Analysis III: Auditorium exercise class

Taylor Theorem, Lagrange-remainder, Extrema of Multivariable Functions (max, min, saddle pt.) Implicit Function Theorem

Sofiya Onyshkevych
November 22, 2021

BITTE BEACHTEN SIE DIE 3G-REGEL! PLEASE OBEY THE 3G RULE!

Zutritt zur Lehrveranstaltung haben nur:
-VOLLSTÄNDIG GEIMPFTE
-GENESENE
-GETESTETE
(negatives Testergebnis ist max. 24 Std. gültig)
Sollten Sie dies nicht nachweisen können, müssen Sie bitte den Raum jetzt verlassen.
Andernfalls droht ein Hausverbot!

Vielen Dank für Ihr Verständnis. Schützen Sie sich und andere!

Admission to the course is restricted to persons who are:
-FULLY VACCINATED
-RECOVERED
-TESTED
(negative test result is valid for max. 24 hours)
If you cannot prove this, please leave the room now. Otherwise you could be banned from the room!

Thank you for your understanding.
Protect yourself and others!

Taylor Theorem

Let $D \subset \mathbb{R}^{n}$ be open and convex. Let $f: D \rightarrow \mathbb{R}$ be a $m+1$ function and $x_{0} \in D$. Then the Taylor-expansion in $x \in D$ is well-defined
where

$$
R_{m}\left(x ; x_{0}\right)=\sum_{|\alpha|=m+1} \frac{D^{\alpha} f\left(x_{0}+\theta\left(x-x_{0}\right)\right)}{\alpha!}\left(x-x_{0}\right)^{\alpha}, \forall \theta \in(0,1)
$$

is a Lagrange-remainder.

$$
T_{m}\left(x ; x_{0}\right)=\underbrace{\underbrace{f\left(x_{0}\right)}_{T_{0}}+\operatorname{grad} f\left(x_{0}\right)\left(x-x_{0}\right)}_{T_{1}}+\ldots
$$

Error of a Taylor polynomial approximation

- we approximate f with Taylor polynomial, the more terms we have in T. expansion, the closer we are to f.
How close - remainder function (error function)

$$
\left(E_{m}\left(x ; x_{0}\right)=\mathbb{R}_{m}\left(x ; x_{0}\right)=f(x)-\operatorname{T} m\left(x ; x_{0}\right)\right.
$$

- how good we fit moving away from x_{0}

$$
\begin{aligned}
& T\left(x_{0}\right)=f\left(x_{0}\right) \Rightarrow R\left(x_{0} ; x_{0}\right)=f\left(x_{0}\right)-T_{m}\left(x_{0} ; x_{0}\right)=0 \\
& R_{m}^{(m)}\left(x_{0} ; x_{0}\right)=f^{(m)}\left(x_{0}\right)-T_{m}^{(m)}\left(x_{0} ; x_{0}\right)
\end{aligned}
$$

We choose to use the remainder in a lagrange form \Rightarrow need f to be $4 m+1$-times differentiable

$$
\begin{aligned}
R_{m}^{(m+1)}\left(x ; x_{0}\right)=f(x)-T_{m}^{(m+1)}\left(x_{i} x_{0}\right) & \Rightarrow\left|R_{m}^{(m+1)}\left(x_{i} x_{0}\right)\right|=\left|f^{(m+1)}(x)\right| \leq M \\
& \Rightarrow\left|R_{m}^{(m+1)}\left(x_{a} ; x_{0}\right)\right| \leq k
\end{aligned}
$$

