Analysis III for engineering study programs

Ingenuin Gasser

Departments of Mathematics Universität Hamburg

Technische Universität Hamburg–Harburg Wintersemester 2021/22

based on slides of Prof. Jens Struckmeier from Wintersemster 2020/21

office hour thursday M:15 - 12:15 Rimon 4017 <ロト < 回 > < 回 > < 回 > < 回 >

Content of the course Analysis III.

- Partial derivatives, differential operators.
- 2 Vector fields, total differential, directional derivative.
- Mean value theorems, Taylor's theorem.
- Extrem values, implicit function theorem.
- Implicit rapresentation of curves and surfces.
- Sextrem values under equality constraints.
- Wewton-method, non-linear equations and the least squares method.
- Multiple integrals, Fubini's theorem, transformation theorem.
- Potentials, Green's theorem, Gauß's theorem.
- Green's formulas, Stokes's theorem.

Chapter 1. Multi variable differential calculus

1.1 Partial derivatives

Let

 $f(x_1,\ldots,x_n)$ a scalar function depending *n* variables

Example: The constitutive law of an ideal gas pV = RT.

Each of the 3 quantities p (pressure), V (volume) and T (emperature) can be expressed as a function of the others (R is the gas constant)

$$p = p(V, t) = \frac{RT}{V}$$
$$V = V(p, T) = \frac{RT}{p}$$
$$T = T(p, V) = \frac{pV}{R}$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 0 0

1.1. Partial derivatives

Definition: Let $D \subset \mathbb{R}^n$ be open, $f : D \to \mathbb{R}$, $x^0 \in D$.

• f is called partially differentiable in x^0 with respect to x if the limit

$$\begin{array}{rcl}
\frac{\partial f}{\partial x_{i}}(\mathbf{x}^{0}) &:= & \lim_{t \to 0} \frac{f(\mathbf{x}^{0} + t\mathbf{e}_{i}) - f(\mathbf{x}^{0})}{t} & & & \\
\mathcal{C}_{i} = \left(\bigcirc_{i} \bigcirc_{i} & \cdots_{i} \frown_{i} & \cdots_{i} \frown_{i} \\ & \vdots & \vdots & \vdots \\ \mathbb{Q}^{0 \leq i \neq 1} & = & \lim_{t \to 0} \frac{f(x_{1}^{0}, \dots, x_{i}^{0} + t, \dots, x_{n}^{0}) - f(x_{1}^{0}, \dots, x_{i}^{0}, \dots, x_{n}^{0})}{t}
\end{array}$$

exists. e_i denotes the *i*-th unit vector. The limit is called partial derivative of f with respect to x_i at x^0 .

If at every point x⁰ the partial derivatives with respect to every variable x_i, i = 1,..., n exist and if the partial derivatives are continuous functions then we call f continuous partial differentiable or a C¹-function.

・ ロ ト ・ 何 ト ・ ヨ ト ・ 日 ト

Definition: Let $D \subset \mathbb{R}^n$ be open, $f : D \to \mathbb{R}$, $x^0 \in D$.

• f is called partially differentiable in x^0 with respect to x_i if the limit

$$\begin{aligned} \frac{\partial f}{\partial x_i}(x^0) &:= \lim_{t \to 0} \frac{f(x^0 + te_i) - f(x^0)}{t} \\ &= \lim_{t \to 0} \frac{f(x_1^0, \dots, x_i^0 + t, \dots, x_n^0) - f(x_1^0, \dots, x_i^0, \dots, x_n^0)}{t} \end{aligned}$$

exists. e_i denotes the *i*-th unit vector. The limit is called partial derivative of f with respect to x_i at x^0 .

If at every point x⁰ the partial derivatives with respect to every variable x_i, i = 1,..., n exist and if the partial derivatives are continuous functions then we call f continuous partial differentiable or a C¹-function.

イロト 不得 トイラト イラト 二日

Consider the function

$$f(x_1, x_2) = x_1^2 + x_2^2$$

At any point $x^0\in\mathbb{R}^2$ there exist both partial derivatives and both partial derivatives are continuous:

$$\frac{\partial f}{\partial x_1}(x^0) = 2x_1, \qquad \frac{\partial f}{\partial x_2}(x^0) = 2x_2$$

Thus f is a C^1 -function.

• The function

$$f(x_1, x_2) = x_1 + |x_2|$$

at $x^0 = (0,0)^T$ is partial differentiable with respect to x_1 , but the partial derivative with respect to x_2 does **not** exist!

