Dr. H. P. Kiani, S. Onyshkevych

Analysis III for Engineering Students
 Homework sheet 4

Exercise 1 [12 points] Given a function

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad f(x, y)=x \cdot \arctan (y)+e^{x+y}-1
$$

a) Compute the second degree Taylor polynomial T_{2} of f centered at a point $(0,0)^{\mathrm{T}}$.
b) Show that for the remainder $R_{2}(x, y)=f(x, y)-T_{2}(x, y)$ in the area
$|x| \leq 0.1,|y| \leq 0.1$ the following estimate holds:

$$
\left|R_{2}(x, y)\right| \leq 0.006
$$

c) Find the stationary point of T_{2} and check, whether it is minimum, maximum or a saddle point.

Hints: $\quad(\arctan (y))^{\prime}=\frac{1}{1+y^{2}}, \arctan (0)=0$.
Exercise 2: Given a function $\quad f(x, y):=x^{4}+y^{4}+8 x y=0$.
a) (i) Show using the implicit function theorem that $f(x, y)$ can be solved for y near the point $\left(x_{0}, y_{0}\right)^{T}:=(2,-2)^{T}$. It means that there exists a function $g(x)$ with $g(2)=-2$, such that in some neighbourhood of x_{0} and y_{0} the following equivalence holds

$$
f(x, y)=0 \Longleftrightarrow y=g(x)
$$

(ii) Compute the first-order Taylor polynomial of function g from the part a) centered at a point $x_{0}=2$.
b) Using the implicit function theorem show that the solution set of

$$
f(x, y, z):=\left(x^{2}-2 e^{x y}\right) z+2=0
$$

in a neighbourhood of the point $P_{0}:=\left(x_{0}, y_{0}, z_{0}\right)^{T}:=(0,1,1)^{T}$ can be solved for x. It means that there is a function $g(y, z)$ with $g(1,1)=0$ such that in a neighbourhood of x_{0}, y_{0}, z_{0} it holds

$$
f(x, y, z)=0 \Longleftrightarrow x=g(y, z)
$$

Using the implicit function theorem for which other variable(s) one can solve the problem?