Examples
Denote $y:=x_{0}+\theta\left(x-x_{0}\right)$

$$
\begin{aligned}
R_{2}\left((x, y) ;\left(x_{0}, y_{0}\right)\right)= & \frac{1}{3!}\left(f_{x \times x}\left(j_{1} ; j_{2}\right)\left(x-x_{0}\right)^{3}+3 f_{x x y}\left(3_{1} ; j_{2}\right)\left(x-x_{0}\right)^{2}\left(y-y_{0}\right)\right. \\
& \left.+3 f_{x y y}\left(z_{1}, z_{2}\right)\left(x-x_{0}\right)(y-y)^{2}+f_{y y y}\left(z_{1}, 3_{2}\right)\left(y-y_{0}\right)^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
R_{3}\left((x, y) ;\left(x_{0}, y_{0}\right)\right)= & \frac{1}{4!}\left(f_{x x x x}\left(y_{1 ;}\right\}_{2}\right)\left(x-x_{0}\right)^{4}+4 f_{x x x y}(\ldots)\left(x-x_{0}\right)^{3}\left(y-y_{0}\right) \\
& +6 f_{x x y y}()\left(x-x_{0}\right)^{2}\left(y-y_{0}\right)^{2}+4 f_{x y y y}()\left(x-x_{0}\right)\left(y-y_{0}\right)^{3} \\
& \left.+f_{y y y y}\left(z_{1,3}\right\}_{2}\right)\left(y-y_{0}\right)^{4}
\end{aligned}
$$

Exercise 1

Compute Taylor polynomial $T_{2}\left(x ; x_{0}\right)$ of the function $f(x, y, z)=x e^{z}-y^{2}$ centered around a point $x_{0}=(1,-1,0)^{\top}$.

$$
\begin{aligned}
& T_{2}\left(x ; x_{0}\right)=f\left(x_{0}\right)+\nabla f\left(x_{0}\right)\left(x-x_{0}\right)+\frac{1}{2}\left(x-x_{0}\right)^{\top} H f\left(x_{0}\right)\left(x-x_{0}\right) \\
& \nabla f(x, y, z)=\left(\begin{array}{l}
e^{z} \\
2 y \\
x e^{z}
\end{array}\right) \quad H f(x, y, z)=\left(\begin{array}{ccc}
0 & 0 & e^{z} \\
0 & -2 & 0 \\
e^{z} & 0 & x e^{z}
\end{array}\right) \\
& \nabla f(1 ;-1 ; 0)=\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right) \quad H f(1 ;-1,0)=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & -2 & 0 \\
1 & 0 & 1
\end{array}\right) \quad f\left(x_{0}\right)=0 \\
& T_{2}\left(x_{i} x_{0}\right)=0+\left(x-x_{0}\right)+2\left(y-y_{0}\right)+\left(z-z_{0}\right) \\
& +\frac{1}{2}\left(-2\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}+2\left(x-x_{0}\right)\left(z-z_{0}\right)\right) \\
& =(x-1)+2(y+1)+z-(y+1)^{2}+\frac{1}{2} z^{2}+(x-1) z
\end{aligned}
$$

The estimate on the remainder

The Taylor approximation of a function reads as
all partial derivatives $f(x)=T_{m}\left(x ; x_{0}\right)+O\left(\left\|x-x_{0}\right\|^{m+1}\right)$ of order $m+1$
If $D^{\alpha} f,|\alpha|=m+1$ are bounded by $C>0$ in a neighborhood of x_{0} then the estimate holds

$$
\left|R_{m}\left(x_{0} ; x\right)\right| \leq \frac{n^{m+1}}{(m+1)!} C\left\|x-x_{0}\right\|_{\infty}^{m+1}
$$

$n-\#$ of variables of $f\left(f: \mathbb{R}^{(n)}, \mathbb{R}\right)$
m - degree of Taylor polynomial ($T_{m}\left(x ; x_{0}\right)$)

$$
\begin{aligned}
& \|\bar{v}\|_{\infty}=\max \left\{\left|v_{i}\right|, i=\overline{1, n}\right\} \\
& v=(1,-5 ; 6) \quad\|v\|=\max \{|1|,|-5|,|6|\}=6 .
\end{aligned}
$$

Exercise 3

$$
\begin{aligned}
& x \in[0 ; ה]: \cos x \\
& \sin x \in[-7 ; \eta \\
& \in[0,1]
\end{aligned}
$$

Compute $T_{2}\left(x ; x_{0}\right)$ of a function $f(x, y)=e^{x} \cos (y)$ at the point $x_{0}=(0,0)^{\top}$ and the estimate for the associated remainder $R_{2} \overrightarrow{(x ; \ngtr 0)} \quad \xrightarrow[\Delta]{ }$ cos for $(x, y) \in[-2,2] \times[-2.2\} .[0 ; \Pi]$

$$
\nabla f(x)=\binom{e^{x} \cos y}{-e^{x} \sin y} \quad \forall f(x)=\left(\begin{array}{ll}
e^{x} \cos y & -e^{x} \sin y \\
-e^{x} \sin y & -e^{x} \cos y
\end{array}\right) \quad \nabla f\left(x_{0}\right)=\binom{1}{0}
$$

