Dr. H. P. Kiani, S. Onyshkevych

Analysis III for Engineering Students
 Homework sheet 3

Exercise 1:

Given a function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}, \quad f(\boldsymbol{x}):=2 x^{2}+y^{2}-4 x+z$, a point $\boldsymbol{x}_{0}=(1,2,3)^{T}$, and a direction $\boldsymbol{a}=\frac{1}{\sqrt{6}}(-1,-1,-2)$:
a) Provide the equation of the level surface $N_{\boldsymbol{x}_{0}}$ of the function f at the point $\boldsymbol{x}_{0}=$ $(1,2,3)^{\mathrm{T}}$ and compute the gradient of f at \boldsymbol{x}_{0}.
b) Compute the directional derivative $D \boldsymbol{a} f\left(\boldsymbol{x}_{0}\right)$ in the direction $\boldsymbol{a}=\frac{1}{\sqrt{6}}(-1,-1,-2)^{\mathrm{T}}$.

Can you determine whether it is a direction of ascent or descent? Can you tell whether the function values increase or decrease when one moves from \boldsymbol{x}_{0} in the direction \boldsymbol{a} ?
c) Compute the function values $f\left(\boldsymbol{x}_{0}+t \boldsymbol{a}\right)$ for $t=\frac{\sqrt{6}}{2}, 2 \sqrt{6}, 3 \sqrt{6}$.

Is there a contradiction to your result from b ?

Solution: $(3+2+5$ Points $)$
a) For the level surface we are computing it holds

$$
\begin{aligned}
2 x^{2}+y^{2} & -4 x+z=5 \\
\operatorname{grad} f(x, y) & =(4 x-4,2 y, 1)^{T} \\
\operatorname{grad} f(1,2,3) & =(0,4,1)^{T}
\end{aligned}
$$

b) $D \boldsymbol{a} f\left(\boldsymbol{x}_{0}\right)=\boldsymbol{a} \cdot \operatorname{grad} f\left(\boldsymbol{x}_{0}\right)=<\left(\begin{array}{l}0 \\ 4 \\ 1\end{array}\right), \frac{1}{\sqrt{6}}\left(\begin{array}{l}-1 \\ -1 \\ -2\end{array}\right)>=\frac{1}{\sqrt{6}}(0-4-2)=-\sqrt{6}$

From the definition of the directional derivative,
D $\boldsymbol{a} f\left(\boldsymbol{x}_{0}\right):=\frac{\partial}{\partial \boldsymbol{a}} f\left(\boldsymbol{x}_{0}\right):=\lim _{h \rightarrow 0} \frac{f\left(\boldsymbol{x}_{0}+h \boldsymbol{a}\right)-f\left(\boldsymbol{x}_{0}\right)}{h}$,
hence \boldsymbol{a} must be the direction of the descent!
c)

$$
\begin{aligned}
& f\left(\boldsymbol{x}_{0}+\frac{\sqrt{6}}{2} \boldsymbol{a}\right)=f\left(\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)+\frac{1}{2}\left(\begin{array}{l}
-1 \\
-1 \\
-2
\end{array}\right)\right)=f\left(\left(\begin{array}{c}
\frac{1}{2} \\
\frac{3}{2} \\
2
\end{array}\right)\right)=\frac{11}{4}<5 . \\
& f\left(\boldsymbol{x}_{0}+2 \sqrt{6} \boldsymbol{a}\right)=f\left(\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)+2\left(\begin{array}{l}
-1 \\
-1 \\
-2
\end{array}\right)\right)=f\left(\left(\begin{array}{c}
-1 \\
0 \\
-1
\end{array}\right)\right)=5 . \\
& f\left(\boldsymbol{x}_{0}+3 \sqrt{6} \boldsymbol{a}\right)=f\left(\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)+3\left(\begin{array}{l}
-1 \\
-1 \\
-2
\end{array}\right)\right)=f\left(\begin{array}{c}
-2 \\
-1 \\
-3
\end{array}\right)=14>5 .
\end{aligned}
$$

Obviously, starting from \boldsymbol{x}_{0} and moving with step of size $\frac{\sqrt{6}}{2}$ in the direction \boldsymbol{a}, the function value decreases. However, moving further in the direction \boldsymbol{a}, for the step size $2 \sqrt{6}$, one again obtains the function value 5 . If one moves even further away from \boldsymbol{x}_{0}, the function value rises above $f\left(\boldsymbol{x}_{0}\right)$.

