Dr. H. P. Kiani, S. Onyshkevych

Analysis III for Engineering Students Homework sheet 5

Exercise 1

The equation

$$
g(x, y)=\left(x^{2}+4 y^{2}\right)^{2}+x^{2}-4 y^{2}=0
$$

is an implicit description of the curve in \mathbb{R}^{2}.
a) Show that $(x, y)=(0,0)^{T}$ is a singular point of the implicitly defined curve

$$
\left(x^{2}+4 y^{2}\right)^{2}+x^{2}-4 y^{2}=0
$$

and determine whether it is an isolated point, double point or a return point (cusp).
b) Show that there are no other singular points.
c) Compute the points on the curve with horizontal or vertical tangent.

Exercise 2: We are looking for the extrema of the function

$$
f(x, y)=2 \ln \left(\frac{x}{y}\right)+x+5 y
$$

that fulfill the constraint

$$
g(x, y)=x y-1=0 .
$$

a) Show that $\left(x_{0}, y_{0}\right)^{T}=(1,1)^{T}$ with the suitable fixed λ is a feasible stationary point of the Lagrangian $F=f+\lambda g$ and check the regularity conditions at the point $\left(x_{0}, y_{0}\right)^{T}=(1,1)^{T}$.
b) Determine of what type the stationary point $\left(x_{0}, y_{0}\right)^{T}=(1,1)^{T}$ is. To do so, assemble the Hessian matrix $\boldsymbol{H}_{\boldsymbol{x}} F\left(x_{0}, y_{0}\right)$ and check its definiteness on the tangent space $\operatorname{ker}\left(D g\left(x_{0}, y_{0}\right)\right)$.

Exercise 3)

Compute
a) the integral

$$
\iint_{D_{1}} x y^{2} d(x, y) \quad, \text { where } D_{1}=[-1,3] \times[1,2]
$$

b) the volume of the body $K \subset \mathbb{R}^{3}$,

$$
K=\left\{\left.\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)| | x \right\rvert\, \leq 1, \quad-\left(1-x^{2}\right) \leq y \leq 1-x^{2}, \quad 0 \leq z \leq\left(1-x^{2}-y\right)\right\}
$$

c) and the integral

$$
\iint_{D_{2}}\left(x^{2}-y^{4}\right) d(x, y) \quad, \text { where } D_{2}=\{(x, y):|x|+|y| \leq 1\}
$$

Hint: Use the symmetries!

