^{-1}\right.
$$

$$
\left(g_{i j}\right):=\left(g^{i j}\right)^{-1}=(J \Phi)^{-T}=\left(J \Phi^{-1}\right)^{T}
$$

We obtain these relations by applying the chain rule on Φ^{-1}.

Example: polar coordinates.

We consider polar coordinates

$$
x=\Phi(u)=\binom{r \cos \varphi}{r \sin \varphi}
$$

We calculate

$$
J \Phi(\mathrm{u})=\left(\begin{array}{cc}
\cos \varphi & -r \sin \varphi \\
\sin \varphi & r \cos \varphi
\end{array}\right)
$$

and thus
$G\left(g^{i j}\right)=\left(\begin{array}{cc}\cos \varphi & \sin \varphi \\ -r \sin \varphi & r \cos \varphi\end{array}\right)$

$$
\left(\frac{\partial \partial}{\frac{\partial}{\partial y}}\right)=\nabla_{x}=\underbrace{\left.\sin \varphi \frac{1}{r} \cos \varphi\right)}_{\left(J \phi(u)^{-n}\right.}
$$

Partial derivatives for polar coordinates.

The calculation of the partial derivatives gives

$$
\begin{aligned}
\frac{\partial}{\partial x} & =\cos \varphi \frac{\partial}{\partial r}-\frac{1}{r} \sin \varphi \frac{\partial}{\partial \varphi} \\
\frac{\partial}{\partial y} & =\sin \varphi \frac{\partial}{\partial r}+\frac{1}{r} \cos \varphi \frac{\partial}{\partial \varphi}
\end{aligned}
$$

Example: Calculation of the Laplacian-operator in polar coordinates

$$
\begin{aligned}
\frac{\partial^{2}}{\partial x^{2}} & =\cos ^{2} \varphi \frac{\partial^{2}}{\partial r^{2}}-\frac{\sin (2 \varphi)}{r} \frac{\partial^{2}}{\partial r \partial \varphi}+\frac{\sin ^{2} \varphi}{r^{2}} \frac{\partial^{2}}{\partial \varphi^{2}}+\frac{\sin (2 \varphi)}{r^{2}} \frac{\partial}{\partial \varphi}+\frac{\sin ^{2} \varphi}{r} \frac{\partial}{\partial r} \\
\frac{\partial^{2}}{\partial y^{2}} & =\sin ^{2} \varphi \frac{\partial^{2}}{\partial r^{2}}+\frac{\sin (2 \varphi)}{r} \frac{\partial^{2}}{\partial r \partial \varphi}+\frac{\cos ^{2} \varphi}{r^{2}} \frac{\partial^{2}}{\partial \varphi^{2}}-\frac{\sin (2 \varphi)}{r^{2}} \frac{\partial}{\partial \varphi}+\frac{\cos ^{2} \varphi}{r} \frac{\partial}{\partial r} \\
\Delta & =\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}=\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \varphi^{2}}+\frac{1}{r} \frac{\partial}{\partial r}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial}{\partial x}=\operatorname{\omega i\varphi } \varphi \frac{\partial}{\partial r}-\frac{1}{r} \sin \varphi \frac{\partial}{\partial \varphi} \\
& \frac{\partial^{2}}{\partial \alpha^{2}}=\frac{\partial}{\partial \alpha}\left(\frac{\partial}{\partial \alpha}\right)=\left(\cos \varphi \frac{\partial}{\partial_{2}} \cdot \frac{1}{2} \sin \varphi \frac{\partial}{\partial \varphi}\right)\left(\cos \frac{\partial}{\partial_{2}}-\frac{1}{2} \sin \varphi \frac{\partial}{\partial \varphi}\right)=\mathbb{\omega} \\
& \cos \varphi \frac{\partial}{\partial 2}\left(\cos \varphi \frac{\partial}{\partial 2} f\right)=\cos ^{2} \varphi \frac{\partial^{2}}{\partial \partial_{2}} \\
& (*)=\cos ^{2} \varphi \frac{\partial^{2}}{\partial 2^{2}}+\frac{1}{n^{2}} \cos \varphi \sin \varphi \frac{\partial}{\partial \varphi}-\frac{1}{2} \cos \varphi \sin \varphi \frac{\partial^{2}}{\partial \overline{\partial \rho} 2} \\
& \frac{+\frac{\Delta}{n^{2}} \sin ^{2} \varphi \frac{\partial}{\partial 2}-\frac{1}{2} \sin \varphi \cos \frac{\partial^{2}}{\partial \varphi \partial 2}}{2 \sin \varphi \boldsymbol{n} \varphi=\sin 2 \varphi}
\end{aligned}
$$

Example: spherical coordinates.