Note: statements about ascent, descent, etc. are usually only local statements. They only apply to sufficiently small steps!

Exercise 2:

Let $\boldsymbol{u}=(u(x, y), v(x, y))^{\mathrm{T}}$ be a velocity field of the two-dimensional flow, $r=\sqrt{x^{2}+y^{2}}$ and $\epsilon \in \mathbb{R}^{+}$. Given the velocity fields
a) $\quad u=\epsilon x, \quad v=\epsilon y$
b) $\quad u=\epsilon \frac{x}{r^{2}}, \quad v=\epsilon \frac{y}{r^{2}},(x, y) \neq(0,0) \quad$ (isolated source)
c) $\quad u=\epsilon \frac{-y}{r^{2}}, \quad v=\epsilon \frac{x}{r^{2}},(x, y) \neq(0,0) \quad$ (isolated vortex)
compute the source density $\operatorname{div} \boldsymbol{u}$ and vortex density $\operatorname{rot} \boldsymbol{u}:=v_{x}-u_{y}$. Sketch the vector fields and a few associated streamlines (they are the solutions of the system of differential equations $\dot{x}=u, \dot{y}=v$ or the differential equation $\left.y^{\prime}(x)=v(x, y) / u(x, y)\right)$.

Solution 2: $[2+4+4$ Points $]$
a) It holds $\frac{d y}{d x}=\frac{y}{x}$. This is a separable differential equation for y with the solution $y(x)=k \cdot x$.The streamlines are rays emanating from the origin. They move with the speed $\|\boldsymbol{u}\|=\sqrt{(\epsilon x)^{2}+(\epsilon y)^{2}}=\epsilon r$.
We have immediately:
$u_{x}=\epsilon, \quad v_{y}=\epsilon$ and thus $\operatorname{div}(u, v)=2 \epsilon$.
$u_{y}=0, \quad v_{x}=0$ and thus rot $(u, v)=0$.
b) It holds again $\frac{d y}{d x}=\frac{y}{x}$ and $y(x)=k \cdot x$. The streamlines are again rays emanating from the origin. However, they are moving with the speed ϵ / r.
One easily obtains
$u_{x}=\epsilon \frac{y^{2}-x^{2}}{r^{4}}, \quad v_{y}=\epsilon \frac{x^{2}-y^{2}}{r^{4}}$ and div $(u, v)=0$.
$u_{y}=\epsilon \frac{-2 x y}{r^{4}}, \quad v_{x}=\epsilon \frac{-2 x y}{r^{4}}$ and rot $(u, v)=0$.
c) It holds $\frac{d y}{d x}=-\frac{x}{y}$. This is a separable differential equation for y with the solution $(y(x))^{2}=k-x^{2}$. The streamlines are circles around zero. They move in a mathematically positive direction. The speed is again ϵ / r. With the exception of a sign, only the roles of u and v are exchanged, so we have
$u_{x}=\epsilon \frac{2 x y}{r^{4}}, \quad v_{y}=\epsilon \frac{-2 x y}{r^{4}}$ and hence div $(u, v)=0$.
$u_{y}=\epsilon \frac{-x^{2}+y^{2}}{r^{4}}, \quad v_{x}=\epsilon \frac{y^{2}-x^{2}}{r^{4}}$ and thus rot $(u, v)=0$.

