Analysis III for engineering study programs

Ingenuin Gasser
Departments of Mathematics
Universität Hamburg

Technische Universität Hamburg-Harburg
 Wintersemester 2021/22

based on slides of Prof. Jens Struckmeier from Wintersemster 2020/21
office houn Thmsdey 11:15-12:15

Content of the course Analysis III.

(1) Partial derivatives, differential operators.
(2) Vector fields, total differential, directional derivative.
(3) Mean value theorems, Taylor's theorem.
(4) Extrem values, implicit function theorem.
(5) Implicit rapresentaion of curves and surfces.
(6) Extrem values under equality constraints.
(1) Newton-method, non-linear equations and the least squares method.
(8) Multiple integrals, Fubini's theorem, transformation theorem.
(9) Potentials, Green's theorem, Gauß's theorem.
(10) Green's formulas, Stokes's theorem.

Chapter 1. Multi variable differential calculus

1.1 Partial derivatives

Let

$$
f\left(x_{1}, \ldots, x_{n}\right) \text { a scalar function depending } n \text { variables }
$$

Example: The constitutive law of an ideal gas $p V=R T$.
Each of the 3 quantities p (pressure), V (volume) and T (emperature) can be expressed as a function of the others (R is the gas constant)

$$
\begin{aligned}
p & =p(V, t)=\frac{R T}{V} \\
V & =V(p, T)=\frac{R T}{p} \\
T & =T(p, V)=\frac{p V}{R}
\end{aligned}
$$

1.1. Partial derivatives

Definition: Let $D \subset \mathbb{R}^{n}$ be open, $f: D \rightarrow \mathbb{R}, x^{0} \in D$.

- f is called partially differentiable in x^{0} with respect to x_{1}, if the limit

$$
\frac{\partial f}{\partial x_{i}}\left(x^{0}\right):=\lim _{t \rightarrow 0} \frac{f\left(x^{0}+t \mathrm{e}_{i}\right)-f\left(x^{0}\right)}{t}
$$

exists. e_{i} denotes the i-th unit vector. The limit is called partial derivative of f with respect to x_{i} at x^{0}.

- If at every point x^{0} the partial derivatives with respect to every variable $x_{i}, i=1, \ldots, n$ exist and if the partial derivatives are continuous functions then we call f continuous partial differentiable or a \mathcal{C}^{1}-function.

1.1. Partial derivatives

Definition: Let $D \subset \mathbb{R}^{n}$ be open, $f: D \rightarrow \mathbb{R}, x^{0} \in D$.

- f is called partially differentiable in x^{0} with respect to x_{i} if the limit

$$
\begin{aligned}
\frac{\partial f}{\partial x_{i}}\left(x^{0}\right) & :=\lim _{t \rightarrow 0} \frac{f\left(x^{0}+t \mathrm{e}_{i}\right)-f\left(x^{0}\right)}{t} \\
& =\lim _{t \rightarrow 0} \frac{f\left(x_{1}^{0}, \ldots, x_{i}^{0}+t, \ldots, x_{n}^{0}\right)-f\left(x_{1}^{0}, \ldots, x_{i}^{0}, \ldots, x_{n}^{0}\right)}{t}
\end{aligned}
$$

exists. e_{i} denotes the i-th unit vector. The limit is called partial derivative of f with respect to x_{i} at x^{0}.

- If at every point x^{0} the partial derivatives with respect to every variable $x_{i}, i=1, \ldots, n$ exist and if the partial derivatives are continuous functions then we call f continuous partial differentiable or a \mathcal{C}^{1}-function.

Examples.

- Consider the function

$$
f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}
$$

At any point $x^{0} \in \mathbb{R}^{2}$ there exist both partial derivatives and both partial derivatives are continuous:

$$
\frac{\partial f}{\partial x_{1}}\left(x^{0}\right)=2 x_{1}, \quad \frac{\partial f}{\partial x_{2}}\left(x^{0}\right)=2 x_{2}
$$

Thus f is a \mathcal{C}^{1}-function.

