Analysis III for Engineering Students Homework sheet 3

Exercise 1:

Given a function $f : \mathbb{R}^3 \to \mathbb{R}$, $f(\boldsymbol{x}) := 2x^2 + y^2 - 4x + z$, a point $\boldsymbol{x}_0 = (1, 2, 3)^T$, and a direction $\boldsymbol{a} = \frac{1}{\sqrt{6}} (-1, -1, -2)$:

- a) Provide the equation of the level surface $N_{\boldsymbol{x}_0}$ of the function f at the point $\boldsymbol{x}_0 = (1, 2, 3)^{\mathrm{T}}$ and compute the gradient of f at \boldsymbol{x}_0 .
- b) Compute the directional derivative $D_{a} f(x_{0})$ in the direction $a = \frac{1}{\sqrt{6}}(-1, -1, -2)^{\mathrm{T}}$.

Can you determine whether it is a direction of ascent or descent? Can you tell whether the function values increase or decrease when one moves from \boldsymbol{x}_0 in the direction \boldsymbol{a} ?

c) Compute the function values $f(\boldsymbol{x}_0 + t \boldsymbol{a})$ for $t = \frac{\sqrt{6}}{2}$, $2\sqrt{6}$, $3\sqrt{6}$. Is there a contradiction to your result from b?

Exercise 2:

Let $\boldsymbol{u} = (u(x,y), v(x,y))^{\mathrm{T}}$ be a velocity field of the two-dimensional flow, $r = \sqrt{x^2 + y^2}$ and $\epsilon \in \mathbb{R}^+$. Given the velocity fields

- a) $u = \epsilon x$, $v = \epsilon y$
- **b)** $u = \epsilon \frac{x}{r^2}, \quad v = \epsilon \frac{y}{r^2}, (x, y) \neq (0, 0)$ (isolated source)

c)
$$u = \epsilon \frac{-y}{r^2}, \quad v = \epsilon \frac{x}{r^2}, \quad (x, y) \neq (0, 0)$$
 (isolated vortex)

compute the source density div \boldsymbol{u} and vortex density rot $\boldsymbol{u} := v_x - u_y$. Sketch the vector fields and a few associated streamlines (they are the solutions of the system of differential equations $\dot{x} = u$, $\dot{y} = v$ or the differential equation y'(x) = v(x, y)/u(x, y)).

Submission deadline: 15.–19.11.21