Analysis III: Auditorium exercise class

Double integrals, Theorem of transfrmation, Center of mass and moment of inertia, Steiner's Theorem

Sofiya Onyshkevych January 2, 2022 • If *f* be integrable over *D* and for all $x \in [a_1, b_1], y \in [a_2, b_2]$ there exist integrals

$$F(x) = \int_{a_2}^{b_2} f(x, y) \, dy \quad G(y) = \int_{a_1}^{b_1} f(x, y) \, dx$$

then it holds

$$\int_{D} f(x) dx = \int_{a_1}^{b_1} \int_{a_2}^{b_2} f(x, y) dy dx = \int_{a_2}^{b_2} \int_{a_1}^{b_1} f(x, y) dx dy$$

Previously: Computing area using double integrals

Exercise 1

Determine the area of the region between the two curves $y = x^2 - 2$ and y = 2.

Previously: Computing area using double integrals

Exercise 2

Determine the area of the region between the two curves $y = x^3$ and $y = x^2 + x$.

Compute the volume of the body *D* defined by 0 < x < 1, -x < y < x and $0 < z < 3 + x^2 - 2y$.

Compute the volume of space region *D* bounded by the surfaces $x^2 + y^2 = 1$, z = 0 and z = -y.

Coordinate Transformations

Let $U \subset \mathbb{R}^n$ be compact, measurable set, $\Phi : D \to \mathbb{R}^n$ be C^1 -coordinate transform. So the transformation Φ is invertible on D^0 . Let further $K = \Phi(D)$. Then for continuous function $f : K \subset \mathbb{R}^n \to \mathbb{R}$ it holds

$$\int_{K} f(\mathbf{x}) \, d\mathbf{x} = \int_{D} f(\Phi(\mathbf{u})) \cdot |\det (J\Phi(\mathbf{u})) \, d\mathbf{u}$$

Computing integrals using coordinate transformations

Exercise 5

Compute the following integral

$$l = \int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} (x^{2} + y^{2}) \, dy dx$$

Solution:

 $\begin{aligned} x &= r \cos \phi \\ y &= r \sin \phi \end{aligned}$

Calculate the integral

$$\iiint\limits_{U} e^{\left(x^2+y^2+z^2\right)^{\frac{3}{2}}}dxdydz,$$

where the region U is the unit ball $x^2 + y^2 + z^2 \le 1$.

Calculate the integral

$$\iiint\limits_{U} \left(x^2 + y^2\right) dx dy dz,$$

where the region U is bounded by the surfaces $x^2 + y^2 = 3z, z = 3$.

Let $K \subset \mathbb{R}^3$ be the body with the continuous mass density function $\rho: K \to \mathbb{R}$.

• The mass *M* of the body *K* is given by

$$M = \int_{K} \rho(x, y, z) \, dK$$

• The center of mass of K is computed as

$$\mathbf{x}_{s} = \begin{pmatrix} x_{s} \\ y_{s} \\ z_{s} \end{pmatrix} = \frac{1}{M} \begin{pmatrix} \int \rho(x, y, z) \cdot x \, dK \\ \int \rho(x, y, z) \cdot y \, dK \\ \int \rho(x, y, z) \cdot y \, dK \\ \int \rho(x, y, z) \cdot z \, dK \end{pmatrix}$$

Computing the total mass

Exercise 8

Consider a triangular domain *D* with vertices (0,0), (0,3), (3,0) and with density $\rho(x,y) = xy$. Find the total mass of *D*.

Computing the center of mass

Exercise 9

Consider the same triangular domain *D* with vertices (0,0), (0,3),(3,0) and with density $\rho(x,y) = xy$. Find the center of mass.

Sketch the quarter sphere K given by $y \le 0, z \le 0, x^2 + y^2 + z^2 \le 16$ and compute its center of mass for the given density function $\rho = x^2 + y^2 + z^2 + 1$ using polar coordinates.

Application

• The moment of inertia of *K* with respect to the given *axis of rotation A* is given by

$$\Theta_{A} = \int_{K} \rho(x, y, z) r^{2}(x, y, z) \, dK,$$

where r(x, y, z) is the distance from the point $(x, y, z)^T \in K$ to the axis A.

Theorem (Steiner's Theorem)

Let S be the axis parallel to A going through the center of the mass **x**_s of a body K, d the distance to the axis A from the point **x**_s, M - mass of K, ρ - constant density of K. Then the moment of inertia w.r.t A is given by

$$\Theta_{\rm A} = M d^2 + \Theta_{\rm S}$$

Computing moment of inertia

Exercise 11

Consider the triangular region *D* with vertices (0,0), (2,0),(2,2) and with density $\rho(x,y) = xy$. Find the moments of inertia w.r.t axes.

Let *K* be a solid region bounded by x + 2y + 3z = 6 and the coordinate planes with density $\rho(x, y, z) = x^2yz$. Find the moments of inertia of the *K* about the *yz*-plane, the *xz*-plane, and the *xy*-plane.

Thank you!