- The function

$$
f\left(x_{1}, x_{2}\right)=x_{1}+\left|x_{2}\right|
$$

at $x^{0}=(0,0)^{T}$ is partial differentiable with respect to x_{1}, but the partial derivative with respect to x_{2} does not exist!

An engineering example.

The acoustic pressure of a one dimensional acoustic wave is given by

$$
p(x, t)=A \sin (\alpha x-\omega t)
$$

The partial derivative

$$
\frac{\partial p}{\partial x}=\alpha A \cos (\alpha x-\omega t)
$$

describes at a given time t the spacial rate of change of the pressure.
The partial derivative

$$
\frac{\partial p}{\partial t}=-\omega A \cos (\alpha x-\omega t)
$$

describes for a fixed position x the temporal rate of change of the acoustic pressure.

Rules for differentiation

- Let f, g be differentiable with respect to x_{i} and $\alpha, \beta \in \mathbb{R}$, then we have the rules

$$
\begin{aligned}
\frac{\partial}{\partial x_{i}}(\alpha f(\mathrm{x})+\beta g(\mathrm{x})) & =\alpha \frac{\partial f}{\partial x_{i}}(\mathrm{x})+\beta \frac{\partial g}{\partial x_{i}}(\mathrm{x}) \\
\frac{\partial}{\partial x_{i}}(f(\mathrm{x}) \cdot g(\mathrm{x})) & =\frac{\partial f}{\partial x_{i}}(\mathrm{x}) \cdot g(\mathrm{x})+f(\mathrm{x}) \cdot \frac{\partial g}{\partial x_{i}}(\mathrm{x}) \\
\frac{\partial}{\partial x_{i}}\left(\frac{f(\mathrm{x})}{g(\mathrm{x})}\right) & =\frac{\frac{\partial f}{\partial x_{i}}(\mathrm{x}) \cdot g(\mathrm{x})-f(\mathrm{x}) \cdot \frac{\partial g}{\partial x_{i}}(\mathrm{x})}{g(\mathrm{x})^{2}} \text { for } g(\mathrm{x}) \neq 0
\end{aligned}
$$

- An alternative notation for the partial derivatives of f with respect to x_{i} at x^{0} is given by

$$
D_{i} f\left(x^{0}\right) \quad \text { oder } \quad f_{x_{i}}\left(x^{0}\right)
$$

Gradient and nabla-operator.

Definition: Let $D \subset \mathbb{R}^{n}$ be an open set and $f: D \rightarrow \mathbb{R}$ partial differentiable.

- We denote the row vector

$$
\operatorname{grad} f\left(x^{0}\right):=\left(\frac{\partial f}{\partial x_{1}}\left(x^{0}\right), \ldots, \frac{\partial f}{\partial x_{n}}\left(x^{0}\right)\right)
$$

as gradient of f at x^{0}.

- We denote the symbolic vector

$$
\nabla:=\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}\right)^{T}
$$

as nabla-operator.

- Thus we obtain the column vector

$$
\nabla f\left(x^{0}\right):=\left(\frac{\partial f}{\partial x_{1}}\left(x^{0}\right), \ldots, \frac{\partial f}{\partial x_{n}}\left(x^{0}\right)\right)^{T}=\left(\text { graol } f\left(x_{s}\right)^{T}\right.
$$

More rules on differentiation.

Let f and g be partial differentiable. Then the following rules on differentiation hold true:

$$
\begin{aligned}
\operatorname{grad}(\alpha f+\beta g) & =\alpha \cdot \operatorname{grad} f+\beta \cdot \operatorname{grad} g \\
\operatorname{grad}(f \cdot g) & =g \cdot \operatorname{grad} f+f \cdot \operatorname{grad} g \\
\operatorname{grad}\left(\frac{f}{g}\right) & =\frac{1}{g^{2}}(g \cdot \operatorname{grad} f-f \cdot \operatorname{grad} g), \quad g \neq 0
\end{aligned}
$$