$H f\left(x_{0}\right)=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$. Plug into formula for $T_{2}\left(x ; x_{0}\right)=\ldots$
To compute the estimate on remainder: found $\forall D^{(n+1)} f$ from above:

$$
\begin{array}{lll}
m+1=3 & \left(f: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}\right) & \\
\left|f_{x x x}\right|=\left|e^{x} \cos y\right| \leq e^{2} \cdot 1 & \left|f_{x x y}\right|=\left|-e^{x} \sin y\right| \leq e^{2} \cdot 1 & \text { Choose the } \frac{\text { largest }}{\text { found as }} C \\
\left|f_{x y y}\right|=\left|e^{x} \cos y\right| \leq e^{2} \cdot 1 & \left|f_{y y y}\right|=\left|e^{x} \sin y\right| \leq e^{2} \cdot 1 & C \cdot=e^{2} \\
\left|R_{2}\left(x_{0} ; x\right)\right| \leq \frac{2^{2+1}}{3!} \cdot e^{2} \operatorname{mex}\{|x-0|,|y-0|\}^{3}=\frac{2^{3}}{3!} \cdot e^{2} \max \{|x|,|y|\}^{3}
\end{array}
$$

Exercise 4

Compute $T_{2}\left(x ; x_{0}\right)$ of a function $f(x, y)=\cos \left(x^{2}+y^{2}\right)$ at the point $x_{0}=(0,0)^{\top}$ and the approximation error for $(x, y) \in\left[0, \frac{\pi}{4}\right] \times\left[0, \frac{\pi}{4}\right]$.

$$
\begin{aligned}
& f\left(x_{0}\right)=1 ; \quad \nabla f(x)=\binom{-2 x \sin \left(x^{2}+y^{2}\right)}{-2 y \sin \left(x^{2}+y^{2}\right)} \quad \nabla f\left(x_{0}\right)=\binom{0}{0} \\
& H f(x)=\left(\begin{array}{ll}
-2 \sin \left(x^{2}+y^{2}\right)-4 x^{2} \cos \left(x^{2}+y^{2}\right) & -4 x y \cos \left(x^{2}+y^{2}\right) \\
-4 x y \cos \left(x^{2}+y^{2}\right) & -2 \sin \left(x^{2}+y^{2}\right)-4 y^{2} \cos \left(x^{2}+y^{2}\right)
\end{array}\right) \\
& H f\left(x_{0}\right)=\left(\begin{array}{cc}
0 & 0 \\
0 & 0
\end{array}\right) \Rightarrow T_{2}((x, y) ;(0,0))=f(0,0)+f_{x}(0,0) \cdot x+f_{y}(0,0) y \\
& \text { For the remainder need to check } \\
& \begin{array}{ll}
3 r d & +\frac{1}{2}\left(f_{x x}(0,0) x^{2}+f_{x y}(0,0) x y+f_{y y} y^{2}\right)=1 \\
f_{x x x}=-12 x \cos \left(x^{2}+y^{2}\right)+8 x^{3} \sin \left(x^{2}+y^{2}\right) & x, y \in\left[0 ; \frac{\pi}{4}\right) \\
f_{x \lambda y}=-4 y \cos \left(x^{2}+y^{2}\right)+8 x^{2} y \sin \left(x^{2}+y^{2}\right) & =2 x^{2}+y^{2} \in\left[0 ; \frac{\left.n^{2}\right]}{16}\right]
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& f_{x y y}=-4 x \cos \left(x^{2}+y^{2}\right)+8 y^{2} x \sin \left(x^{2}+y^{2}\right) \\
& \left.\begin{array}{l}
\theta \in(0,1) \\
3:=x_{0}+\theta x,
\end{array}\right\} \vee \\
& f_{y y y}=-12 y \cos \left(x^{2}+y^{2}\right)+8 y^{3} \sin \left(x^{2}+y^{2}\right) \\
& (31,32) \in\left(0 ; \frac{\pi}{4}\right) \times\left(0 ; \frac{\pi}{4}\right) \\
& \left|R_{2}(x, y ; 0,0)\right|=\frac{1}{3!}\left(\mid f_{x x x}\left(3,3_{2}\right) x^{3}+3 f_{x x y}\left(3,3_{2}\right) x^{2} y\right. \\
& +3 f_{x y y}\left(3_{1,3} 3_{2} \mid x y^{2}+f_{y y y y}\left(3_{1}, 3_{2}\left|y^{3}\right|\right)\right.
\end{aligned}
$$

