Dr. H. P. Kiani, S. Onyshkevych

Analysis III for Engineering Students
 Homework sheet 4

Exercise 1 [12 points] Given a function

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad f(x, y)=x \cdot \arctan (y)+e^{x+y}-1
$$

a) Compute the second degree Taylor polynomial T_{2} of f centered at a point $(0,0)^{\mathrm{T}}$.
b) Show that for the remainder $R_{2}(x, y)=f(x, y)-T_{2}(x, y)$ in the area $|x| \leq 0.1,|y| \leq 0.1$ the following estimate holds:

$$
\left|R_{2}(x, y)\right| \leq 0.006
$$

c) Find the stationary point of T_{2} and check, whether it is minimum, maximum or a saddle point.

Hints: $\quad(\arctan (y))^{\prime}=\frac{1}{1+y^{2}}, \arctan (0)=0$.

Solution:

a) [4 points]

Value at $(0,0)^{T}$

$$
\begin{array}{ll}
f(x, y):=x \cdot \arctan (y)+e^{x+y}-1 & 0 \\
f_{x}(x, y)=\arctan (y)+e^{x+y} & 1 \\
f_{y}(x, y)=\frac{x}{1+y^{2}}+e^{x+y} & 1 \\
f_{x x}(x, y)=e^{x+y} & 1 \\
f_{x y}(x, y)=\frac{1}{1+y^{2}}+e^{x+y} & 2 \\
f_{y y}(x, y)=\frac{-2 x y}{\left(1+y^{2}\right)^{2}}+e^{x+y} & 1
\end{array}
$$

$$
T_{2}(x, y)=x+y+\frac{1}{2} x^{2}+2 x y+\frac{1}{2} y^{2}
$$

b) $[4$ points $]$

$$
\begin{aligned}
\left|f_{x x x}(x, y)\right| & =\left|e^{x+y}\right| & & \leq e^{0.2} \\
\left|f_{x x y}(x, y)\right| & =\left|e^{x+y}\right| & & \leq e^{0.2} \\
\left|f_{x y y}(x, y)\right| & =\left|\frac{-2 y}{\left(1+y^{2}\right)^{2}}+e^{x+y}\right| & & \leq 0.2+e^{0.2} \\
\left|f_{y y y}(x, y)\right| & =\left|-2 x \cdot \frac{\left(1+y^{2}\right)^{2}-4 y^{2}\left(1+y^{2}\right)}{\left(1+y^{2}\right)^{4}}+e^{x+y}\right| & & \leq 0.3+e^{0.2}
\end{aligned}
$$

For the last derivative for example one computes
$\left|2 x \cdot \frac{\left(1+y^{2}\right)^{2}-4 y^{2}\left(1+y^{2}\right)}{\left(1+y^{2}\right)^{4}}\right| \leq 0.2\left(\frac{1}{\left(1+y^{2}\right)^{2}}+\frac{4|y|^{2}}{\left(1+y^{2}\right)^{3}}\right) \leq 0.2\left(1+\frac{0.04}{1}\right)=0.208$.
Overall, the values of the third-order derivatives can be selected as an upper bound $C=3>2.3=\sqrt{4}+0.3>\sqrt{e}+0.3>e^{0.2}+0.208$
Substituting into an estimate we have

$$
\left|R_{2}(x, y)\right| \leq \frac{2^{3}}{3!} \cdot C \cdot\left\|\boldsymbol{x}-\boldsymbol{x}_{0}\right\|_{\infty}^{3} \leq \frac{8}{6} \cdot 3 \cdot 0.1^{3}=0.004<0.006
$$

Note: When we estimate $e^{0.2}$ as 3 and $C=4$, the bound is 0.00533333 .

c) [4 points]

The stationary point \boldsymbol{P} of

$$
T_{2}(x, y)=x+y+\frac{1}{2} x^{2}+2 x y+\frac{1}{2} y^{2} .
$$

$\operatorname{grad} T_{2}=(1+x+2 y, 1+2 x+y) \stackrel{!}{=}(0,0) \Longrightarrow x=y=-\frac{1}{3}$.
The Hessian matrix $\boldsymbol{H}(x, y)=\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)$ is indefinite, because the determinant is negative.
Alternatively one can compute eigenvalues
$(1-\lambda)^{2}-4=0 \Longleftrightarrow \lambda=1 \pm 2$. Hence $\boldsymbol{P}=\binom{-\frac{1}{3}}{-\frac{1}{3}}$ is a saddle point of T_{2}.