Examples:

- Let $f(x, y)=e^{x} \cdot \sin y$. Then:

$$
\operatorname{grad} f(x, y)=\left(e^{x} \cdot \sin y, e^{x} \cdot \cos y\right)=e^{x}(\sin y, \cos y)
$$

- For $r(\mathrm{x}):=\|\mathrm{x}\|_{2}=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}$ we have

$$
\operatorname{grad} r(\mathrm{x})=\frac{\mathrm{x}}{r(\mathrm{x})}=\frac{\mathrm{x}}{\|\mathrm{x}\|_{2}} \quad \text { für } \mathrm{x} \neq 0
$$

where $\mathrm{x}=\left(x_{1}, \ldots, x_{n}\right)$ denotes a row vector.

$$
\begin{aligned}
& n(x)=\sqrt{x_{1}^{2}+x_{2}^{2}+\ldots x_{n}^{2}} \\
& \frac{\partial n}{\partial x_{i}}=\frac{2 x_{i}}{2 r \sqrt{2}}=\frac{x_{i}}{R} \\
& \text { grod } n=\left(\frac{x_{1}}{n}, \cdots, \frac{x_{n}}{n}\right)=\frac{1}{n} x
\end{aligned}
$$

Partial differentiability does not imply continuity.

Observation: A partial differentiable function (with respect to all coordinates) is not necessarily a continuous function.
Example: Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined as

$$
f(x, y):=\left\{\begin{array}{ccc}
\frac{x \cdot y}{\left(x^{2}+y^{2}\right)^{2}} & : & \text { for }(x, y) \neq 0 \\
0 & : & \text { for }(x, y)=0
\end{array}\right.
$$

The function is partial differntiable on the entire \mathbb{R}^{2} and we have

$$
\begin{aligned}
f_{x}(0,0) & =f_{y}(0,0)=0 \\
\frac{\partial f}{\partial x}(x, y) & =\frac{y}{\left(x^{2}+y^{2}\right)^{2}}-4 \frac{x^{2} y}{\left(x^{2}+y^{2}\right)^{3}}, \quad(x, y) \neq(0,0) \\
\frac{\partial f}{\partial y}(x, y) & =\frac{x}{\left(x^{2}+y^{2}\right)^{2}}-4 \frac{x y^{2}}{\left(x^{2}+y^{2}\right)^{3}}, \quad(x, y) \neq(0,0)
\end{aligned}
$$

Example (continuation).

We calculate the partial derivatives at the origin $(0,0)$:

$$
\begin{aligned}
& \frac{\partial f}{\partial x}(0,0)=\lim _{t \rightarrow 0} \frac{\frac{f(t, 0)-f(0,0)}{t}=\frac{\overbrace{t \cdot 0}^{\left(t^{2}+0^{2}\right)^{2}}-0}{t}=0}{\frac{\partial f}{\partial y}(0,0)=\lim _{t \rightarrow 0} \frac{f(0, t)-f(0,0)}{t}=\frac{\frac{0 \cdot t}{\left(0^{2}+t^{2}\right)^{2}}-0}{t}=0}
\end{aligned}
$$

But: At $(0,0)$ the function is not continuous since

$$
\lim _{n \rightarrow \infty} f\left(\frac{1}{n}, \frac{1}{n}\right)=\frac{\frac{1}{n} \cdot \frac{1}{n}}{\left(\frac{1}{n} \cdot \frac{1}{n}+\frac{1}{n} \cdot \frac{1}{n}\right)^{2}}=\frac{\frac{1}{n^{2}}}{\frac{4}{n^{4}}}=\frac{n^{2}}{4} \rightarrow \infty
$$

and thus we have

$$
\lim _{(x, y) \rightarrow(0,0)} f(x, y) \neq f(0,0)=0
$$

Boundedness of the derivatives implies continuity.

To guarantee the continuity of a partial differentiable function we need additional conditions on f.

