Dr. H. P. Kiani, S. Onyshkevych

Analysis III for Engineering Students
 Work sheet 4

Exercise 1:

a) Find an approximation to a local minimum of the function

$$
\begin{array}{r}
f:\left[-\frac{1}{4}, \frac{1}{4}\right] \times\left[-\frac{1}{4}, \frac{1}{4}\right] \rightarrow \mathbb{R} \\
f(x, y)=4 x^{2}+x y+4 y^{2}+\sin (x-y)
\end{array}
$$

by computing the minimum $\binom{\tilde{x}}{\tilde{y}}$ of the second-degree Taylor polynomial T_{2} of f centered at the point $(0,0)^{\mathrm{T}}$.
Hint: use the sine-series.
b) Estimate the value of the remainder R_{2} in the Lagrange form at the already computed point $\binom{\tilde{x}}{\tilde{y}}$.
Hint: One does not need to compute every derivative exactly.
c) Show that the minimum value of f, on the domain specified above, can not be smaller than $-\frac{9}{49}$.

Exercise 2: Determine the stationary points of the following functions and check whether they are minima, maxima or saddle points:
a) $f(\boldsymbol{x}):=\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}+\boldsymbol{b}^{T} \boldsymbol{x}+c$ with

$$
\boldsymbol{x}:=\binom{x}{y} \in \mathbb{R}^{2}, \quad \boldsymbol{A}:=\left(\begin{array}{cc}
-1 & 1 \\
3 & -2
\end{array}\right), \quad \boldsymbol{b}:=\binom{-4}{12}, \quad c=2018
$$

b) $g(x, y):=x^{2}-x y-x+\frac{y^{4}}{4}+\frac{y^{3}}{3}$.

