Analysis III: Auditorium exercise class

Line Integrals, Potentials, Green's Theorem, Gauss' Theorem, Surface Integrals

Sofiya Onyshkevych
January 17, 2022

Line integrals for vector functions

- For a continuous vector field $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, and a piecewise C^{1}-curve $c:[a, b] \rightarrow D$ the line integral on f over c is given by

$$
\int_{c} f(x) d x:=\int_{a}^{b}\langle f(c(t)), \dot{c}(t)\rangle d t
$$

- For a closed curve $c(t)$, i.e. $c(a)=c(b)$, we use the notation

$$
\oint_{c} f(x) d x
$$

Exercise 1

Compute

$$
\int_{c} f(x) d x,
$$

where $f(x, y, z)=\left(\begin{array}{c}e^{2 x} \\ z(y+1) \\ z^{3}\end{array}\right), \quad c:[0,2] \rightarrow \mathbb{R}^{3}, \quad c(t)=\left(\begin{array}{c}t^{3} \\ 1-3 t \\ e^{t}\end{array}\right)$.

Exercise 2

Compute

$$
\int_{c} f(x) d x
$$

where $f(x, y)=\binom{y^{2}}{x^{2}-4}$, and c is the portion of $y=(x-1)^{2}$ from $x=0$ to $x=3$.

Exercise 3

Compute

$$
\int_{c} f(x) d x
$$

where $f(x, y)=\binom{3 y}{x^{2}-y}$, and c is the upper half unit-circle calculated at origin and the portion of $y=x^{2}-1$ from $x=-1$ to $x=1$.

Potentials

- Let $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a vector field. If there exists a scalar C^{1}-function $\varphi: D \rightarrow \mathbb{R}$ with

$$
f(x)=\operatorname{grad} \varphi(x)
$$

it is called a potential of $f(x)$.

- If there exists a potential for a vector field f, it is called a conservative field.
- Necessary condition for existence of a potential:

$$
\begin{equation*}
\operatorname{curl} f(x)=0 \quad \forall x \in D \tag{1}
\end{equation*}
$$

- If D is simply connected, Eq. (1) is a sufficient condition.

The fundamental theorem of line integrals

For the continuous vector field $f: D \rightarrow \mathbb{R}^{n}$ with potential φ and a piecewise C^{1}-curve $c:[a, b] \rightarrow D$ it holds

$$
\int_{c} f(x) d x=\varphi(c(b))-\varphi(c(a))
$$

Let $x_{0} \in D$ - fixed point and c_{x} is an arbitrary piecewise C^{1}-curve in D connecting points x_{0} and x. Then $\varphi(x)$ is given by

$$
\varphi(x)=\int_{c_{x}} f(y) d y+\text { const }
$$

Exercise 4

Let f be the vector field given by

$$
f(x, y, y)=\left(\begin{array}{c}
3 x^{2} y^{4} z^{5}+1 \\
4 x^{3} y^{3} z^{5}+2 y \\
5 x^{3} y^{4} z^{4}+3 z^{2}
\end{array}\right) .
$$

- Show that there is a potential for f (without calculating it).
- Compute the potential using the definition (by integration)
- Compute the potential using the Fundamental theorem

Green's Theorem

Let $f(x)$ be a C^{1}-vector field on a domain $D \subset \mathbb{R}^{2}$. Let $K \subset D$ be compact and projectable with respect to both coordinates, such that K is bounded by a closed and piecewise C^{1}-curve $c(t)$.
The parameterization of $c(t)$ is chosen such that K is always on the left when going along the curve with increasing parameter (positive circulation). Then the following holds

$$
\oint_{c} f(x) d x=\int_{K} \operatorname{curl} f(x) d x
$$

Exercise 5

Let

$$
f(x, y)=(\sin x, \cos y)
$$

and let R be the region enclosed by the curve c parameterized by

$$
c(t)=\binom{2 \cos t+\frac{1}{10} \cos (10 t)}{2 \sin t+\frac{1}{10} \sin (10 t)}
$$

on

$$
0 \leq t \leq 2 \pi .
$$

Find the circulation around c.

Exercise 6

Let c be the closed curve parametrized by

$$
c(t)=\left(t-t^{3}, t^{2}\right)
$$

on

$$
-1 \leq t \leq 1,
$$

bounding the domain D. Compute the area of D using Green's theorem.

Surface integrals

- Scalar surface integral ($f: D \rightarrow \mathbb{R}$)

$$
\iint_{S} f(x, y, z) d S=\iint_{r(S)} f \cdot d S=\iint_{K} f(r(u, v)) \cdot\left\|\frac{\partial r}{\partial u} \times \frac{\partial r}{\partial v}\right\| d u d v
$$

- Flux integral (of a vector field $f: D \rightarrow \mathbb{R}^{3}$)

$$
\begin{aligned}
\iint_{S} f \cdot n d S & =\iint_{r(S)} f \cdot d S=\iint_{K} f(r(u, v)) \cdot\left\|\frac{\partial r}{\partial u} \times \frac{\partial r}{\partial v}\right\| d u d v \\
& =\iint_{K}\left\langle f(r(u, v)), \frac{\partial r}{\partial u} \times \frac{\partial r}{\partial v}\right\rangle d u d v
\end{aligned}
$$

- Gauss Theorem (Divergence theorem)

$$
\int_{G} \operatorname{div} f(x) d x=\int_{\partial G}\langle f(x), n(x)\rangle d S=\int_{K}\left\langle f(r(u, v)), \frac{\partial r}{\partial u} \times \frac{\partial r}{\partial v}\right\rangle d u d v
$$

Exercise 7

Calculate the surface integral $\iint_{S} 5 d S$, where S is the surface with parametrization

$$
r(u, v)=\left(u, u^{2}, v\right)
$$

for $0 \leq u \leq 2$ and $0 \leq v \leq u$.

Exercise 7

Let

$$
v(x, y, z)=(2 x, 2 y, z)
$$

be the velocity field of a fluid with constant density $\rho=8$. Let S be given by

$$
x^{2}+y^{2}+z^{2}=9 \text { and } z \geq 0
$$

such that S is oriented outward.
Compute the mass flow rate of the fluid across S.

Thank you!

