Dr. H. P. Kiani, S. Onyshkevych

Analysis III for Engineering Students
 Homework sheet 5

Exercise 1

The equation

$$
g(x, y)=\left(x^{2}+4 y^{2}\right)^{2}+x^{2}-4 y^{2}=0
$$

is an implicit description of the curve in \mathbb{R}^{2}.
a) Show that $(x, y)=(0,0)^{T}$ is a singular point of the implicitly defined curve

$$
\left(x^{2}+4 y^{2}\right)^{2}+x^{2}-4 y^{2}=0
$$

and determine whether it is an isolated point, double point or a return point (cusp).
b) Show that there are no other singular points.
c) Compute the points on the curve with horizontal or vertical tangent.

Solution: $[?+?+?$ points $]$
a) $g_{x}(x, y)=2\left(x^{2}+4 y^{2}\right) 2 x+2 x=2 x\left(2 x^{2}+8 y^{2}+1\right) \Longrightarrow g_{x}(0,0)=0$

$$
g_{y}(x, y)=2\left(x^{2}+4 y^{2}\right) 8 y-8 y=8 y\left(2 x^{2}+8 y^{2}-1\right) \quad \Longrightarrow g_{y}(0,0)=0
$$

Further, it holds that $g(0,0)=0$. So the point $(0,0)^{T}$ is a singular point of the curve. It holds

$$
\begin{aligned}
g_{x x} & =12 x^{2}+16 y^{2}+2 \\
g_{x y} & =32 x y \\
g_{y y} & =16 x^{2}+192 y^{2}-8
\end{aligned}
$$

so we have

$$
H g(0,0)=\left(\begin{array}{cc}
+2 & 0 \\
0 & -8
\end{array}\right)
$$

Hence, it is a double point.
b) We are looking for the points where holds $g=g_{x}=g_{y}=0$.

$$
0=g_{x}(x, y)=2 x\left(2 x^{2}+8 y^{2}+1\right) \Longleftrightarrow x=0
$$

$$
0=g_{y}=8 y\left(2 x^{2}+8 y^{2}-1\right)
$$

$$
\Longleftrightarrow y=0 \text { or } 2 x^{2}+8 y^{2}=1
$$

By setting $x=0$ in $2 x^{2}+8 y^{2}=1$, we obtain $y^{2}=1 / 8$. But now it holds $g\left(0, \pm \sqrt{\frac{1}{8}}\right)=\frac{1}{4}-\frac{1}{2} \neq 0$.
So the points $\left(0, \pm \sqrt{\frac{1}{8}}\right)^{T}$ do not belong the curve. Hence, the point $\binom{0}{0}$ is the only stationary point.
c) Points with horizontal tangent: It should hold $g=g_{x}=0, g_{y} \neq 0$.

We already showed above that: $g_{x}=0 \Longrightarrow x=0$.
The points we are looking for should belong to the curve:
$g(0, y)=\left(4 y^{2}\right)^{2}-4 y^{2}=0 \Longrightarrow y=0$ or $4 y^{2}=1$.
$y=0$ gives us a singular point. So we have $y= \pm \frac{1}{2}$. From the part b) we know, that there is no other singular point apart from $(0,0)$, so the curve has horizontal tangents at:

$$
P_{1}=\binom{0}{-\frac{1}{2}} \quad P_{2}=\binom{0}{\frac{1}{2}}
$$

We still have to find the points with a vertical tangent $g=g_{y}=0, g_{x} \neq 0$.

$$
\begin{aligned}
& g_{y}=8 y\left(2 x^{2}+8 y^{2}-1\right) \stackrel{!}{=} 0 \\
& \Longleftrightarrow y=0 \vee 2 x^{2}+8 y^{2}-1=0 \\
& y=0 \text { plugged into } g \\
& g(x, 0)=\left(x^{2}+0\right)^{2}+x^{2}=0 \Longleftrightarrow x=0 . \text { So it is a singular point. } \\
& 2 x^{2}+8 y^{2}-1=0 \Longleftrightarrow 4 y^{2}=\frac{1}{2}-x^{2} \text { plugged into } g \\
& g(x, y)=\left(x^{2}+4 y^{2}\right)^{2}+x^{2}-4 y^{2}=\left(x^{2}+\frac{1}{2}-x^{2}\right)^{2}+x^{2}-\frac{1}{2}+x^{2}=0 . \\
& \Longleftrightarrow x^{2}=\frac{1}{8}, \quad y^{2}=\frac{1}{8}\left(1-2 x^{2}\right)=\frac{3}{32}
\end{aligned}
$$