< 口 > < 同 > < 三 > < 三 > < □ > <

An engineering example.

The acoustic pressure of a one dimensional acoustic wave is given by

$$p(x,t) = A\sin(\alpha x - \omega t)$$

The partial derivative

$$\frac{\partial p}{\partial x} = \alpha A \cos(\alpha x - \omega t)$$

describes at a given time t the spacial rate of change of the pressure. The partial derivative

$$\frac{\partial p}{\partial t} = -\omega A \cos(\alpha x - \omega t)$$

describes for a fixed position x the temporal rate of change of the acoustic pressure.

イロト イヨト イヨト

Rules for differentiation

• Let f, g be differentiable with respect to x_i and $\alpha, \beta \in \mathbb{R}$, then we have the rules

$$\frac{\partial}{\partial x_i} \left(\alpha f(\mathbf{x}) + \beta g(\mathbf{x}) \right) = \alpha \frac{\partial f}{\partial x_i}(\mathbf{x}) + \beta \frac{\partial g}{\partial x_i}(\mathbf{x})$$
$$\frac{\partial}{\partial x_i} \left(f(\mathbf{x}) \cdot g(\mathbf{x}) \right) = \frac{\partial f}{\partial x_i}(\mathbf{x}) \cdot g(\mathbf{x}) + f(\mathbf{x}) \cdot \frac{\partial g}{\partial x_i}(\mathbf{x})$$
$$\frac{\partial}{\partial x_i} \left(\frac{f(\mathbf{x})}{g(\mathbf{x})} \right) = \frac{\frac{\partial f}{\partial x_i}(\mathbf{x}) \cdot g(\mathbf{x}) - f(\mathbf{x}) \cdot \frac{\partial g}{\partial x_i}(\mathbf{x})}{g(\mathbf{x})^2} \quad \text{for } g(\mathbf{x}) \neq 0$$

• An alternative notation for the partial derivatives of f with respect to x_i at x^0 is given by

3

・ロット 小田 マ イロット

Gradient and nabla-operator.

Definition: Let $D \subset \mathbb{R}^n$ be an open set and $f : D \to \mathbb{R}$ partial differentiable.

• We denote the row vector

grad
$$f(x^0) := \left(\frac{\partial f}{\partial x_1}(x^0), \dots, \frac{\partial f}{\partial x_n}(x^0)\right)$$

as gradient of f at x^0 .

• We denote the symbolic vector

$$\nabla := \left(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}\right)^T$$

as nabla-operator.

Thus we obtain the column vector

$$\nabla f(\mathbf{x}^{0}) := \left(\frac{\partial f}{\partial x_{1}}(\mathbf{x}^{0}), \dots, \frac{\partial f}{\partial x_{n}}(\mathbf{x}^{0})\right)^{T} = \left(\operatorname{proof}(\mathbf{x}^{0})\right)^{T}$$

< □ > < 同 > < 三 > < 三 >

More rules on differentiation.

Let f and g be partial differentiable. Then the following rules on differentiation hold true:

$$grad(\alpha f + \beta g) = \alpha \cdot grad f + \beta \cdot grad g$$

$$grad(f \cdot g) = g \cdot grad f + f \cdot grad g$$

$$grad\left(\frac{f}{g}\right) = \frac{1}{g^2}(g \cdot grad f - f \cdot grad g), \quad g \neq 0$$

Examples:

• Let
$$f(x, y) = e^x \cdot \sin y$$
. Then:
 $\operatorname{grad} f(x, y) = (e^x \cdot \sin y, e^x \cdot \cos y) = e^x(\sin y, \cos y)$
• For $r(x) := ||x||_2 = \sqrt{x_1^2 + \dots + x_n^2}$ we have
 $\operatorname{grad} r(x) = \frac{x}{r(x)} = \frac{x}{||x||_2}$ für $x \neq 0$,

where $x = (x_1, \ldots, x_n)$ denotes a row vector.

<ロト < 回ト < 回ト < 回ト < 回ト = 三回</p>

Partial differentiability does not imply continuity.

Observation: A partial differentiable function (with respect to all coordinates) is not necessarily a continuous function.