$\Omega \in(0, \infty), \varphi \in[02 \pi), \theta \in[0 \pi]$
We consider spherical coordinates

$$
x=\Phi(u)=\left(\begin{array}{c}
r \cos \varphi \cos \theta \\
r \sin \varphi \cos \theta \\
r \sin \theta
\end{array}\right)
$$

The Jacobian-matrix is given by:

$$
J \Phi(u)=\left(\begin{array}{ccc}
\cos \varphi \cos \theta & -r \sin \varphi \cos \theta & -r \cos \varphi \sin \theta \\
\sin \varphi \cos \theta & r \cos \varphi \cos \theta & -r \sin \varphi \sin \theta \\
\sin \theta & 0 & r \cos \theta
\end{array}\right)
$$

Partial derivatives for spherical coordinates.

Calculating the partial derivatives gives

$$
\begin{aligned}
\frac{\partial}{\partial x} & =\cos \varphi \cos \theta \frac{\partial}{\partial r}-\frac{\sin \varphi}{r \cos \theta} \frac{\partial}{\partial \varphi}-\frac{1}{r} \cos \varphi \sin \theta \frac{\partial}{\partial \theta} \\
\frac{\partial}{\partial y} & =\sin \varphi \cos \theta \frac{\partial}{\partial r}+\frac{\cos \varphi}{r \cos \theta} \frac{\partial}{\partial \varphi}-\frac{1}{r} \sin \varphi \sin \theta \frac{\partial}{\partial \theta} \\
\frac{\partial}{\partial z} & =\sin \theta \frac{\partial}{\partial r}+\frac{1}{r} \cos \theta \frac{\partial}{\partial \theta}
\end{aligned}
$$

Example: calculation of the Laplace-operator in spherical coordinates

$$
\Delta=\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r^{2} \cos ^{2} \theta} \frac{\partial^{2}}{\partial \varphi^{2}}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}+\frac{2}{r} \frac{\partial}{\partial r}-\frac{\tan \theta}{r^{2}} \frac{\partial}{\partial \theta}
$$

Kapitel 1. Multivariate differential calculus

1.3 Mean value theorems and Taylor expansion

Theorem (Mean value theorem): Let $f: D \rightarrow \mathbb{R}$ be a scalar differentiable function on an open set $D \subset \mathbb{R}^{n}$. Let $\mathrm{a}, \mathrm{b} \in D$ be points in D such that the connecting line segment

$$
[\mathrm{a}, \mathrm{~b}]:=\{\mathrm{a}+t(\mathrm{~b}-\mathrm{a}) \mid t \in[0,1]\}
$$

lies entirely in D. Then there exits a number $\theta \in(0,1)$ with

$$
f(b)-f(a)=\operatorname{grad} f(a+\theta(b-a)) \cdot(b-a)
$$

Proof: We set

$$
h(t):=f(a+t(b-a))
$$

with the mean value theorem for a single variable and the chain rules we conclude 1dimensinal mean whe thewe.

$$
\begin{aligned}
f(\mathrm{~b})-f(\mathrm{a}) & =h(1)-h(0) \underline{\underline{l}} h^{\prime}(\theta) \cdot(1-0) \\
& =\operatorname{grad} f(\mathrm{a}+\theta(\mathrm{b}-\mathrm{a})) \cdot(\mathrm{b}-\mathrm{a})
\end{aligned}
$$

Definition and example.

Definition: If the condition $[\mathrm{a}, \mathrm{b}] \subset D$ holds true for all points $\mathrm{a}, \mathrm{b} \in D$, then the set D is called convex.

Example for the mean value theorem: Given a scalar function

$$
f(x, y):=\cos x+\sin y
$$

It is

$$
f(0,0)=f(\pi / 2, \pi / 2)=1 \quad \Rightarrow \quad f(\pi / 2, \pi / 2)-f(0,0)=0
$$

Applying the mean value theorem there exists a $\theta \in(0,1)$ with

$$
=\operatorname{grad} f\left(\theta\binom{\pi / 2}{\pi / 2}\right) \cdot\binom{\pi / 2}{\pi / 2}=0
$$

Indeed this is true for $\theta=\frac{1}{2}$.