$$
\Delta \text {-ineg } \frac{1}{3!}\left(\left|f_{x x x x}\left(3_{11} 3_{2}\right)\right| \cdot|x|^{3}+3\left|f_{x x y}\right|\left|x^{2} y\right|+3\left|f_{x y y}\right|\left|x y^{2}\right|+\left(f_{y y y y}| | y^{3} \mid\right)\right.
$$

$|\sin t| \leqslant 1$; $|\cos t| \leqslant 1$

$$
\begin{aligned}
\Rightarrow\left|f_{x x x}\right||x|^{3} & =\left|-12 z_{1} \cos \left(z_{1}^{2}+z_{2}^{2}\right)+8 z_{1}^{3} \sin \left(z_{1}^{2}+z_{2}^{2}\right)\right| \mid x 1^{3} \\
& \leq(112 z_{1}|\cdot| \cdot \underbrace{1 \cos \left(z_{1}^{2}+z_{2}^{2}\right) \mid}+8\left|z_{1}\right|^{3} \mid \underbrace{\sqrt[s i n]{ }\left(z_{1}^{2}+3_{2}^{2}\right) \mid}_{n_{1}}) \cdot|x|^{3} \\
& \leq\left(12 \cdot \frac{\pi}{4}+8\left(\frac{\pi}{4}\right)^{3}\right)\left(\frac{\pi}{4}\right)^{3}
\end{aligned}
$$

analogansly:

$$
\begin{aligned}
& 3 \|_{x x y}| | x^{2} y \left\lvert\, \leq 3\left(4 \cdot \frac{\pi}{4}+8 \cdot\left(\frac{\pi}{4}\right)^{3}\right)\left(\frac{\pi}{4}\right)^{3}\right. \\
& 3\left|f_{x y y}\right| \cdot\left|x y^{2}\right| \leq 3\left(4 \cdot \frac{\pi}{4}+8\left(\frac{\pi}{4}\right)^{3}\right)\left(\frac{\pi}{4}\right)^{3} \\
& 1 f_{y y y}| | y^{3} \left\lvert\, \leq\left(12 \cdot \frac{\pi}{4}+8\left(\frac{\pi}{4}\right)^{3}\right)\left(\frac{\pi}{4}\right)^{3}\right. \\
& \Rightarrow\left|f(x, y)-T_{2}((x, y) ;(0,0))\right| \leq \frac{\pi 3}{3!4^{3}}\left(48 \cdot \frac{\pi}{4}+64\left(\frac{\pi}{4}\right)^{3}\right) \approx 5.5476
\end{aligned}
$$

Max error for $x=y=\frac{\pi}{4}$:

$$
\left|f\left(\frac{\pi}{4}, \frac{\pi}{4}\right)-T_{2}\left(\frac{\pi}{4}, \frac{\pi}{4} ; 0,0\right)\right|=\left|\cos \left(2 \cdot \frac{\pi^{2}}{4^{2}}\right)-1\right|=0.6692
$$

Extrema of multivariable function

Let $D \subset \mathbb{R}^{n}, f: D \rightarrow \mathbb{R}$ and $x_{0} \in D$. Then at x_{0} the function f has

- a (strict) global maximum if $\forall x \in D: f(x) \stackrel{(<)}{\leq} f\left(x_{0}\right)$

- a (strict) local maximum if

$$
\exists \epsilon>0 \forall x \in D \text { with }\left\|x-x_{0}\right\|<\epsilon: f(x) \stackrel{(<)}{\leq} f\left(x_{0}\right)
$$

./ $f\left(x_{0}\right)$ is lorgere than $f(x)$ in the $B_{\varepsilon}\left(x_{0}\right) \quad \forall x$.