Example: Consider the function $f : \mathbb{R}^2 \to \mathbb{R}$ defined as

$$f(x,y) := \begin{cases} \frac{x \cdot y}{(x^2 + y^2)^2} & : & \text{for } (x,y) \neq 0 \\ 0 & : & \text{for } (x,y) = 0 \end{cases}$$

The function is partial differntiable on the entire \mathbb{R}^2 and we have

$$f_{x}(0,0) = f_{y}(0,0) = 0$$

$$\frac{\partial f}{\partial x}(x,y) = \frac{y}{(x^{2}+y^{2})^{2}} - 4\frac{x^{2}y}{(x^{2}+y^{2})^{3}}, \quad (x,y) \neq (0,0)$$

$$\frac{\partial f}{\partial y}(x,y) = \frac{x}{(x^{2}+y^{2})^{2}} - 4\frac{xy^{2}}{(x^{2}+y^{2})^{3}}, \quad (x,y) \neq (0,0)$$

Example (continuation).

We calculate the partial derivatives at the origin (0,0):

$$\frac{\partial f}{\partial x}(0,0) = \lim_{t \to 0} \frac{f(t,0) - f(0,0)}{t} = \frac{\underbrace{\frac{\partial f}{(t^2 + 0^2)^2} - 0}{(t^2 + 0^2)^2} = 0$$

$$\frac{\partial f}{\partial y}(0,0) = \lim_{t \to 0} \frac{f(0,t) - f(0,0)}{t} = \frac{\frac{0 \cdot t}{(0^2 + t^2)^2} - 0}{t} = 0$$

But: At (0,0) the function is **not** continuous since

$$\lim_{n \to \infty} f\left(\frac{1}{n}, \frac{1}{n}\right) = \frac{\frac{1}{n} \cdot \frac{1}{n}}{\left(\frac{1}{n} \cdot \frac{1}{n} + \frac{1}{n} \cdot \frac{1}{n}\right)^2} = \frac{\frac{1}{n^2}}{\frac{4}{n^4}} = \frac{n^2}{4} \to \infty$$

and thus we have

$$\lim_{(x,y)\to(0,0)} f(x,y) \neq f(0,0) = 0$$

Ingenuin Gasser (Mathematik, UniHH)

To guarantee the continuity of a partial differentiable function we need additional conditions on f.

Theorem: Let $D \subset \mathbb{R}^n$ be an open set. Let $f : D \to \mathbb{R}$ be partial differentiable in a neighborhood of $x^0 \in D$ and let the partial derivatives $\frac{\partial f}{\partial x_i}$, i = 1, ..., n, be bounded. Then f is continuous in x^0 .

Attention: In the previous example the partial derivatives are not bounded in a neighborhood of (0,0) since

$$\frac{\partial f}{\partial x}(x,y) = \frac{y}{(x^2 + y^2)^2} - 4\frac{x^2y}{(x^2 + y^2)^3} \quad \text{für } (x,y) \neq (0,0)$$

$$\frac{\partial f}{\partial x}(x,y) = \frac{x}{4x^5} - 4\frac{x^3}{8x^6} = \frac{4}{5x^3} - 2\frac{4}{x^5}$$

Ingenuin Gasser (Mathematik, UniHH)

Proof of the theorem.

For
$$\|\mathbf{x} - \mathbf{x}^0\|_{\infty} < \varepsilon$$
, $\varepsilon > 0$ sufficiently small we write:

$$\underbrace{f(\mathbf{x}) - f(\mathbf{x}^0)}_{t \circ show} = \underbrace{(f(x_1, \dots, x_{n-1}, x_n) - f(x_1, \dots, x_{n-1}, x_n^0))}_{(f(x_1, \dots, x_{n-1}, x_n^0) - f(x_1, \dots, x_{n-2}, x_{n-1}^0, x_n^0))}$$

$$\underbrace{(f(x_1, \dots, x_{n-1}, x_n^0) - f(x_1, \dots, x_{n-2}, x_{n-1}^0, x_n^0))}_{C(x_1, \dots, x_{n-1}, x_n^0)} = \underbrace{(f(x_1, \dots, x_{n-1}, x_n^0) - f(x_1, \dots, x_{n-2}, x_{n-1}^0, x_n^0))}_{\vdots}$$

+
$$(f(x_1, x_2^0, \dots, x_n^0) - \underline{f(x_1^0, \dots, x_n^0)})$$

For any difference on the right hand side we consider f as a function in one single variable:

$$g(x_n) - g(x_n^0) := f(x_1, \ldots, x_{n-1}, x_n) - f(x_1, \ldots, x_{n-1}, x_n^0)$$

Since f is partial differentiable g is differentiable and we can apply the mean value theorem on g:

$$g(x_n) - g(x_n^0) = g'(\xi_n)(x_n - x_n^0)$$

for an appropriate ξ_n between x_n and x_n^0 .