Theorem: Let $D \subset \mathbb{R}^{n}$ be an open set. Let $f: D \rightarrow \mathbb{R}$ be partial differentiable in a neighborhood of $x^{0} \in D$ and let the partial derivatives $\frac{\partial f}{\partial x_{i}}, i=1, \ldots, n$, be bounded. Then f is continuous in x^{0}.

Attention: In the previous example the partial derivatives are not bounded in a neighborhood of $(0,0)$ since

$$
\begin{aligned}
& \frac{\partial f}{\partial x}(x, y)=\frac{y}{\left(x^{2}+y^{2}\right)^{2}}-4 \frac{x^{2} y}{\left(x^{2}+y^{2}\right)^{3}} \text { für }(x, y) \neq(0,0) \\
& \frac{\partial f}{\partial x}(x, x)=\frac{x}{4 x^{4}}-4 \frac{1 x^{3}}{8}=\frac{1}{4 x^{6}}-2 \frac{1}{x^{6}} \\
& \text { Analysis III for students in engineering }
\end{aligned}
$$

Proof of the theorem.

For $\left\|\mathrm{x}-\mathrm{x}^{0}\right\|_{\infty}<\varepsilon, \varepsilon>0$ sufficiently small we write:

$$
\begin{aligned}
f(x)-f\left(x^{0}\right) & =\underbrace{\left(f\left(x_{1}, \ldots, x_{n-1}, x_{n}\right)-f\left(x_{1}, \ldots, x_{n-1}, x_{n}^{0}\right)\right)}_{f} \\
& +\left(f\left(x_{1}, \ldots, x_{n-1}, x_{n}^{0}\right)-f\left(x_{1}, \ldots, x_{n-2}, x_{n-1}^{0}, x_{n}^{0}\right)\right)
\end{aligned}
$$

$$
+\left(f\left(x_{1}, x_{2}^{0}, \ldots, x_{n}^{0}\right)-f\left(x_{1}^{0}, \ldots, x_{n}^{0}\right)\right)
$$

For any difference on the right hand side we consider f as a function in one single variable:

$$
g\left(x_{n}\right)-g\left(x_{n}^{0}\right):=f\left(x_{1}, \ldots, x_{n-1}, x_{n}\right)-f\left(x_{1}, \ldots, x_{n-1}, x_{n}^{0}\right)
$$

Since f is partial differentiable g is differentiable and we can apply the mean value theorem on g :

$$
g\left(x_{n}\right)-g\left(x_{n}^{0}\right)=g^{\prime}\left(\xi_{n}\right)\left(x_{n}-x_{n}^{0}\right)
$$

for an appropriate ξ_{n} between x_{n} and x_{n}^{0}.

Proof of the theorem (continuation).

Applying the mean value theorem to every term in the right hand side we obtain

$$
\begin{aligned}
f(x)-f\left(x^{0}\right) & =\frac{\partial f}{\partial x_{n}}\left(x_{1}, \ldots, x_{n-1}, \xi_{n}\right)\left(x_{n}-x_{n}^{0}\right) \\
& +\frac{\partial f}{\partial x_{n-1}}\left(x_{1}, \ldots, x_{n-2}, \xi_{n-1}, x_{n}^{0}\right) \cdot\left(x_{n-1}-x_{n-1}^{0}\right) \\
& \vdots \\
& +\frac{\partial f}{\partial x_{1}}\left(\xi_{1}, x_{2}^{0}, \ldots, x_{n}^{0}\right) \cdot\left(x_{1}-x_{1}^{0}\right)
\end{aligned}
$$

Using the boundedness of the partial derivatives

$$
\left|f(\mathrm{x})-f\left(x^{0}\right)\right| \leq C_{1}\left|x_{1}-x_{1}^{0}\right|+\cdots+C_{n}\left|x_{n}-x_{n}^{0}\right|
$$

for $\left\|\mathrm{x}-\mathrm{x}^{0}\right\|_{\infty}<\varepsilon$, we obtain the continuity of f at x^{0} since

$$
f(x) \rightarrow f\left(x^{0}\right) \quad \text { für }\left\|x-x^{0}\right\|_{\infty} \rightarrow 0
$$

Higher order derivatives.