- analogously for minima

Note: x_{0} is called an extremum if it is maximum $\hat{\uparrow}$ or minimum x_{1}-strict local min
x_{2}-str. glodolmin
x_{3}-stet local max

$$
\begin{aligned}
& x_{6}-\text { sad le pt pt } \\
& x_{7} \text { - strict glofel max } \\
& x_{8} \text { - stich loailmin }
\end{aligned}
$$

Stationary points

- The points $x_{0} \in D$ for which it holds

$$
\operatorname{grad} f\left(x_{0}\right)=0
$$

are called stationary points (critical points) of f.

- Stationary points are not necessarily extrema.

necessary - it should hold for x_{0} to be a candidate for an extreme, bolt well still have to to additional cheeks later " A " $\Rightarrow{ }^{n} B$ " " B " should be true for A to be true (but A still may be False)

18tadr
and order $f \in D$ is $C^{2}, x_{0} \in D$ - stationary point

- if x_{0} is local min (max)
$\Longrightarrow H f\left(x_{0}\right)$ positive (negative) semi-definite.

$$
H f\left(x_{0}\right) \geqslant 0
$$

$$
A=\left(\begin{array}{ll|l}
a_{1} & a_{2} & a_{3} \\
a_{1} & a_{5} & a_{6} \\
\hline a_{7} & a_{8} & a_{9}
\end{array}\right)
$$

Sylvester's criterion

- pos.semi-def

$$
H f\left(x_{0}\right)<0
$$

-negatlve-def.
if some are $\mathrm{O}_{s} \rightarrow$ semi- def
if none of the above \Rightarrow indefinite

$$
\begin{aligned}
& \text { Example } \\
+++\Rightarrow A \succ 0 & +0^{+} \Rightarrow A>0 \quad-\text { pos. semi -def } \\
-+-\quad A \prec 0 & -0- \\
& +--A \leqslant 0 \\
& \Rightarrow \text { indefinite }
\end{aligned}
$$

Analogously - using eigenvalues (more at the exercise class)

$$
\begin{aligned}
& \forall \lambda>0 \rightarrow \min \\
& \forall \lambda<0 \rightarrow \max \\
& \forall \lambda \geqslant 0 \quad \exists \lambda \neq 0 \rightarrow \min / \text { s-ddle pt. } \\
& \forall \lambda \leq 0 \quad \exists \lambda \neq 0 \rightarrow \operatorname{mex} / \mathrm{s}-d d \text { le } \\
& \exists \lambda>0, \exists \lambda<0 \rightarrow \text { saddle }
\end{aligned}
$$

Sufficient optimality conditions
" A " \Leftarrow " B " If " B " is true, then " A " is true.
The truth of B guarantees the truth of A.

- Let $f \in D$ is $C^{2}, x_{0} \in D$ - stationary point
- Hf(x_{0}) positive (negative) definite $\Longrightarrow x_{0}$ is strict local min (max)
- Hf (x x_{0}) indefinite $\Longrightarrow x_{0}$ is a saddle point

Examples

Figure 1: $f(x)=x^{3}, f^{\prime}(0)=0$ but $x^{*}=0$ isn't extremum
x^{*} is a stationary $\$ t$, but is not extremum.

Figure 2:
$f(x)=x^{4}, f^{\prime \prime}(x)=12 x^{2}, f^{\prime \prime}(0)=0$ but still $x^{*}=0$ is minimum
$f^{\prime \prime}(0)=0 \geqslant 0$ - so
and order ruff. cone is not s-tisfred but x^{*} is still - minimum.

Exercise 5

Compute the stationary points of the following functions and determine whether it is min/max/saddle point

ᄀ1. $f(x, y)=x y+x-2 y-2$
2. $f(x, y)=2 x^{3}-3 x y+2 y^{3}-3$
3. $f(x, y)=\left(x^{2}+2 y^{2}\right) e^{-x^{2}-y^{2}}$
4. $f(x, y)=x^{5}-3 x^{3}+y^{2}+15, \quad$,
\} ~ i n ~ t h e ~ e x e r c i s e ~ c l a s s ~
1.
. $f(x, y)=x y+x-2 y-2$
$\operatorname{grad} f(x, y)=(y+1, x-2)$ To compute stationary points:

$$
\operatorname{grad} f(x, y)=0:\left\{\begin{array}{l}
y+1=0 \\
x-2=0
\end{array} \Rightarrow \begin{array}{l}
y=-1 \\
x=2
\end{array}\right.
$$

