Analysis III for Engineering Students Work sheet 4

Exercise 1:

a) Find an approximation to a local minimum of the function

$$f : \left[-\frac{1}{4}, \frac{1}{4}\right] \times \left[-\frac{1}{4}, \frac{1}{4}\right] \to \mathbb{R}$$
$$f(x, y) = 4x^2 + xy + 4y^2 + \sin(x - y),$$

by computing the minimum $\begin{pmatrix} \tilde{x} \\ \tilde{y} \end{pmatrix}$ of the second-degree Taylor polynomial T_2 of f centered at the point $(0,0)^{\mathrm{T}}$.

Hint: use the sine-series.

b) Estimate the value of the remainder R_2 in the Lagrange form at the already computed point $\begin{pmatrix} \tilde{x} \\ \tilde{y} \end{pmatrix}$.

Hint: One does not need to compute every derivative exactly.

c) Show that the minimum value of f , on the domain specified above, can not be smaller than $\,-\,\frac{9}{49}\,.$

Exercise 2: Determine the stationary points of the following functions and check whether they are minima, maxima or saddle points:

a)
$$f(\boldsymbol{x}) := \boldsymbol{x}^T \boldsymbol{A} \, \boldsymbol{x} + \boldsymbol{b}^T \, \boldsymbol{x} + c$$
 with
 $\boldsymbol{x} := \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2, \quad \boldsymbol{A} := \begin{pmatrix} -1 & 1 \\ 3 & -2 \end{pmatrix}, \quad \boldsymbol{b} := \begin{pmatrix} -4 \\ 12 \end{pmatrix}, \quad c = 2018,$
b) $g(x,y) := x^2 - xy - x + \frac{y^4}{4} + \frac{y^3}{3}.$

Discussion: 29.11 – 03.12.21