Dr. H. P. Kiani, S. Onyshkevych

Analysis III for Engineering Students
 Homework sheet 2

Problem 1:

a) Find all first and second order partial derivatives of

$$
s(x, y, z):=x y z \sin (x+y+z) \quad \text { and } \quad g(x, y, z):=\frac{\cos ^{2}(x) e^{y}}{z}
$$

b) Calculate for the function $f: \mathbb{R}^{3} \longrightarrow \mathbb{R}$

$$
f(x, y, z)=\arctan (x) e^{y}+\sin (x) \ln \left(1+y^{2}\right) z+x^{2} e^{z^{2}}
$$

the derivative $f_{x y z}$ as well as $\nabla f(x, y, z)$.

Problem 2: The function

$$
u(x, t):=\frac{1}{2}\left[\sin \left(\frac{2 \pi}{L}(x+c t)\right)+\sin \left(\frac{2 \pi}{L}(x-c t)\right)\right]
$$

describes approximately the displacement of the point $x \in[0, L]$ of a vibrating string of length L at time $t>0$

The position of the string at time $t=0$ is $u(x, 0)=\sin \left(\frac{2 \pi x}{L}\right)$. These are the so-called initial values.
a) Calculate the displacement at the end points of the string, the so-called boundary values $u(0, t)$ and $u(L, t)$.
b) Show that u satisfies the wave equation $\quad \frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$.
c) Try to sketch the form of the string for $t=0, \frac{L}{6 c}, \frac{L}{4 c}, \frac{L}{3 c}, \frac{L}{2 c}, \frac{L}{c}$.

Hint: $\sin (a+b)+\sin (a-b)=2 \sin (a) \cos (b)$.

Due date: 01.-05.11.21