\Rightarrow have orly ore stationary pt ($2 ;-1$)
To check what it is check second-ouder oft. Condition:
a $a_{1}: 0$

$$
H f(x, y)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad H f(2 ;-1)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=: A
$$

let tef $=-1<0 \Rightarrow$ not pos.def \Rightarrow not res. def \Rightarrow indef. $\Rightarrow 2$ saddle point 0- \Rightarrow

Alternatively: using eigenvalues $\operatorname{set}(A-\lambda I)=0$

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{cc}
-\lambda & 1 \\
1 & -\lambda
\end{array}\right)=0 \Rightarrow \lambda^{2}-1=0 \\
& \Rightarrow \lambda= \pm 1 \\
& \lambda_{1}>0 ; \lambda_{2}<0 \Rightarrow \text { seddle }
\end{aligned}
$$

2.

$$
\begin{aligned}
& f(x, y)=2 x^{3}-3 x y+2 y^{3}-3 \\
& \operatorname{grad} f(x, y)=\left(6 x^{2}-3 y ;-3 x+6 y^{2}\right) \\
& \left\{\begin{array} { l }
{ 6 x ^ { 2 } - 3 y = 0 \quad } \\
{ - 3 x + 6 y ^ { 2 } = 0 \quad \Rightarrow 2 x ^ { 2 } = y }
\end{array} \quad \left\{\begin{array}{l}
2 x^{2}=y \\
3 x\left(8 x^{3}-7\right)=0
\end{array}\right.\right.
\end{aligned}
$$

$$
\left\{\begin{array} { l }
{ [\begin{array} { l }
{ x = 0 } \\
{ 8 x ^ { 3 } - 1 = 0 }
\end{array} } \\
{ 2 x ^ { 2 } = y }
\end{array} \quad \left\{\begin{array}{l}
\left\{\begin{array}{l}
x=0 \\
y=0 \\
x=1 / 2 \\
y=1 / 2
\end{array}\right.
\end{array} \quad(0,0) ;\left(\frac{1}{2} ; \frac{1}{2}\right)\right.\right.
$$

$$
\begin{array}{ll}
H f(x, y)=\left(\begin{array}{cc}
12 x & -3 \\
-3 & 12 y
\end{array}\right) & H f(0,0)=\left(\begin{array}{cc}
0 & -3 \\
-3 & 0
\end{array}\right) \quad \begin{array}{l}
\operatorname{det} H f(0,0)=-9<0 \\
\Rightarrow \text { seddle }
\end{array} \\
H f\left(\frac{1}{2} ; \frac{1}{2}\right)=\left(\begin{array}{cc}
6 & -3 \\
-3 & 6
\end{array}\right) \quad \begin{array}{l}
6 \geq 0 \\
36-9=27>0
\end{array} \quad \Rightarrow \text { pos.def } \Rightarrow \text { minimum }
\end{array}
$$

alt vic elgs: $\operatorname{sf}\left(\begin{array}{cc}6-\lambda & -3 \\ -3 & 6-\lambda\end{array}\right)=0$

$$
\begin{aligned}
&(6-\lambda)^{2}=9 \\
& 6-\lambda= \pm 3 \\
& \lambda=6 \mp 3 ; \\
& \lambda_{1}=3>0 \quad \lambda_{2}=9>0 \\
&=2 \mathrm{~mm} .
\end{aligned}
$$

Implicitly Defined Functionss

Consider a system of nonlinear equations

$$
g(x)=0,
$$

$$
g\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{m}
\end{array}\right)=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{m}
\end{array}\right)
$$

with $g: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, m<n$, i.e more unknowns than equations. underdetermined system of equations.

We want to solve such systems locally expressing some variables via other.

