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Exercise 1: (3+1 points)

A local minimum of the function

f : R2 → R , f(x, y) := x2 + 4y2 − 6x + 24y + 6 .

subject to the constraint

g(x, y) := cos(
x− 3

2
) + sin(y + 1) − 1 = 0

is sought.

P0 = (3, −1)T is an admissible point for which the regularity condition is satis-
fied. This information may be used without proof.

a) Show that P0 is a stationary point of the corresponding Lagrangian func-
tion for a suitable multiplier.

b) Show that P0 = (3,−1)T is a local minimum of the function f subject
to the constraint g = 0 by investigating the sufficient condition of second
order.

Solution:

a) (3 points) F := f + λ g .

gradF (x, y) = (Fx(x, y), Fy(x, y)) .

Fx(x, y) = 2x− 6 + λ(− sin(x−3
2

)1
2
) ,

Fy(x, y) = 8y + 24 + λ cos(y + 1) .

Fx(3,−1) = 6− 6 − λ · 0 = 0,

Fy(3,−1) = −8 + 24 + λ · 1 = 0 ⇐⇒ λ = −16.

Hence, P0 is a stationary point of the function F := f − 16g .

b) The Hessian matrix of F := f + λg is

HF (x, y;λ) =

(
2 − λ(cos(x−3

2
)1
4
) 0

0 8− λ sin(y + 1)

)
.

For λ = −16 we obtain:

HF (3,−1) =

(
2 + 4 0

0 8

)
.

This matrix has two positive eigenvalues. Therefore, P0 is a (local) mini-
mum.
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Exercise 2: (3+3 points)

Consider the function

f : R2 → R, f(x, y) := y cos(x) + x sin(y) + 2.

a) Determine the second-degree Taylor polynomial T2 of f at the point
(x0, y0) = (0, 0) .

b) Show that

|f(x, y)− T2(x, y)| ≤ 4

100

for all (x, y) ∈ D := [−0.3, 0.3]× [−0.3, 0.3] .

Solution 2:

a) (3 points)

f(x, y) = y cos(x) + x sin(y) + 2 f(0, 0) = 2
fx(x, y) = −y sin(x) + sin(y) fx(0, 0) = 0
fy(x, y) = cos(x) + x cos(y) fy(0, 0) = 1
fxx(x, y) = −y cos(x) fxx(0, 0) = 0
fxy(x, y) = − sin(x) + cos(y) fxy(0, 0) = 1
fyy(x, y) = −x sin(y) fyy(0, 0) = 0

T2(x, y) = 2 + y +
1

2
(2xy) = 2 + y + xy.

b) (3 points)

For the estimated approximation error, we compute an upper bound for the
absolute value of all partial derivatives of order three that holds true for all
(x, y) ∈ D .

| fxxx(x, y) | = |y sin(x) | ≤ |y| · |sin(x)| ≤ 3

10

| fxxy(x, y) | = |− cos(x)| ≤ 1

| fxyy(x, y) | = | − sin(y)| ≤ 1

| fyyy(x, y) | = | −x cos(y) | ≤ 3

10
.

The absolute values of all partial derivatives of order three of f are therefore
bounded from above by 1 in all points in D .

The approximation error |f(x, y)− T2(x, y)| can be estimated as follows:

|f(x, y)− T2(x, y)| ≤ 23

3!
· ‖(x, y)‖3∞ ·C ≤

8

6
· 33

103
· 1 =

4 · 9
103

<
40

1000
=

4

100
.
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Exercise 3: (5+1+3+1 points)

Consider the half ball K :=


xy
z

 ∈ R3 : x2 + y2 + z2 ≤ 4 , z ≤ 0


and the vector field f (x, y, z) =

xz + x
yz + y
x2 + y2

 .

a) Compute the integral

∫
K

div f (x, y, z) d(x, y, z) .

Hint: 2 sin(α) cos(α) = sin(2α) .

b) The solid K is bounded by a flat surface D and a non-flat surface M .
State a parametrization of the flat surface D .

c) Compute the flux (flow) of f through the flat surface D .

d) According to a) and c), what is the flux (flow) of f through the non-flat
surface M ?

Solution sketch

a) [5 points]

div f (x, y, z) = z + 1 + z + 1 + 0 = 2z + 2 . (1 point)

To compute the integral, we use spherical coordinates

x = r cos(φ) cos(θ) , y = r sin(φ) cos(θ) , z = r sin(θ) ,
with
0 ≤ r ≤ 2, 0 ≤ φ ≤ 2π, −π

2
≤ z ≤ 0 (1 point)

and obtain∫
K

div (x, y, z) d(x, y, z) =

∫ 2

0

∫ 0

−π
2

∫ 2π

0

(2r sin(θ) + 2) · r2 cos(θ) dφ dθ dr (1 point)

=

∫ 2

0

∫ 0

−π
2

(
2r3 sin(θ) cos(θ) + 2r2 cos(θ)

)
[φ]2π0 dθ dr

= 2π

∫ 2

0

∫ 0

−π
2

(
r3 sin(2θ) + 2r2 cos(θ)

)
dθ dr

= 2π

∫ 2

0

[
−r3 cos(2θ)

2
+ 2r2 sin(θ)

]0
−π

2

dr

= 2π

∫ 2

0

−r31− (−1)

2
+ 2r2(0− (−1)) dr

= 2π

∫ 2

0

−r3 + 2r2 dr

= 2π

[
−r

4

4
+

2r3

3

]2
0

= 2π

(
−4 +

16

3

)
=

8π

3

(Computation 2 points)
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b) [1 point]

The solid is bounded by a flat surface D (as in Deckel, German for lid),
which is parametrized by

p(r, φ) :=

r cos(φ)
r sin(φ)

0

 , r ∈ [0, 2], φ ∈ [0, 2π],

as well as the lower half of the balls’ surface M .

c) [3 points]

For the flux through D , one computes:

∂p

∂r
=

cos(φ)
sin(φ)

0

 ∂p

∂φ
=

−r sin(φ)
r cos(φ)

0


∂p

∂r
× ∂p

∂φ
=

0
0
r

 f(p(r, φ)) =

 irrelevant
irrelevant

r2


< f,

∂p

∂r
× ∂p

∂φ
>= r3 .

∫ 2

0

∫ 2π

0

< f,
∂p

∂r
× ∂p

∂φ
> dφdr

=

∫ 2

0

∫ 2π

0

r3 dφdr = 2π

∫ 2

0

r3 dr

2π
24

4
= 8π .

d) [1 Punkt]

According to Gauß’ theorem, we have:

Total flux through boundary of K = flux through D + flux through M

=

∫
K

div f (x, y, z) d(x, y, z)

Therefore, the flux through the non-flat surface M is
8π
3
− 8π = −16π

3
.