Definition: Let f be a scalar function and partial differentiable on an open set $D \subset \mathbb{R}^{n}$. If the partial derivatives are differentiable we obtain (by differentiating) the partial derivatives of second order of f with

$$
\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}:=\frac{\partial}{\partial x_{j}}\left(\frac{\partial f}{\partial x_{i}}\right)
$$

Example: Second order partial derivatives of a function $f(x, y)$:

$$
\frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right), \quad \frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right), \quad \frac{\partial^{2} f}{\partial x \partial y}, \quad \frac{\partial^{2} f}{\partial y^{2}}
$$

Let $i_{1}, \ldots, i_{k} \in\{1, \ldots, n\}$. Then we define recursively

$$
\frac{\partial k}{\partial x_{i_{k}} \partial x_{i_{k-1}} \ldots \partial x_{i_{1}}}:=\frac{\partial}{\partial x_{i_{k}}}\left(\frac{\partial^{k-1} f}{\partial x_{i_{k-1}} \partial x_{i_{k-2}} \ldots \partial x_{i_{1}}}\right)
$$

Higher order derivatives.

Definition: The function f is called k-times partial differentiable, if all derivatives of order k,

$$
\frac{\partial^{k} f}{\partial x_{i_{k}} \partial x_{i_{k-1}} \ldots \partial x_{i_{1}}} \quad \text { for all } i_{1}, \ldots, i_{k} \in\{1, \ldots, n\}
$$

exist on D.
Alternative notation:

$$
\frac{\partial^{k} f}{\partial x_{i_{k}} \partial x_{i_{k-1}} \ldots \partial x_{i_{1}}}=D_{i_{k}} D_{i_{k-1}} \ldots D_{i_{1}} f=f_{x_{i_{1}} \ldots x_{i_{k}}}
$$

If all the derivatives of k-th order are continuous the function f is called k-times continuous partial differentiable or called a C C^{k}-function on D. Continuous functions f are called \mathcal{C}^{0}-functions.
Example: For the function $f\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} x_{i}^{i}$ we have $\frac{\partial^{n} f}{\partial x_{n} \ldots \partial x_{1}}=$?

Partial derivaratives are not arbitrarely exchangeable.

ATTENTION: The order how to execute partial derivatives is in general not arbitrarely exchangeable!

Example: For the function

$$
f(x, y):=\left\{\begin{array}{ccc}
x y \frac{x^{2}-y^{2}}{x^{2}+y^{2}} & : & \text { for }(x, y) \neq(0,0) \\
0 & : & \text { for }(x, y)=(0,0)
\end{array}\right.
$$

we calculate

$$
\begin{aligned}
f_{x y}(0,0) & =\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}(0,0)\right)=-1 \\
f_{y x}(0,0) & =\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}(0,0)\right)=+1
\end{aligned}
$$

i.e. $f_{x y}(0,0) \neq f_{y x}(0,0)$.

$$
\begin{aligned}
& f(x, y)= \begin{cases}x y \frac{x^{2}-y^{2}}{x^{2}+y^{2}} & (x, y) \neq(0,0) \\
0 & \end{cases} \\
& \frac{\partial f}{\partial x}(x, y)=y \frac{x^{2}-y^{2}}{x^{2}+y^{2}}+x y \underbrace{\left(x^{2}-y^{2}\right)^{2}}_{x y \frac{2 x\left(x^{2}+y^{2}\right)-2 x\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}} \\
& \frac{\partial f}{\partial \alpha}(0,0)=\ln \cdot \frac{\left.f(t, 0)-f\left(\theta_{1}\right)\right)}{f} \\
& h \frac{0-0}{+}=0 \\
& \left.\frac{\partial^{2} f}{\partial y \partial \alpha}=\lim _{t \rightarrow 0} \frac{\partial}{\partial \alpha} f(0, t)-\frac{\partial}{\partial \alpha} f(0,0)\right)= \\
& =\lim _{t \rightarrow 0} \frac{t-\frac{t^{2}}{t^{2}}-0}{t}=-1
\end{aligned}
$$

Theorem of Schwarz on exchangeablity.