Since there is no other singular point except $(0,0)$, the other four points in which $g=g_{y}=0$ holds, are the points with vertical tangent:

$$
P_{3}=\binom{-\frac{1}{\sqrt{8}}}{-\frac{\sqrt{3}}{2 \sqrt{8}}} \quad P_{4}=\binom{-\frac{1}{\sqrt{8}}}{+\frac{\sqrt{3}}{2 \sqrt{8}}} \quad P_{5}=\binom{\frac{1}{\sqrt{8}}}{\frac{\sqrt{3}}{2 \sqrt{8}}} \quad P_{6}=\binom{\frac{1}{\sqrt{8}}}{-\frac{\sqrt{3}}{2 \sqrt{8}}}
$$

Exercise 2: We are looking for the extrema of the function

$$
f(x, y)=2 \ln \left(\frac{x}{y}\right)+x+5 y
$$

that fulfill the constraint

$$
g(x, y)=x y-1=0
$$

a) Show that $\left(x_{0}, y_{0}\right)^{T}=(1,1)^{T}$ with the suitable fixed λ is a feasible stationary point of the Lagrangian $F=f+\lambda g$ and check the regularity conditions at the point $\left(x_{0}, y_{0}\right)^{T}=(1,1)^{T}$.
b) Determine of what type the stationary point $\left(x_{0}, y_{0}\right)^{T}=(1,1)^{T}$ is. To do so, assemble the Hessian matrix $\boldsymbol{H}_{\boldsymbol{x}} F\left(x_{0}, y_{0}\right)$ and check its definiteness on the tangent space $\operatorname{ker}\left(D g\left(x_{0}, y_{0}\right)\right)$.

Solution:

a) Es gilt $g(1,1)=1-1=0$. Hence the point $\left(x_{0}, y_{0}\right)^{T}=(1,1)^{T}$ is admissible. [1 point]
$\nabla g(x, y)=\binom{y}{x} \Longrightarrow \nabla g(1,1)=\binom{1}{1}$. So the regularity condition is satisfied. point]

For f we compute

$$
\nabla f(x, y)=\binom{2 \frac{\frac{1}{y}}{\frac{x}{y}}+1}{2 \frac{\frac{-x}{y^{2}}}{\frac{x}{y}}+5}=\binom{2 \frac{1}{x}+1}{2 \frac{-1}{y}+5} . \quad[1 \text { point }]
$$

Thus, for an admissible stationary point of the Lagrange function $F=f+\lambda g$ we obtain the system of equations :

$$
\begin{aligned}
F_{x} & =\frac{2}{x}+1+\lambda y=0 \\
F_{y} & =\frac{-2}{y}+5+\lambda x=0 \\
g & =x y-1=0 . \quad[1 \text { point }]
\end{aligned}
$$

So for $x=y=1$

$$
\begin{aligned}
& F_{x}: \frac{2}{1}+1+\lambda=0 \Longleftrightarrow \lambda=-3 \\
& F_{y}=\frac{-2}{1}+5+\lambda=0 \Longleftrightarrow \lambda=-3 \\
& g=1-1=0 . \quad[1 \text { point }]
\end{aligned}
$$

So $(1,1)^{T}$ is a stationary point of the Lagrangian with the corresponding multiplire $\lambda=-3$.
b) With $\lambda=-3$ it holds for the Hessian matrix:

$$
\boldsymbol{H}_{\boldsymbol{x}} F(x, y)=\left(\begin{array}{cc}
-\frac{2}{x^{2}} & +\lambda \\
+\lambda & \frac{2}{y^{2}}
\end{array}\right) \Longrightarrow\left(\begin{array}{cc}
-2 & -3 \\
-3 & 2
\end{array}\right) \quad[\mathbf{1} \text { point }]
$$

i.e. $\quad \boldsymbol{H}_{\boldsymbol{x}} F(1,1)$ is indefinite $\left(\operatorname{det} \boldsymbol{H}_{\boldsymbol{x}} F(1,1)=-13\right)$. [1 point]

Tangential space:

$$
\boldsymbol{v}=\binom{x}{y} \text { with } \nabla g(1,1)^{T} \cdot\binom{x}{y}=0 \Rightarrow x+y=0 \quad \quad[\mathbf{1} \text { point }]
$$