Ingenuin Gasser (Mathematik, UniHH)

Proof of the theorem (continuation).

Applying the mean value theorem to every term in the right hand side we obtain

$$f(\mathbf{x}) - f(\mathbf{x}^{0}) = \underbrace{\frac{\partial f}{\partial x_{n}}(x_{1}, \dots, x_{n-1}, \xi_{n})}_{+ \frac{\partial f}{\partial x_{n-1}}(x_{1}, \dots, x_{n-2}, \xi_{n-1}, x_{n}^{0}) \cdot (x_{n-1} - x_{n-1}^{0})}$$

+
$$\frac{\partial f}{\partial x_1}(\xi_1, x_2^0, \ldots, x_n^0) \cdot (x_1 - x_1^0)$$

Using the boundedness of the partial derivatives

$$|f(x) - f(x^0)| \le C_1 |x_1 - x_1^0| + \dots + C_n |x_n - x_n^0|$$

for $\|\mathbf{x} - \mathbf{x}^0\|_{\infty} < \varepsilon$, we obtain the continuity of f at \mathbf{x}^0 since

$$f(\mathbf{x}) \to f(\mathbf{x}^0)$$
 für $\|\mathbf{x} - \mathbf{x}^0\|_{\infty} \to 0$

Higher order derivatives.

Definition: Let f be a scalar function and partial differentiable on an open set $D \subset \mathbb{R}^n$. If the partial derivatives are differentiable we obtain (by differentiating) the partial derivatives of second order of f with

$$\frac{\partial^2 f}{\partial x_j \partial x_i} := \frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i} \right)$$

Example: Second order partial derivatives of a function f(x, y):

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right), \quad \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right), \quad \frac{\partial^2 f}{\partial x \partial y}, \quad \frac{\partial^2 f}{\partial y^2}$$

Let $i_1, \dots, i_k \in \{1, \dots, n\}$. Then we define recursively
$$\frac{\partial f}{\partial x_{i_k} \partial x_{i_{k-1}} \dots \partial x_{i_1}} := \frac{\partial}{\partial x_{i_k}} \left(\frac{\partial^{k-1} f}{\partial x_{i_{k-1}} \partial x_{i_{k-2}} \dots \partial x_{i_1}} \right)$$

ヘロト A倒ト AEト AEト

Higher order derivatives.

Definition: The function f is called k-times partial differentiable, if all derivatives of order k,

 $\frac{\partial^k f}{\partial x_{i_k} \partial x_{i_{k-1}} \dots \partial x_{i_1}} \quad \text{for all } i_1, \dots, i_k \in \{1, \dots, n\},$

exist on D.

Alternative notation:

$$\frac{\partial^k f}{\partial x_{i_k} \partial x_{i_{k-1}} \dots \partial x_{i_1}} = D_{i_k} D_{i_{k-1}} \dots D_{i_1} f = f_{x_{i_1} \dots x_{i_k}}$$

If all the derivatives of k-th order are continuous the function f is called k-times continuous partial differentiable or called a C^k -function on D. Continuous functions f are called C^0 -functions.

Example: For the function
$$f(x_1, \ldots, x_n) = \prod_{i=1}^n x_i^i$$
 we have $\frac{\partial^n f}{\partial x_n \ldots \partial x_1} = 2$

イロト 不得 トイヨト イヨト 二日

Partial derivaratives are not arbitrarely exchangeable.

ATTENTION: The order how to execute partial derivatives is in general not arbitrarely exchangeable!

Example: For the function

$$f(x,y) := \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2} & : \text{ for } (x,y) \neq (0,0) \\ 0 & : \text{ for } (x,y) = (0,0) \end{cases}$$

we calculate

$$f_{xy}(0,0) = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x}(0,0) \right) = -1$$
$$f_{yx}(0,0) = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y}(0,0) \right) = +1$$

i.e. $f_{xy}(0,0) \neq f_{yx}(0,0)$.