Satz: Let $D \subset \mathbb{R}^{n}$ be open and let $f: D \rightarrow \mathbb{R}$ be a \mathcal{C}^{2}-function. Then it holds

$$
\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}\left(x_{1}, \ldots, x_{n}\right)=\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\left(x_{1}, \ldots, x_{n}\right)
$$

for all $i, j \in\{1, \ldots, n\}$.

Idea of the proof:

Apply the men value theorem twice.

Conclusion:

If f is a C^{k}-function, then we can exchange the differentiation in order to calculate partial derivatives up to order k arbitrarely!

Example for the exchangeability of partial derivatives.

Calculate the partial derivative of third order $f_{x y z}$ for the function

$$
f(x, y, z)=y^{2} z \sin \left(x^{3}\right)+\left(\cosh y+17 e^{x^{2}}\right) z^{2}
$$

The order of execution is exchangealbe since $f \in \mathcal{C}^{3}$.

- Differentiate first with respect to z :

$$
\frac{\partial f}{\partial z}=y^{2} \sin \left(x^{3}\right)+2 z\left(\cosh y+17 e^{x^{2}}\right)
$$

- Differentiate then f_{z} with respect to x (then cosh y disappears):

$$
\begin{aligned}
f_{z x} & =\frac{\partial}{\partial x}\left(y^{2} \sin \left(x^{3}\right)+2 z\left(\cosh y+17 e^{x^{2}}\right)\right) \\
& =3 x^{2} y^{2} \cos \left(x^{3}\right)+68 x z e^{x^{2}}
\end{aligned}
$$

- For the partial derivative of $f_{z x}$ with respect to y we obtain

$$
f_{x y z}=6 x^{2} y \cos \left(x^{3}\right)
$$

The Laplace operator.

The Laplace-operator or Laplacian is defined as

$$
\Delta:=\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}
$$

For a scalar function $u(x)=u\left(x_{1}, \ldots, x_{n}\right)$ we have $h=3 \Delta \Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{7}}{\partial \rightarrow^{2}}$

$$
\Delta u=\sum_{i=1}^{n} \frac{\partial^{2} u}{\partial x_{i}^{2}}=u_{x_{1} x_{1}}+\cdots+u_{x_{n} x_{n}}
$$

Examples of important partial differential equations of second order (i.e. equations containing partial derivatives up to order two):

$$
\left.\begin{array}{rlrlr}
\Delta u-\frac{1}{c^{2}} u_{t t} & =0 & & \text { (wave equation) } & \text { u deviation from the } \\
\text { stations stole }
\end{array}\right] \begin{aligned}
\Delta u-\frac{1}{k} u_{t} & =0 & & \text { (heat equation) }
\end{aligned} \quad \text { U temperat me. }
$$

Vector valued functions.

Definition: Let $D \subset \mathbb{R}^{n}$ be open and let $f: D \rightarrow \mathbb{R}^{m}$ be a vector valued function.

The function f is called partial differentiable on $\mathrm{x}^{0} \in D$, if for all $i=1, \ldots, n$ the limits

$$
\frac{\partial f}{\partial x_{i}}\left(x^{0}\right)=\lim _{t \rightarrow 0} \frac{f\left(x^{0}+t \mathrm{e}_{i}\right)-\mathrm{f}\left(\mathrm{x}^{0}\right)}{t}
$$

exist. The calculation is done componentwise

$$
\frac{\partial f}{\partial x_{i}}\left(x^{0}\right)=\left(\begin{array}{c}
\frac{\partial f_{1}}{\partial x_{i}} \\
\vdots \\
\frac{\partial f_{m}}{\partial x_{i}}
\end{array}\right) \quad \text { for } i=1, \ldots, n
$$

