Prof. Dr. I. Gasser

Dr. H. P. Kiani, S. Onyshkevych

Analysis III for Engineering Students Work sheet 1

Exercise 1: Consider the following sets

$$\begin{split} &M_1 := \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \ : \ x,y \in \mathbb{R}, \ x^2 + y^2 \leq 1 \right\}, \\ &M_2 := \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \ : \ x,y \in \mathbb{R}, \ x^2 + y^2 < 4 \right\}, \\ &M_3 := \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \ : \ x,y,z \in \mathbb{R}, \ 1 \leq x^2 + y^2 < 4 \right\}, \\ &M_4 := \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \ : \ x,y,z \in \mathbb{R}, \ x^2 + y^2 \leq 1 \right\}, \\ &M_5 := \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \ : \ x,y,z \in \mathbb{R}, \ x^2 + y^2 + z^2 < 1 \right\}, \\ &M_6 := \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^2 \ : \ (x,y) \cdot (1,2)^T = 1 \right\}, \\ &M_7 := \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \ : \ (x,y,z) \cdot (1,2,1)^T < 1 \right\}, \\ &M_8 := \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \ : \ x,y,z \in \mathbb{R}, \ z = x^2 + y^2 \right\}. \\ &M_9 := \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \ : \ x,y \in \mathbb{R}, \ (x+3)^2 + y^2 \leq 1 \right\} \cup \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \ : \ x,y \in \mathbb{R}, \ (x-3)^2 + y^2 \leq 1 \right\}. \end{split}$$

- a) Which are the boundary points of M_1, \ldots, M_9 ?
- b) Decide for each set M_1, \ldots, M_9 if it is closed, open or neither closed nor open.
- c) Which of the sets M_1, \ldots, M_9 are bounded?
- d) Which sets M_1, \ldots, M_9 are connected? Which are convex?

Solution 1:

a)
$$\partial M_1 := \left\{ \begin{pmatrix} x \\ y \end{pmatrix} : x, y \in \mathbb{R}, \ x^2 + y^2 = 1 \right\} \qquad \text{circle C_1, radius 1, center 0,}$$

$$\partial M_2 := \left\{ \begin{pmatrix} x \\ y \end{pmatrix} : x, y \in \mathbb{R}, \ x^2 + y^2 = 4 \right\} \qquad \text{circle C_2, radius 2, center 0,}$$

$$\partial M_3 := \left\{ \begin{pmatrix} x \\ y \end{pmatrix} : x, y \in \mathbb{R}, \ x^2 + y^2 \in \{1, 4\} \right\} \qquad \text{two circles C_1 and C_2,}$$

$$\partial M_4 := \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : x, y, z \in \mathbb{R}, \ x^2 + y^2 = 1 \right\} \qquad \text{right circular cylinder side,}$$

$$\partial M_5 := \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : x, y, z \in \mathbb{R}, \ x^2 + y^2 + z^2 = 1 \right\} \text{ sphere, surface of a ball, radius 1, center 0,}$$

$$\partial M_6 := \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 : (x, y) \cdot (1, 2)^T = 1 \right\} \qquad \text{line $x + 2y = 1$,}$$

$$\partial M_7 := \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : x, y, z \in \mathbb{R}, \ z = x^2 + y^2 \right\} \qquad \text{paraboloid,}$$

$$\partial M_8 := \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : x, y, z \in \mathbb{R}, \ z = x^2 + y^2 \right\} \qquad \text{paraboloid,}$$

$$\partial M_9 := \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : x, y \in \mathbb{R}, \ (x + 3)^2 + y^2 = 1 \right\}$$

$$\cup \left\{ \begin{pmatrix} x \\ y \end{pmatrix} : x, y \in \mathbb{R}, \ (x - 3)^2 + y^2 = 1 \right\} \text{ two circles with radius 1 and centers $(\mp 3, 0)^T$.}$$

b) M_1 : closed disc with radius 1 and center zero.

 M_2 : open disc with radius 2 and center zero.

 M_3 : Annulus, region between two concentric circles with centres = 0. The circle with radius 1 belongs to M_3 whereas the circle with radius 2 does not belong to M_3 . Neither open nor closed.

 M_4 : Closed infinitely long cylinder. Note: the complement is open!

 M_5 : Open Ball, radius 1, centre zero.

 M_6 : Line in \mathbb{R}^2 , closed.

 M_7 : Half-space in \mathbb{R}^3 without the dividing plane, hence open.

 M_8 : Plane in \mathbb{R}^3 , closed. The complement is open!

 M_9 : Two closed discs with radius 1 and centres $(\mp 3,0)^T$. Closed.

c) The sets M_1, M_2, M_3, M_5 and M_9 are bounded. If we choose $r \in \mathbb{R}$ large enough the sets are contained in a ball B_r with radius r and centre zero.

The sets M_4 , M_6 , M_7 and M_8 are unbounded. There is no $r \in \mathbb{R}$ with $M_k \subset B_r$, $k \in \{4, 6, 7, 8\}$.

d) All sets accept M_9 are connected: Any two points belonging to one of the sets $M_k, k \neq 9$ can be connected via a curve lying in M_k . This is not true for M_9 . Consider for example $(-2,0)^T$ and $(2,0)^T$.

Since any convex set is also connected, M_9 is not convex.

 M_3 is not convex. Consider for example the line segment connecting $(-1,0)^T$ and $(1,0)^T$.

 M_8 is not convex. Example: the line segment connecting $(-1,0,1)^T$ and $(1,0,1)^T$ does not completely belong to M_8 .

All the other sets are convex.

Exercise 2: Consider the functions $f_k : \mathbb{R}^2 \to \mathbb{R}, k = 1, 2, 3, 4$

a)
$$f_1(x,y) = 2x + 3y$$
,

a)
$$f_1(x,y) = 2x + 3y$$
, b) $f_2(x,y) = x^2 + \frac{y^2}{9}$,

c)
$$f_3(x,y) = \cos(x - y^2)$$
, d) $f_4(x,y) = \exp(x \cdot y)$.

d)
$$f_4(x,y) = \exp(x \cdot y)$$
.

Draw a few contour lines (curves along which the function has a constant value)

$$f_k^{-1}(C) := \{(x,y)^{\mathrm{T}} : f(x,y) = C\}$$

for each f_k .

Solution 2:

a) $f_1: 2x + 3y = C \longrightarrow$

the contour lines are parallel lines $y = \frac{C-2x}{3}$.

b) $f_2: x^2 + \frac{y^2}{9}$

the contour lines are ellipses with centre zero. The axis in y-direction is three times as long as the axis in x-direction.

c) $f_3 : \cos(x - y^2)$

the contour lines are parabolas $x = y^2 + c$. The x-axis is the symmetry axis.

d) $f_4: \exp(x \cdot y)$

For x = 0 or y = 0 we have f(x, y) = C = 1. Hence the x- axis and the y- axis are contour lines.

The other contour lines are hyperbola branches y = C/x for $x \neq 0$ or x = C/y for $y \neq 0$.

Classes: 18.–22.10.21