On the tangential space:

$$
(1,-1) \boldsymbol{H}_{\boldsymbol{x}} F(1,1)\binom{1}{-1}=(1,-1)\left(\begin{array}{cc}
-2 & -3 \\
-3 & 2
\end{array}\right)\binom{1}{-1}=(1,-1)\binom{1}{-5}=6>0
$$

[1 point]

i.e. the Hessian matrix $\boldsymbol{H}_{\boldsymbol{x}} F(1,1)$ is positive definite on the tangential space. Hence in the point $(1,1)$ we have a strict local minimum.
[1 point]

Exercise 3)

Compute
a) the integral

$$
\iint_{D_{1}} x y^{2} d(x, y) \quad, \text { where } D_{1}=[-1,3] \times[1,2]
$$

b) the volume of the body $K \subset \mathbb{R}^{3}$,

$$
K=\left\{\left.\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)| | x \right\rvert\, \leq 1, \quad-\left(1-x^{2}\right) \leq y \leq 1-x^{2}, \quad 0 \leq z \leq\left(1-x^{2}-y\right)\right\}
$$

c) and the integral

$$
\iint_{D_{2}}\left(x^{2}-y^{4}\right) d(x, y) \quad, \text { where } D_{2}=\{(x, y):|x|+|y| \leq 1\}
$$

Hint: Use the symmetries!

Solution: [3+4+3 Points]
a)

$$
\begin{aligned}
& \iint_{D_{1}} x y^{2} d(x, y) \text { mit } D_{1}=[-1,3] \times[1,2] \\
I_{1}:= & \int_{1}^{2} \int_{-1}^{3} x y^{2} d x d y=\int_{1}^{2} y^{2} \int_{-1}^{3} x d x d y \\
= & \left(\int_{1}^{2} y^{2} d y\right)\left(\int_{-1}^{3} x d x\right)=\left.\left.\frac{y^{3}}{3}\right|_{1} ^{2} \cdot \frac{x^{2}}{2}\right|_{-1} ^{3}=28 / 3 .
\end{aligned}
$$

b)

$$
\begin{aligned}
V & =\int_{K} 1 \mathrm{~d}(x, y)=\int_{-1}^{1} \int_{-\left(1-x^{2}\right)}^{1-x^{2}} \int_{0}^{1-x^{2}-y} \mathrm{~d} z \mathrm{~d} y \mathrm{~d} x \\
& =\int_{-1}^{1} \int_{-\left(1-x^{2}\right)}^{1-x^{2}}\left(1-x^{2}-y\right) \mathrm{d} y \mathrm{~d} x \\
& =\int_{-1}^{1} 2\left(1-x^{2}\right)^{2}-\left[\frac{1}{2} y^{2}\right]_{-\left(1-x^{2}\right)}^{1-x^{2}} \mathrm{~d} x \\
& =2\left[x-\frac{2}{3} x^{3}+\frac{1}{5} x^{5}\right]_{-1}^{1} \\
& =4\left(1-\frac{2}{3}+\frac{1}{5}\right)=\frac{32}{15}
\end{aligned}
$$

c)

$$
\iint_{D_{2}}\left(x^{2}-y^{4}\right) d(x, y) \quad \text { mit } D_{2}=\{(x, y):|x|+|y| \leq 1\}
$$

Firstly one observes that $f(x, y)=x^{2}-y^{4}$ and D_{2} are axially symmetrical with respect to both the x-axis and y-axis. So it holds $\bar{D}=D_{2} \cap$ (1st quadrant) and we have

$$
I_{2}:=\iint_{D_{2}} f(x, y) d(x, y)=4 \cdot \iint_{\bar{D}} f(x, y) d(x, y)
$$

Hence we obtain

$$
\begin{aligned}
I_{2} & =4 \int_{0}^{1} \int_{0}^{1-x} x^{2}-y^{4} d y d x=\left.4 \int_{0}^{1}\left(x^{2} y-\frac{y^{5}}{5}\right)\right|_{0} ^{1-x} d x \\
& =4 \int_{0}^{1}\left(x^{2}(1-x)-\frac{(1-x)^{5}}{5}\right) d x=4\left[\frac{x^{3}}{3}-\frac{x^{4}}{4}+\left.\frac{(1-x)^{6}}{30}\right|_{0} ^{1}\right] \\
& =4\left[\frac{1}{3}-\frac{1}{4}+0-\left(0-0+\frac{1}{30}\right)\right]=\frac{1}{5}
\end{aligned}
$$

Submission deadline: 13.12.-17.12.21