Exercise 2: Given a function $\quad f(x, y):=x^{4}+y^{4}+8 x y=0$.
a) (i) Show using the implicit function theorem that $f(x, y)$ can be solved for y near the point $\left(x_{0}, y_{0}\right)^{T}:=(2,-2)^{T}$. It means that there exists a function $g(x)$ with $g(2)=-2$, such that in some neighbourhood of x_{0} and y_{0} the following equivalence holds

$$
f(x, y)=0 \Longleftrightarrow y=g(x)
$$

(ii) Compute the first-order Taylor polynomial of function g from the part a) centered at a point $x_{0}=2$.
b) Using the implicit function theorem show that the solution set of

$$
f(x, y, z):=\left(x^{2}-2 e^{x y}\right) z+2=0
$$

in a neighbourhood of the point $P_{0}:=\left(x_{0}, y_{0}, z_{0}\right)^{T}:=(0,1,1)^{T}$ can be solved for x. It means that there is a function $g(y, z)$ with $g(1,1)=0$ such that in a neighbourhood of x_{0}, y_{0}, z_{0} it holds

$$
f(x, y, z)=0 \Longleftrightarrow x=g(y, z)
$$

Using the implicit function theorem for which other variable(s) one can solve the problem?

Solution sketch for Exercise 2:

a) (i) $f(2,-2)=0$.

$$
\boldsymbol{J} f(x, y)=\binom{4 x^{3}+8 y}{4 y^{3}+8 x}^{T} \Longrightarrow \boldsymbol{J} f(2,-2)=\binom{32-16}{-32+16}^{T} \Longrightarrow \text { One can solve }
$$ for y or for x near the point $(2,-2)^{T}$.

(ii) $\quad T_{1}(x ; 2)=g(2)+g^{\prime}(2)(x-2)$ For the first-order Taylor polynomial we also need $g^{\prime}(2)$. Following the implicit function theorem we have

$$
g^{\prime}(x)=-f_{x} / f_{y}=-\frac{4 x^{3}+8 y}{4 y^{3}+8 x} \Longrightarrow g^{\prime}(2)=-\frac{16}{-16}=1
$$

Alternatively : implicit differentiation

$$
\begin{aligned}
f(x, y(x)) & =x^{4}+(y(x))^{4}+8 x y(x)=0 \\
f^{\prime}(x, y(x)) & =4 x^{3}+4 y^{3} y^{\prime}+8 y+8 x y^{\prime}=\left(4 x^{3}+8 y\right)+\left(4 y^{3}+8 x\right) y^{\prime}=0 \\
& \Longrightarrow y^{\prime}(x)=-\frac{4 x^{3}+8 y}{4 y^{3}+8 x} \\
T_{1}(x ; 2) & =y(2)+y^{\prime}(2)(x-2)=-2+(x-2)
\end{aligned}
$$

(iii)
b) As Jacobian matrix of f we have

$$
\mathbf{J} f(x, y, z)=\left(\left(2 x-2 y e^{x y}\right) z, \quad-2 x z e^{x y}, \quad x^{2}-2 e^{x y}\right)
$$

and hence it holds $\mathbf{J} f(0,1,1)=(-2,0,-2)$.
Since $\frac{\partial f}{\partial x}=-2$ and $\frac{\partial f}{\partial z}=-2$ as 1×1-matrices are invertible, from the implicit function theorem it follows that in some neighbourhood of P_{0} there exist the functions $x(y, z)$ and $z(x, y)$ with $x(1,1)=0$ and $f(x(y, z), y, z)=0$ as well as $z(0,1)=1$ and $f(x, y, z(x, y))=0$. The theorem does not provide the information whether it is possible to solve locally for y. An explicit form of the formula for f to y is $y=\frac{1}{x} \cdot \ln \left(\frac{x^{2}}{2}+\frac{1}{z}\right)$.
This expression is not defined in any neighborhood of $x=(0,1,1)^{T}$!

Submission deadline: 29.11. - 03.12.21

