Dr. H. P. Kiani, S. Onyshkevych

Analysis III for Engineering Students
 Work sheet 1

Exercise 1: Consider the following sets

$$
\begin{aligned}
& M_{1}:=\left\{\binom{x}{y}: x, y \in \mathbb{R}, x^{2}+y^{2} \leq 1\right\}, \\
& M_{2}:=\left\{\binom{x}{y}: x, y \in \mathbb{R}, x^{2}+y^{2}<4\right\} \text {, } \\
& M_{3}:=\left\{\binom{x}{y}: x, y \in \mathbb{R}, 1 \leq x^{2}+y^{2}<4\right\} \text {, } \\
& M_{4}:=\left\{\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right): x, y, z \in \mathbb{R}, x^{2}+y^{2} \leq 1\right\} \text {, } \\
& M_{5}:=\left\{\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right): x, y, z \in \mathbb{R}, x^{2}+y^{2}+z^{2}<1\right\} \text {, } \\
& M_{6}:=\left\{\binom{x}{y} \in \mathbb{R}^{2}:(x, y) \cdot(1,2)^{T}=1\right\} \text {, } \\
& M_{7}:=\left\{\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \in \mathbb{R}^{3}:(x, y, z) \cdot(1,2,1)^{T}<1\right\} \text {, } \\
& M_{8}:=\left\{\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right): x, y, z \in \mathbb{R}, z=x^{2}+y^{2}\right\} \text {. } \\
& M_{9}:=\left\{\binom{x}{y}: x, y \in \mathbb{R},(x+3)^{2}+y^{2} \leq 1\right\} \cup\left\{\binom{x}{y}: x, y \in \mathbb{R},(x-3)^{2}+y^{2} \leq 1\right\} \text {. }
\end{aligned}
$$

a) Which are the boundary points of M_{1}, \ldots, M_{9} ?
b) Decide for each set M_{1}, \ldots, M_{9} if it is closed, open or neither closed nor open.
c) Which of the sets M_{1}, \ldots, M_{9} are bounded?
d) Which sets M_{1}, \ldots, M_{9} are connected? Which are convex?

Solution 1:

a)
$\partial M_{1}:=\left\{\binom{x}{y}: x, y \in \mathbb{R}, x^{2}+y^{2}=1\right\} \quad$ circle C_{1}, radius 1, center 0,
$\partial M_{2}:=\left\{\binom{x}{y}: x, y \in \mathbb{R}, x^{2}+y^{2}=4\right\} \quad$ circle C_{2}, radius 2 , center 0,
$\partial M_{3}:=\left\{\binom{x}{y}: x, y \in \mathbb{R}, x^{2}+y^{2} \in\{1,4\}\right\} \quad$ two circles C_{1} and C_{2},
$\partial M_{4}:=\left\{\left(\begin{array}{l}x \\ y \\ z\end{array}\right): x, y, z \in \mathbb{R}, x^{2}+y^{2}=1\right\} \quad$ right circular cylinder side,
$\partial M_{5}:=\left\{\left(\begin{array}{l}x \\ y \\ z\end{array}\right): x, y, z \in \mathbb{R}, x^{2}+y^{2}+z^{2}=1\right\}$ sphere, surface of a ball, radius 1, center 0,
$\partial M_{6}:=\left\{\binom{x}{y} \in \mathbb{R}^{2}:(x, y) \cdot(1,2)^{T}=1\right\} \quad$ line $x+2 y=1$,
$\partial M_{7}:=\left\{\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \in \mathbb{R}^{3}:(x, y, z) \cdot(1,2,1)^{T}=1\right\} \quad$ plane: $x+2 y+z=1$,
$\partial M_{8}:=\left\{\left(\begin{array}{l}x \\ y \\ z\end{array}\right): x, y, z \in \mathbb{R}, z=x^{2}+y^{2}\right\} \quad$ paraboloid,
$\partial M_{9}:=\left\{\binom{x}{y}: x, y \in \mathbb{R},(x+3)^{2}+y^{2}=1\right\}$
$\cup\left\{\binom{x}{y}: x, y \in \mathbb{R},(x-3)^{2}+y^{2}=1\right\}$ two circles with radius 1 and centers $(\mp 3,0)^{T}$.
b) M_{1} : closed disc with radius 1 and center zero.
M_{2} : open disc with radius 2 and center zero.
M_{3} : Annulus, region between two concentric circles with centres $=0$. The circle with radius 1 belongs to M_{3} whereas the circle with radius 2 does not belong to M_{3}. Neither open nor closed.
M_{4} : Closed infinitely long cylinder. Note: the complement is open!
M_{5} : Open Ball, radius 1, centre zero.
M_{6} : Line in \mathbb{R}^{2}, closed.
M_{7} : Half-space in \mathbb{R}^{3} without the dividing plane, hence open.
M_{8} : Plane in \mathbb{R}^{3}, closed. The complement is open!
M_{9} : Two closed discs with radius 1 and centres $(\mp 3,0)^{T}$. Closed.
c) The sets $M_{1}, M_{2}, M_{3}, M_{5}$ and M_{9} are bounded. If we choose $r \in \mathbb{R}$ large enough the sets are contained in a ball B_{r} with radius r and centre zero.
The sets M_{4}, M_{6}, M_{7} and M_{8} are unbounded. There is no $r \in \mathbb{R}$ with $M_{k} \subset B_{r}, k \in\{4,6,7,8\}$.
d) All sets accept M_{9} are connected: Any two points belonging to one of the sets $M_{k}, k \neq$ 9 can be connected via a curve lying in M_{k}. This is not true for M_{9}. Consider for example $(-2,0)^{T}$ and $(2,0)^{T}$.
Since any convex set is also connected, M_{9} is not convex.
M_{3} is not convex. Consider for example the line segment connecting $(-1,0)^{T}$ and $(1,0)^{T}$.
M_{8} is not convex. Example: the line segment connecting $(-1,0,1)^{T}$ and $(1,0,1)^{T}$ does not completely belong to M_{8}.

All the other sets are convex.

Exercise 2: Consider the functions $f_{k}: \mathbb{R}^{2} \rightarrow \mathbb{R}, k=1,2,3,4$
a) $f_{1}(x, y)=2 x+3 y$,
b) $f_{2}(x, y)=x^{2}+\frac{y^{2}}{9}$,
c) $f_{3}(x, y)=\cos \left(x-y^{2}\right)$,
d) $f_{4}(x, y)=\exp (x \cdot y)$.

Draw a few contour lines (curves along which the function has a constant value)

$$
f_{k}^{-1}(C):=\left\{(x, y)^{\mathrm{T}}: f(x, y)=C\right\}
$$

for each f_{k}.

Solution 2:

a) $f_{1}: 2 x+3 y=C \longrightarrow$
the contour lines are parallel lines $y=\frac{C-2 x}{3}$.
b) $f_{2}: x^{2}+\frac{y^{2}}{9}$
the contour lines are ellipses with centre zero. The axis in y-direction is three times as long as the axis in x-direction.

c) $f_{3}: \cos \left(x-y^{2}\right)$
the contour lines are parabolas $x=y^{2}+c$. The $x-$ axis is the symmetry axis.
d) $f_{4}: \exp (x \cdot y)$

For $x=0$ or $y=0$ we have $f(x, y)=C=1$. Hence the $x-$ axis and the $y-$ axis are contour lines.

The other contour lines are hyperbola branches $y=C / x$ for $x \neq 0$ or $x=C / y$ for $y \neq 0$.

Classes: 18.-22.10.21

