Dr. H. P. Kiani, S. Onyshkevych

Analysis III for Engineering Students
 Work sheet 7

Exercise 1:

a) Let \boldsymbol{f} be the vector field $\boldsymbol{f}(x, y)=\binom{x^{2}}{y^{2}}$, \mathbf{c}_{1} be the curve with the parametrization

$$
\mathbf{c}_{1}(t)=(t, \sin (t)) \quad t \in[0, \pi]
$$

and c_{2} be the mathematically positive-oriented edge of the rectangle

$$
R=\{(x, y): x \in[0,1], y \in[0,2]\}=[0,1] \times[0,2]
$$

(i) Does vector field f have potential?
(ii) For $i=1,2$ compute the line integrals

$$
\int_{\mathbf{c}_{i}} \boldsymbol{f}(x, y) d(x, y)
$$

(iii) Compute the flow of \boldsymbol{f} through R.
b) Let $\tilde{\boldsymbol{f}}$ be the vector field $\tilde{\boldsymbol{f}}(x, y)=\binom{x^{2}-y^{3}}{y^{2}+x^{3}}$, \mathbf{c}_{2} be defined as above and

$$
\mathbf{c}_{3}(t)=\left(1, t^{2}\right) \quad t \in[0,3] .
$$

Compute the line integrals

$$
\int_{\mathbf{c}_{2}} \tilde{\boldsymbol{f}}(x, y) d(x, y), \quad \int_{\mathbf{c}_{3}} \tilde{\boldsymbol{f}}(x, y) d(x, y)
$$

Exercise 2)

Given are

$$
K:=\left\{\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \in \mathbb{R}^{3}: 0 \leq x^{2}+y^{2}+z^{2} \leq 16, y \geq 0\right\}
$$

and the vector field

$$
\boldsymbol{f}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, \boldsymbol{f}(x, y, z)=\left(\begin{array}{c}
x+y^{2} \\
2 y \\
3 z+x^{2}
\end{array}\right)
$$

a) Compute the $\quad \int_{K} \operatorname{div} \boldsymbol{f}(x, y, z) d(x, y, z)$.
b) K is bounded by a flat surface W and a curved surface M. Provide the parametrization of W.
c) Compute the flow of \boldsymbol{f} through W, i.e

$$
\int_{W} f \cdot d O
$$

d) According to a) and c), how large is the flow through the curved part of the edges of K, i.e

$$
\int_{M} f \cdot d O ?
$$

Discussion: 24.01-26.01.22