Mean value theorem is only true for scalar functions.

Attention: The mean value theorem for multivariate functions is only true for scalar functions but in general not for vector-valued functions!

Examples: Consider the vector-valued Function

$$
f^{\prime}(t)=\binom{-\sin t}{\cos t}
$$

$$
\mathrm{f}(t):=\binom{\cos t}{\sin t}, \quad t \in[0, \pi / 2]
$$

It is
and

$$
\begin{aligned}
& \underset{f(\pi / 2)-\stackrel{Q}{f(0)})}{\mathrm{b}}=\left[\binom{0}{1}-\binom{1}{0}=\binom{-1}{1} \geqq \underset{\frac{\sqrt{2}}{2}}{0} \frac{\pi}{2}\right. \\
& \left.\left|f^{\prime}\left(\theta \frac{\pi}{2}\right) \cdot\left(\frac{\pi}{2}-0\right)\right|=\frac{\pi}{2}\binom{-\sin (\theta \pi / 2)}{\cos (\theta \pi / 2)} \right\rvert\,=\frac{\pi}{2}
\end{aligned}
$$

BUT: the vectors on the right hand side have lenght $\sqrt{2}$ and $\pi / 2$!

A mean value estimate for vector-valued functions.

Theorem: Let $\mathrm{f}: D \rightarrow \mathbb{R}^{m}$ be differentiable on an open set $D \subset \mathbb{R}^{n}$. Let a, b bei points in D with $[\mathrm{a}, \mathrm{b}] \subset D$. Then there exists a $\theta \in(0,1)$ with

$$
\|f(b)-f(a)\|_{2} \leq\|J f(a+\theta(b-a)) \cdot(b-a)\|_{2}
$$

Idea of the proof: Application of the mean value theorem to the scalar function $g(x)$ definid as

$$
\left.g(x):=(f(b)-f(a))^{T} f(x) \quad \text { (scalar product! }\right)
$$

Remark: Another (weaker) for of the mean value estimate is

$$
\|f(b)-f(a)\| \underset{\xi \in[a, b]}{ } \| J f(\xi))\|\cdot\|(b-a) \|
$$

where $\|\cdot\|$ denotes an arbitrary vector norm with related matrix norm.

$$
\begin{aligned}
& n=1 \text { Tayhor } \\
& f(x)=f\left(x_{0}\right)+\frac{f^{\prime}\left(x_{0}\right)}{1!}\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+R_{2}\left[x ; x_{0}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \lambda \frac{\partial}{\lambda} \frac{\partial x_{1}}{\partial x_{0}}\left(x_{1}-x_{10}\right)+\lambda_{1} \partial_{x_{2}} f\left(x_{0}\right)\left(x_{2}-1_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{2} \frac{\partial^{2}}{\partial x_{1}} f\left(G_{2}\left(x_{1}-x_{1}\right)^{2}+\frac{1}{1} \frac{\partial^{2}}{\partial x_{1} \alpha_{2}} f\left(x_{0}\right)\left(x_{1}-x_{10}\right)\left(x_{2}-x_{20}\right)+\frac{1}{2} \frac{\partial^{2}}{\partial x_{2}} f\left(x_{0},\left(x_{2}-x_{2}\right)^{2}\right.\right. \\
& \left.n=3 \quad|\alpha|=0 \quad(0, \infty) \quad|\alpha|=1 \begin{array}{ll}
1 & (1,0,0) \\
(0,0) \\
(1,0,1)
\end{array} \quad|\alpha|=2 \quad \begin{array}{ll}
(2,0,0) & (1,1,0) \\
(0,2,0) & (0,1,1) \\
(0,0,2)
\end{array}\right)
\end{aligned}
$$

Taylor series: notations.

$$
n=2 \quad \alpha!=0 \quad \alpha=(0,0)
$$

We define the multi-index $\alpha \in \mathbb{N}_{0}^{n}$ as

$$
|\alpha|=1 \quad \alpha=(1,0) J^{\alpha}=\frac{\partial}{\partial x}
$$

$$
\alpha:=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}_{0}^{n}
$$

$$
\alpha=(0,1), \alpha=\frac{\alpha}{\partial y}
$$

Let

$$
|\alpha|:=\alpha_{1}+\cdots+\alpha_{n} \quad \alpha!:=\alpha_{1}!\cdots \alpha_{n}!
$$

