Dr. H. P. Kiani, S. Onyshkevych

Analysis III
 for Engineering Students
 Work sheet 2

Exercise 1: Let $f, g: \mathbb{R}^{2} \longrightarrow \mathbb{R}$.

$$
f(x, y):=3 x-5 y, \quad \quad g(x, y):=\frac{1}{5}\left(x^{2}+y^{2}\right)+1
$$

a) Calculate the gradients of f and g.
b) For f draw the contour lines (level curves)
$f^{-1}(C):=\left\{(x, y)^{\mathrm{T}}: f(x, y)=C\right\}$
for the function values $C_{1}=5, C_{2}=0$ and $C_{3}=-10$.
At points $P_{1}=\binom{0}{-1}, P_{2}=\binom{5}{3}$ and $P_{3}=\binom{-5}{-1}$ also provide the direction of the gradient.
c) For g draw the contour lines
$g^{-1}(C):=\left\{(x, y)^{\mathrm{T}}: g(x, y)=C\right\}$
for function values $C_{4}=\frac{6}{5}, C_{5}=\frac{21}{5}$ and $C_{6}=6$.
At points $P_{4}=\binom{0}{-1}, P_{5}=\binom{4}{0}$ and $P_{6}=\binom{3}{4}$ also provide the direction of the gradient.
d) Based on your observations (i.e. without proof), try to formulate a guess on how the direction of gradient at a given point is related to the direction of the contour line through that point.

Exercise 2:

Let

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad f(x, y)=\cos (2 x-3 y)+x^{3}-y^{3}+2 y^{2}
$$

a) Find all first, second and third order partial derivatives of f.
b) the tangential plane to the graph of a differentiable function $f: D_{f} \longrightarrow \mathbb{R}$ at point $\left(x^{0}, y^{0}\right) \in D_{f} \subset \mathbb{R}^{2}$ is defined by

$$
z=f\left(x^{0}, y^{0}\right)+f_{x}\left(x^{0}, y^{0}\right)\left(x-x^{0}\right)+f_{y}\left(x^{0}, y^{0}\right)\left(y-y^{0}\right) .
$$

Give the equation of the tangential plane to the graph of f at the point $\left(x^{0}, y^{0}\right)=\left(\frac{\pi}{4}, 0\right)$.