Implicit Function Theorem

Let $g: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a C^{1} - function. Let $(x, y) \in D$, where $x \in \mathbb{R}^{n-m}, y \in \mathbb{R}^{m}$. Let $\left(x_{0}, y_{0}\right) \in D$ - solution to $g\left(x_{0}, y_{0}\right)=0$. If the Jacobian matrix

$$
\frac{\partial g}{\partial y}\left(x_{0}, y_{0}\right):=\left(\begin{array}{ccc}
\frac{\partial g_{1}}{\partial y_{1}} & \ldots & \frac{\partial g_{1}}{\partial y_{m}} \\
\ldots & & \ldots \\
\frac{\partial g_{m}}{\partial y_{1}} & \ldots & \frac{\partial g_{m}}{\partial y_{m}}
\end{array}\right)
$$

is regular, then there exist neighbourhoods U of x_{0}, V of $y_{0}, U \times V \subset D$ and a uniquely determined continuous differentiable function $f: U \rightarrow V: f\left(x_{0}\right)=y_{0}$ and $g(x, f(x))=0$ for all $x \in U$ and

$$
J f(x)=-\left(\frac{\partial g}{\partial y}(x, f(x))\right)^{-1}\left(\frac{\partial g}{\partial x}(x, f(x))\right)
$$

Exercise 7

Can the equation $\left(x^{2}+y^{2}+2 z^{2}\right)^{\frac{1}{2}}=\cos (z)$ be solved uniquely for y

$$
\begin{aligned}
& F(x, y, z)=(0+1+0) \frac{1 / 2}{}-1=0 \\
& F(0,1,0)=\left.\frac{1}{2}\left(x^{2}+y^{2}+2 z^{2}\right)^{-1 / 2} \cdot 22 y\right|_{(0,1,0)}=\frac{y}{\sqrt{x^{2}+y^{2}+2 z^{2}}} \cdot \frac{1}{\sqrt{0+1+0}}=7 \neq 0
\end{aligned}
$$

\Rightarrow from implicit f. Theorem we econ solve for y in terms of (x, z)

$$
\frac{\partial F}{\partial y}(0,1,0)=\left.\left(\frac{1}{\not z}\left(x^{2}+y^{2}+2 z^{2}\right)^{-1 / 2} \cdot 2 \cdot 2 z+\sin z\right)\right|_{(0,1,0)}
$$

$$
\frac{\partial F}{\partial z}(0,1,0)=0+\sin 0=0
$$

$\Rightarrow F(x, y, z)$ cannot say whether F can be expressed as $Z \in f(x, y)$

Exercise 8

Consider the function $F(x, y, z, u, v): \mathbb{R}^{5} \rightarrow \mathbb{R}^{2}$ given by

$$
F(x, y, z, u, v)=\binom{x y^{2}+x z u+y v^{2}-3}{u^{3} y z+2 x v-u^{2} v^{2}-2}
$$

Can we solve for u, v as functions of x, y, z near $(1,1,1,1,1)$?
Notice that $\mathrm{F}(1,1,1,1,1)=0$.

$$
\begin{aligned}
& \left(\begin{array}{ll}
\frac{\partial F_{1}}{\partial u} & \frac{\partial F_{1}}{\partial v} \\
\frac{\partial F_{2}}{\partial u} & \frac{\partial F_{2}}{\partial v}
\end{array}\right)=\left(\begin{array}{cc}
x z & 2 y v \\
3 u^{2} y z-2 u v^{2} & 2 x-2 u^{2} v
\end{array}\right) \\
& A:=\left(\begin{array}{ll}
\frac{\partial F_{1}}{\partial u} & \frac{\partial F_{1}}{\partial v} \\
\frac{\partial F_{2}}{\partial u} & \frac{\partial F_{2}}{\partial v}
\end{array}\right)(1,1,1,1,1)=\left(\begin{array}{cc}
1 & 2 \\
1 & 0
\end{array}\right) \Rightarrow \text { we may solve for } \\
& \text { ul at } A=1-0-2=-2 f_{0} \\
& \text { ur in terms of }(x, y, z)
\end{aligned}
$$

Some more exercises

Compute $T_{2}\left(x ; x_{0}\right)$ of a function

$$
f(x, y)=\cos (x) \sin (y) e^{x-y}
$$

at the point $x_{0}=(0,0)^{\top}$ and the associated remainder $R_{2}\left(x ; x_{0}\right)$

Some more exercises

Compute Taylor polynomial of second degree $T_{2}\left(x ; x_{0}\right)$ of a function

$$
f(x, y)=\sin (x+y)+y e^{x-y}
$$

at the point $x_{0}=(0,0)^{\top}$ and the estimate for the Lagrange remainder for $|x| \leq 0.1,|y| \leq 0.1$.

Thank you!

