Analysis III for Engineering Students Homework sheet 3

Exercise 1:

Given a function $f : \mathbb{R}^3 \to \mathbb{R}$, $f(\mathbf{x}) := 2x^2 + y^2 - 4x + z$, a point $\mathbf{x}_0 = (1, 2, 3)^T$, and a direction $\mathbf{a} = \frac{1}{\sqrt{6}} (-1, -1, -2)$:

- a) Provide the equation of the level surface $N_{\boldsymbol{x}_0}$ of the function f at the point $\boldsymbol{x}_0 = (1,2,3)^{\mathrm{T}}$ and compute the gradient of f at \boldsymbol{x}_0 .
- b) Compute the directional derivative $D_{a} f(x_{0})$ in the direction $a = \frac{1}{\sqrt{6}}(-1, -1, -2)^{\mathrm{T}}$.

Can you determine whether it is a direction of ascent or descent? Can you tell whether the function values increase or decrease when one moves from \boldsymbol{x}_0 in the direction \boldsymbol{a} ?

c) Compute the function values $f(\boldsymbol{x}_0 + t \boldsymbol{a})$ for $t = \frac{\sqrt{6}}{2}$, $2\sqrt{6}$, $3\sqrt{6}$. Is there a contradiction to your result from b?

Solution: (3+2+5 Points)

a) For the level surface we are computing it holds

$$2x^2 + y^2 - 4x + z = 5,$$

grad
$$f(x, y) = (4x - 4, 2y, 1)^T$$
,
grad $f(1, 2, 3) = (0, 4, 1)^T$.

b)
$$D \boldsymbol{a} f(\boldsymbol{x}_0) = \boldsymbol{a} \cdot \operatorname{grad} f(\boldsymbol{x}_0) = \langle \begin{pmatrix} 0\\4\\1 \end{pmatrix}, \frac{1}{\sqrt{6}} \begin{pmatrix} -1\\-1\\-2 \end{pmatrix} \rangle = \frac{1}{\sqrt{6}}(0-4-2) = -\sqrt{6}$$

From the definition of the directional derivative,

D
$$\boldsymbol{a} f(\boldsymbol{x}_0) := \frac{\partial}{\partial \boldsymbol{a}} f(\boldsymbol{x}_0) := \lim_{h \to 0} \frac{f(\boldsymbol{x}_0 + h \boldsymbol{a}) - f(\boldsymbol{x}_0)}{h},$$

hence \boldsymbol{a} must be the direction of the descent!

$$f(\boldsymbol{x}_{0} + \frac{\sqrt{6}}{2}\boldsymbol{a}) = f\left(\begin{pmatrix}1\\2\\3\end{pmatrix} + \frac{1}{2}\begin{pmatrix}-1\\-1\\-2\end{pmatrix}\right) = f\left(\begin{pmatrix}\frac{1}{2}\\\frac{3}{2}\\2\end{pmatrix}\right) = \frac{11}{4} < 5$$
$$f(\boldsymbol{x}_{0} + 2\sqrt{6}\boldsymbol{a}) = f\left(\begin{pmatrix}1\\2\\3\end{pmatrix} + 2\begin{pmatrix}-1\\-1\\-2\end{pmatrix}\right) = f\left(\begin{pmatrix}-1\\0\\-1\end{pmatrix}\right) = 5.$$
$$f(\boldsymbol{x}_{0} + 3\sqrt{6}\boldsymbol{a}) = f\left(\begin{pmatrix}1\\2\\3\end{pmatrix} + 3\begin{pmatrix}-1\\-1\\-2\end{pmatrix}\right) = f\left(\begin{pmatrix}-2\\-1\\-3\end{pmatrix} = 14 > 5.$$

Obviously, starting from \boldsymbol{x}_0 and moving with step of size $\frac{\sqrt{6}}{2}$ in the direction \boldsymbol{a} , the function value decreases. However, moving further in the direction \boldsymbol{a} , for the step size $2\sqrt{6}$, one again obtains the function value 5. If one moves even further away from \boldsymbol{x}_0 , the function value rises above $f(\boldsymbol{x}_0)$.

Note: statements about ascent, descent, etc. are usually only local statements. They only apply to sufficiently small steps!

Exercise 2:

Let $\boldsymbol{u} = (u(x,y), v(x,y))^{\mathrm{T}}$ be a velocity field of the two-dimensional flow, $r = \sqrt{x^2 + y^2}$ and $\epsilon \in \mathbb{R}^+$. Given the velocity fields

- a) $u = \epsilon x$, $v = \epsilon y$ b) $u = \epsilon \frac{x}{r^2}$, $v = \epsilon \frac{y}{r^2}$, $(x, y) \neq (0, 0)$ (isolated source)
- c) $u = \epsilon \frac{-y}{r^2}, \quad v = \epsilon \frac{x}{r^2}, \quad (x, y) \neq (0, 0)$ (isolated vortex)

compute the source density div \boldsymbol{u} and vortex density rot $\boldsymbol{u} := v_x - u_y$. Sketch the vector fields and a few associated streamlines (they are the solutions of the system of differential equations $\dot{x} = u$, $\dot{y} = v$ or the differential equation y'(x) = v(x, y)/u(x, y)).

Solution 2: [2+4+4 Points]

a) It holds $\frac{dy}{dx} = \frac{y}{x}$. This is a separable differential equation for y with the solution $y(x) = k \cdot x$. The streamlines are rays emanating from the origin. They move with the speed $||\mathbf{u}|| = \sqrt{(\epsilon x)^2 + (\epsilon y)^2} = \epsilon r$.

We have immediately:

 $u_x = \epsilon,$ $v_y = \epsilon$ and thus div $(u, v) = 2\epsilon$. $u_y = 0,$ $v_x = 0$ and thus rot (u, v) = 0.

b) It holds again $\frac{dy}{dx} = \frac{y}{x}$ and $y(x) = k \cdot x$. The streamlines are again rays emanating from the origin. However, they are moving with the speed ϵ/r .

One easily obtains

$$u_x = \epsilon \frac{y^2 - x^2}{r^4}, \qquad v_y = \epsilon \frac{x^2 - y^2}{r^4} \text{ and div } (u, v) = 0$$
$$u_y = \epsilon \frac{-2xy}{r^4}, \qquad v_x = \epsilon \frac{-2xy}{r^4} \text{ and rot } (u, v) = 0.$$

c) It holds $\frac{dy}{dx} = -\frac{x}{y}$. This is a separable differential equation for y with the solution $(y(x))^2 = k - x^2$. The streamlines are circles around zero. They move in a mathematically positive direction. The speed is again ϵ/r . With the exception of a sign, only the roles of u and v are exchanged, so we have

$$u_x = \epsilon \frac{2xy}{r^4}, \qquad v_y = \epsilon \frac{-2xy}{r^4} \text{ and hence div } (u, v) = 0.$$
$$u_y = \epsilon \frac{-x^2 + y^2}{r^4}, \qquad v_x = \epsilon \frac{y^2 - x^2}{r^4} \text{ and thus rot } (u, v) = 0.$$

Submission deadline: 15.–19.11.21