Let $f: D \rightarrow \mathbb{R}$ be $|\alpha|$ times continuous differentiable. Then we set

$$
D^{\alpha}=D_{1}^{\alpha_{1}} D_{2}^{\alpha_{2}} \ldots D_{n}^{\alpha_{n}}=\frac{\partial^{|\alpha|} f}{\partial x_{1}^{\alpha_{1}} \ldots \partial x_{n}^{\alpha_{n}}}
$$

where $D_{i}^{\alpha_{i}}=\underbrace{D_{i} \ldots D_{i}}_{\text {N:- al }}$. We write

$$
x^{\alpha}:=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \ldots x_{n}^{\alpha_{n}} \quad \text { for } x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} .
$$

The Taylor theorem.

Theorem: (Taylor)
Let $D \subset \mathbb{R}^{n}$ be open and convex. Let $f: D \rightarrow \mathbb{R}$ be a \mathcal{C}^{m+1}-function and $x_{0} \in D$. Then the Taylor-expansion holds true in $x \in D$

$$
\begin{aligned}
f(\mathrm{x}) & =T_{m}\left(\mathrm{x} ; \mathrm{x}_{0}\right)+R_{m}\left(\mathrm{x} ; \mathrm{x}_{0}\right) \\
T_{m}\left(\mathrm{x} ; \mathrm{x}_{0}\right) & =\sum_{|\alpha| \leq m} D^{D^{\alpha} f\left(\mathrm{x}_{0}\right)}\left(\mathrm{x}-\mathrm{x}_{0}\right)^{\alpha} \\
R_{m}\left(\mathrm{x} ; \mathrm{x}_{0}\right) & =\sum_{|\alpha|=m+1} \frac{D^{\alpha} f\left(\mathrm{x}_{0}+\theta\left(\mathrm{x}-\mathrm{x}_{0}\right)\right)}{\alpha!}\left(\mathrm{x}-\mathrm{x}_{0}\right)^{\alpha}
\end{aligned}
$$

for an appropriate $\theta \in(0,1)$.
Notation: In the Taylor-expansion we denote $T_{m}\left(x ; x_{0}\right)$ Taylor-polynom of degree m and $R_{m}\left(\mathrm{x} ; \mathrm{x}_{0}\right)$ Lagrange-remainder.

Derivation of the Taylor expansion.

We define a scalar function in one single variable $t \in[0,1]$ as

$$
g(t):=f\left(x_{0}+t\left(x-x_{0}\right)\right)
$$

and calculate the (univariate) Taylor-expansion at $t=0$. It is

$$
g(1)=g(0)+g^{\prime}(0) \cdot(1-0)+\frac{1}{2} g^{\prime \prime}(\xi) \cdot(1-0)^{2} \quad \text { for a } \xi \in(0,1)
$$

The calculation of $g^{\prime}(0)$ is given by the chain rule

$$
\begin{aligned}
g^{\prime}(0) & =\left.\frac{d}{d t} f\left(x_{1}^{0}+t\left(x_{1}-x_{1}^{0}\right), x_{2}^{0}+t\left(x_{2}-x_{2}^{0}\right), \ldots, x_{n}^{0}+t\left(x_{n}-x_{n}^{0}\right)\right)\right|_{t=0} \\
& =D_{1} f\left(x_{0}\right) \cdot\left(x_{1}-x_{1}^{0}\right)+\ldots+D_{n} f\left(x_{0}\right) \cdot\left(x_{n}-x_{n}^{0}\right) \\
& =\sum_{|\alpha|=1} \frac{D^{\alpha} f\left(x_{0}\right)}{\alpha!} \cdot\left(x-x_{0}\right)^{\alpha}
\end{aligned}
$$

Continuation of the derivation.

