Analysis III: Auditorium exercise class

Double integrals, Theorem of transfrmation,
Center of mass and moment of inertia, Steiner's Theorem

Sofiya Onyshkevych
January 2, 2022

Fubini theorem:

- If f be integrable over D and for all $x \in\left[a_{1}, b_{1}\right], y \in\left[a_{2}, b_{2}\right]$ there exist integrals

$$
F(x)=\int_{a_{2}}^{b_{2}} f(x, y) d y \quad G(y)=\int_{a_{1}}^{b_{1}} f(x, y) d x
$$

then it holds

$$
\left.\int_{D} f(x)\right) d x=\int_{a_{1}}^{b_{1}} \int_{a_{2}}^{b_{2}} f(x, y) d y d x=\int_{a_{2}}^{b_{2}} \int_{a_{1}}^{b_{1}} f(x, y) d x d y
$$

Previously: Computing area using double integrals

Exercise 1

Determine the area of the region between the two curves $y=x^{2}-2$ and $y=2$.

Previously: Computing area using double integrals

Exercise 2

Determine the area of the region between the two curves $y=x^{3}$ and $y=x^{2}+x$.

Computing volume using double integrals

Exercise 3

Compute the volume of the body D defined by $0<x<1,-x<y<x$ and $0<z<3+x^{2}-2 y$.

Computing volume using double integrals

Exercise 4

Compute the volume of space region D bounded by the surfaces $x^{2}+y^{2}=1, z=0$ and $z=-y$.

Coordinate Transformations

Theorem of transformation

Let $U \subset \mathbb{R}^{n}$ be compact, measurable set, $\Phi: D \rightarrow \mathbb{R}^{n}$ be C^{1}-coordinate transform. So the transformation Φ is invertible on D^{0}. Let further $K=\Phi(D)$. Then for continuous function $f: K \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ it holds

$$
\int_{K} f(\mathbf{x}) d \mathbf{x}=\int_{D} f(\Phi(\mathbf{u})) \cdot \mid \operatorname{det}(J \Phi(\mathbf{u}) \mid d \mathbf{u}
$$

Computing integrals using coordinate transformations

Exercise 5

Compute the following integral

$$
I=\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}}\left(x^{2}+y^{2}\right) d y d x
$$

Solution:
$x=r \cos \phi$
$y=r \sin \phi$

Computing integrals using coordinate transformations

Exercise 6

Calculate the integral

$$
\iiint_{U} e^{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}} d x d y d z
$$

where the region U is the unit ball $x^{2}+y^{2}+z^{2} \leq 1$.

Computing integrals using coordinate transformations

Exercise 7
Calculate the integral

$$
\iiint_{U}\left(x^{2}+y^{2}\right) d x d y d z
$$

where the region U is bounded by the surfaces $x^{2}+y^{2}=3 z, z=3$.

Application

Let $K \subset \mathbb{R}^{3}$ be the body with the continuous mass density function $\rho: K \rightarrow \mathbb{R}$.

- The mass M of the body K is given by

$$
M=\int_{K} \rho(x, y, z) d K
$$

- The center of mass of K is computed as

$$
\mathbf{x}_{\mathrm{s}}=\left(\begin{array}{l}
x_{s} \\
y_{s} \\
z_{s}
\end{array}\right)=\frac{1}{M}\left(\begin{array}{l}
\int_{K} \rho(x, y, z) \cdot x d K \\
\int_{K} \rho(x, y, z) \cdot y d K \\
\int_{K} \rho(x, y, z) \cdot z d K
\end{array}\right)
$$

Computing the total mass

Exercise 8

Consider a triangular domain D with vertices $(0,0),(0,3),(3,0)$ and with density $\rho(x, y)=x y$. Find the total mass of D.

$$
M=\iint_{D} d m=\iint_{D} \rho(x, y) d D
$$

Computing the center of mass

Exercise 9

Consider the same triangular domain D with vertices $(0,0)$, $(0,3),(3,0)$ and with density $\rho(x, y)=x y$. Find the center of mass.

$$
\begin{gathered}
x_{s}=\frac{\iint_{R} x \rho(x, y) d D}{\iint_{R} \rho(x, y) d D}= \\
y_{s}=\frac{\iint_{R} y \rho(x, y) d D}{\iint_{R} \rho(x, y) d D}=
\end{gathered}
$$

Computing the center of mass

Exercise 10

Sketch the quarter sphere K given by $y \leq 0, z \leq 0, x^{2}+y^{2}+z^{2} \leq 16$ and compute its center of mass for the given density function $\rho=x^{2}+y^{2}+z^{2}+1$ using polar coordinates.

Application

- The moment of inertia of K with respect to the given axis of rotation A is given by

$$
\Theta_{A}=\int_{K} \rho(x, y, z) r^{2}(x, y, z) d K,
$$

where $r(x, y, z)$ is the distance from the point $(x, y, z)^{\top} \in K$ to the axis A.

Theorem (Steiner's Theorem)
Let S be the axis parallel to A going through the center of the mass \mathbf{x}_{s} of a body K, d the distance to the axis A from the point $\mathbf{x}_{\mathbf{s}}, M$ - mass of K, ρ - constant density of K. Then the moment of inertia w.r.t A is given by

$$
\Theta_{A}=M d^{2}+\Theta_{S}
$$

Computing moment of inertia

Exercise 11

Consider the triangular region D with vertices $(0,0),(2,0),(2,2)$ and with density $\rho(x, y)=x y$. Find the moments of inertia w.r.t axes.
$\Theta_{x}=\iint_{D} y^{2} \rho(x, y) d D=$
$\Theta_{y}=\iint_{D} x^{2} \rho(x, y) d D=$
$\Theta_{0}=\Theta_{x}+\Theta_{y}=$

Computing moment of inertia

Exercise 12

Let K be a solid region bounded by $x+2 y+3 z=6$ and the coordinate planes with density $\rho(x, y, z)=x^{2} y z$. Find the moments of inertia of the K about the $y z$-plane, the $x z$-plane, and the $x y$-plane.

Thank you!

