Dr. H. P. Kiani, S. Onyshkevych

Analysis III for Engineering Students

Homework sheet 6

Exercise 1:

a) Given a set

$$
D:=\left\{\binom{x}{y} \in \mathbb{R}^{2}: \frac{y^{2}}{2}-2 \leq x \leq 4-y^{2}\right\}
$$

Sketch the set D and determine the center of mass of D with the uniform mass density (mass/unit area) $\rho=2$.
Hint: It holds
Mass: $\quad M=\int_{D} \rho(\boldsymbol{x}) d \boldsymbol{x}$
Center of mass: $\quad X_{s}=\frac{1}{M} \int_{D} \rho(\boldsymbol{x}) \boldsymbol{x} d \boldsymbol{x} \quad$ (componentwise)
b) Let $K:=\left\{(x, y, z)^{T} \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2} \leq 1, z \geq 0\right\}$. Compute

$$
\int_{K}\left(y^{2}-x^{2}\right) d(x, y, z)
$$

Hint:

- To reduce the amount of work one can use spherical coordinate system.
- It holds $\cos (2 t)=\cos ^{2}(t)-\sin ^{2}(t)$.

Exercise 2:

Given is the elliptical pipe section

$$
R \subset \mathbb{R}^{3}, \quad R: 81 \leq\left(\frac{x}{3}\right)^{2}+\left(\frac{y}{2}\right)^{2} \leq 100, \quad-5 \leq z \leq 5
$$

The piece of pipe has the constant density ρ.

Compute the volume, mass and moment of inertia of the pipe section with respect to the y - axis using integration. Use elliptical cylindrical coordinates

$$
x=3 r \cos (\varphi), y=2 r \sin (\varphi), z=z
$$

Hint:

$\cos ^{2}(\phi)=\frac{\cos (2 \phi)+1}{2}$.

Since we do not use a calculator, there is no need to calculate the precise final value. It is sufficient to only insert the integration limits into the calculated root functions.

Submission deadline: 10.01.-14.01.22