Calculation of $g^{\prime \prime}(0)$ gives

$$
\begin{aligned}
g^{\prime \prime}(0)= & \left.\frac{d^{2}}{d t^{2}} f\left(x_{0}+t\left(x-x_{0}\right)\right)\right|_{t=0}=\left.\frac{d}{d t} \sum_{k=1}^{n} D_{k} f\left(x^{0}+t\left(x-x^{0}\right)\right)\left(x_{k}-x_{k}^{0}\right)\right|_{t=0} \\
= & D_{11} f\left(x_{0}\right)\left(x_{1}-x_{1}^{0}\right)^{2}+D_{21} f\left(x_{0}\right)\left(x_{1}-x_{1}^{0}\right)\left(x_{2}-x_{2}^{0}\right) \\
& +\ldots+D_{i j} f\left(x_{0}\right)\left(x_{i}-x_{i}^{0}\right)\left(x_{j}-x_{j}^{0}\right)+\ldots+ \\
& \left.+D_{n-1, n} f\left(x_{0}\right)\left(x_{n-1}-x_{n-1}^{0}\right)\left(x_{n}-x_{n}^{0}\right)+D_{n n} f\left(x_{0}\right)\left(x_{n}-x_{n}^{0}\right)^{2}\right) \\
= & \sum_{|\alpha|=2} \frac{D^{\alpha} f\left(x_{0}\right)}{\alpha!}\left(x-x_{0}\right)^{\alpha} \quad \text { (exchange theorem of Schwarz!) }
\end{aligned}
$$

Continuation: Proof of the Taylor-formula by (mathematical) induction!

Proof of the Taylor theorem.

The function

$$
g(t):=f\left(x^{0}+t\left(x-x^{0}\right)\right)
$$

is $(m+1)$-times continuous differentiable and we have

$$
g(1)=\sum_{k=0}^{m} \frac{g^{(k)}(0)}{k!}+\frac{g^{(m+1)}(\theta)}{(m+1)!} \quad \text { for a } \theta \in[0,1]
$$

In addition we have (by induction over k)

$$
\frac{g^{(k)}(0)}{k!}=\sum_{|\alpha|=k} \frac{D^{\alpha} f\left(x^{0}\right)}{\alpha!}\left(x-x^{0}\right)^{\alpha}
$$

and

$$
\frac{g^{(m+1)}(\theta)}{(m+1)!}=\sum_{|\alpha|=m+1} \frac{D^{\alpha} f\left(\mathrm{x}^{0}+\theta\left(\mathrm{x}-\mathrm{x}^{0}\right)\right)}{\alpha!}\left(\mathrm{x}-\mathrm{x}^{0}\right)^{\alpha}
$$

Examples for the Taylor-expansion.

(1) Calculate the Taylor-polynom $T_{2}\left(x ; x_{0}\right)$ of degree 2 of the function

$$
f(x, y, z)=x y^{2} \sin z
$$

at $(x, y, z)=(1,2,0)^{T}$.
(2) The calculation of $T_{2}\left(x ; x_{0}\right)$ requires the partial derivatives up to order 2.
(3) These derivatives have to be evaluated at $(x, y, z)=(1,2,0)^{T}$.
(9) The result is $T_{2}\left(x ; x_{0}\right)$ in the form

$$
T_{2}\left(x ; x_{0}\right)=4 z(x+y-2)
$$

(5) Details on extra slide.

Remarks to the remainder of a Taylor-expansion.

Remark: The remainder of a Taylor-expansion contains all partial derivatives of order $(m+1)$:

$$
R_{m}\left(\mathrm{x} ; \mathrm{x}_{0}\right)=\sum_{|\alpha|=m+1} \frac{D^{\alpha} f\left(\mathrm{x}_{0}+\theta\left(\mathrm{x}-\mathrm{x}_{0}\right)\right)}{\alpha!}\left(\mathrm{x}-\mathrm{x}_{0}\right)^{\alpha}
$$

If all these derivative are bounded by aconstant C in a neighborhood of x_{0} then the estimate for the remainder hold true

$$
\left|R_{m}\left(\mathrm{x} ; \mathrm{x}_{0}\right)\right| \leq \frac{n^{m+1}}{(m+1)!} C\left\|\mathrm{x}-\mathrm{x}_{0}\right\|_{\infty}^{m+1}
$$

We conlude for the quality of the approximation of a \mathcal{C}^{m+1}-function by the Taylor-polynom

$$
f(x)=T_{m}\left(x ; x_{0}\right)+O\left(\left\|x-x_{0}\right\|^{m+1}\right)
$$

Special case $m=1$: For a \mathcal{C}^{2}-function $f(x)$ we obtain

$$
f(x)=f\left(x^{0}\right)+\operatorname{grad} f\left(x^{0}\right) \cdot\left(x-x^{0}\right)+O\left(\left\|x-x^{0}\right\|^{2}\right) .
$$