 $f(X,\gamma) = \begin{cases} x & \frac{x^2 - \gamma^2}{x^2 + \gamma^2} \\ 0 & x^2 + \gamma^2 \end{cases}$ $(X, \gamma) \neq (0, \gamma)$ $\frac{\partial f(x_{12})}{\partial x} = \gamma \frac{x^{2} + \gamma^{2}}{x^{2} + \gamma^{2}} + x_{12} \frac{2x(x^{2} + \gamma^{2}) - 2x(x^{2} + \gamma^{2})}{x^{2} + \gamma^{2}}$ $xy \frac{4xy^2}{(x - y^2)^2}$ $\frac{\partial f}{\partial x}(0,0) = h_{i} \frac{f(t,0) - f(0,0)}{f(t,0) - f(0,0)}$ $\frac{\partial f}{\partial y \partial x} = \lim_{t \to 0} \frac{\partial}{\partial x} f(0,t) - \frac{\partial}{\partial x} f(0,0)$ $= h_{1} + \frac{1}{72} + \frac{1}{72} - 0 = -1$ $+ -\infty + \frac{1}{72} + \frac{1}{$

Satz: Let $D \subset \mathbb{R}^n$ be open and let $f : D \to \mathbb{R}$ be a \mathcal{C}^2 -function. Then it holds

$$\frac{\partial^2 f}{\partial x_j \partial x_i}(x_1,\ldots,x_n) = \frac{\partial^2 f}{\partial x_i \partial x_j}(x_1,\ldots,x_n)$$

for all $i, j \in \{1, \ldots, n\}$.

Idea of the proof:

Apply the men value theorem twice.

Conclusion:

If f is a C^k -function, then we can exchange the differentiation in order to calculate partial derivatives up to order k arbitrarely!

イロト イポト イヨト イヨト 二日

Example for the exchangeability of partial derivatives.

Calculate the partial derivative of third order f_{xyz} for the function

$$f(x, y, z) = y^2 z \sin(x^3) + (\cosh y + 17e^{x^2})z^2$$

The order of execution is exchangealbe since $f \in C^3$.

• Differentiate first with respect to z:

$$\frac{\partial f}{\partial z} = y^2 \sin(x^3) + 2z(\cosh y + 17e^{x^2})$$

• Differentiate then f_z with respect to x (then $\cosh y$ disappears):

$$f_{zx} = \frac{\partial}{\partial x} \left(y^2 \sin(x^3) + 2z(\cosh y + 17e^{x^2}) \right)$$
$$= 3x^2 y^2 \cos(x^3) + 68xze^{x^2}$$

• For the partial derivative of f_{zx} with respect to y we obtain

$$f_{xyz} = 6x^2y\cos(x^3)$$

イロト イヨト イヨト -

The Laplace operator.

The Laplace–operator or Laplacian is defined as h=2 $\Delta=2$

$$\Delta := \sum_{i=1}^{n} \frac{\partial^2}{\partial x_i^2}$$

For a scalar function $u(x) = u(x_1, \ldots, x_n)$ we have

$$\Delta u = \sum_{i=1}^{n} \frac{\partial^2 u}{\partial x_i^2} = u_{x_1 x_1} + \dots + u_{x_n x_n}$$

Examples of important partial differential equations of second order (i.e. equations containing partial derivatives up to order two):

 $\Delta u - \frac{1}{c^2} u_{tt} = 0 \quad (\text{wave equation}) \quad \mathcal{Y} \stackrel{\text{deviation}}{\underset{\text{stations}}{\text{from the}}} \int du = 0 \quad (\text{heat equation}) \quad \mathcal{Y} \stackrel{\text{form the station}}{\underset{\text{stations}}{\text{form the state}}} \int du = 0 \quad (\text{Laplace-equation or equation for the potential})$

h=3 = 3^{2} = 3^{2} + 3^{2} = 3^{2}

Vector valued functions.

Definition: Let $D \subset \mathbb{R}^n$ be open and let $f : D \to \mathbb{R}^m$ be a vector valued function.

The function f is called partial differentiable on $x^0 \in D$, if for all i = 1, ..., n the limits

$$\frac{\partial f}{\partial x_i}(x^0) = \lim_{t \to 0} \frac{f(x^0 + te_i) - f(x^0)}{t}$$

exist. The calculation is done componentwise

$$\frac{\partial f}{\partial x_i}(x^0) = \begin{pmatrix} \frac{\partial f_1}{\partial x_i} \\ \vdots \\ \frac{\partial f_m}{\partial x_i} \end{pmatrix} \quad \text{for } i = 1, \dots, n$$

3

イロト イヨト イヨト