Dr. H. P. Kiani, S. Onyshkevych

Analysis III for Engineering Students
 Homework sheet 3

Exercise 1:

Given a function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}, \quad f(\boldsymbol{x}):=2 x^{2}+y^{2}-4 x+z$, a point $\boldsymbol{x}_{0}=(1,2,3)^{T}$, and a direction $\boldsymbol{a}=\frac{1}{\sqrt{6}}(-1,-1,-2)$:
a) Provide the equation of the level surface $N_{\boldsymbol{x}_{0}}$ of the function f at the point $\boldsymbol{x}_{0}=(1,2,3)^{\mathrm{T}}$ and compute the gradient of f at \boldsymbol{x}_{0}.
b) Compute the directional derivative $D \boldsymbol{a} f\left(\boldsymbol{x}_{0}\right)$ in the direction $\boldsymbol{a}=\frac{1}{\sqrt{6}}(-1,-1,-2)^{\mathrm{T}}$.

Can you determine whether it is a direction of ascent or descent? Can you tell whether the function values increase or decrease when one moves from \boldsymbol{x}_{0} in the direction \boldsymbol{a} ?
c) Compute the function values $f\left(\boldsymbol{x}_{0}+t \boldsymbol{a}\right)$ for $t=\frac{\sqrt{6}}{2}, 2 \sqrt{6}, 3 \sqrt{6}$.

Is there a contradiction to your result from b?

Exercise 2:

Let $\boldsymbol{u}=(u(x, y), v(x, y))^{\mathrm{T}}$ be a velocity field of the two-dimensional flow, $r=\sqrt{x^{2}+y^{2}}$ and $\epsilon \in \mathbb{R}^{+}$. Given the velocity fields
a) $u=\epsilon x, \quad v=\epsilon y$
b) $u=\epsilon \frac{x}{r^{2}}, \quad v=\epsilon \frac{y}{r^{2}},(x, y) \neq(0,0) \quad$ (isolated source)
c) $u=\epsilon \frac{-y}{r^{2}}, \quad v=\epsilon \frac{x}{r^{2}},(x, y) \neq(0,0) \quad$ (isolated vortex)
compute the source density $\operatorname{div} \boldsymbol{u}$ and vortex density $\operatorname{rot} \boldsymbol{u}:=v_{x}-u_{y}$. Sketch the vector fields and a few associated streamlines (they are the solutions of the system of differential equations $\dot{x}=u, \dot{y}=v$ or the differential equation $\left.y^{\prime}(x)=v(x, y) / u(x, y)\right)$.

