
Analysis III: Auditorium exercise class
Taylor Theorem, Lagrange-remainder,
Extrema of Multivariable Functions
Implicit Function Theorem

Sofiya Onyshkevych
November 22, 2021



BITTE BEACHTEN SIE DIE 3G-REGEL!
PLEASE OBEY THE 3G RULE!

−VOLLSTÄNDIG GEIMPFTE
−GENESENE
−GETESTETE

−FULLY VACCINATED
−RECOVERED
−TESTED

Zutritt zur Lehrveranstaltung 
haben nur:

Admission to the course is restricted
to persons who are:

(negative test result is valid for max. 24 hours)(negatives Testergebnis ist max. 24 Std. gültig)

Sollten Sie dies nicht nachweisen 
können, müssen Sie bitte den Raum 
jetzt verlassen.
Andernfalls droht ein Hausverbot!

Vielen Dank für Ihr Verständnis.
Schützen Sie sich und andere!

If you cannot prove this,
please leave the room now. 
Otherwise you could be banned from
the room!

Thank you for your understanding.
Protect yourself and others!
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Taylor Theorem

Let D ⊂ Rn be open and convex. Let f : D→ R be a Cm+1–function
and x0 ∈ D. Then the Taylor–expansion in x ∈ D is well-defined

f(x) = Tm(x; x0) + Rm(x; x0),

where

Rm(x; x0) =
∑

|α|=m+1

Dαf(x0 + θ(x−x0))
α!

(x− x0)α , ∀θ ∈ (0, 1)

is a Lagrange–remainder.
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Error of a Taylor polynomial approximation
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Examples

R2((x, y); (x0, y0)) =

R3((x, y); (x0, y0)) =
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Exercise 1

Compute Taylor polynomial T2(x; x0) of the function
f(x, y, z) = xez − y2 centered around a point x0 = (1,−1, 0)T.
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The estimate on the remainder

The Taylor approximation of a function reads as

f(x) = Tm(x; x0) + O(∥ x− x0 ∥m+1)

If Dαf, |α| = m+ 1 are bounded by C > 0 in a neighborhood of x0
then the estimate holds

|Rm(x0; x)| ≤
nm+1

(m+ 1)!
C ∥ x− x0 ∥m+1

∞
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Exercise 3

Compute T2(x; x0) of a function f(x, y) = ex cos(y) at the point
x0 = (0, 0)T and the estimate for the associated remainder R2(x; x0)
for (x, y) ∈ [−2, 2]× [−2, 2].
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Exercise 4

Compute T2(x; x0) of a function f(x, y) = cos(x2 + y2) at the point
x0 = (0, 0)T and the approximation error for (x, y) ∈ [0, π

4 ]× [0, π
4 ].
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Extrema of multivariable function

Let D ⊂ Rn, f : D→ R and x0 ∈ D. Then at x0 the function f has

• a (strict) global maximum if ∀x ∈ D : f(x)
(<)

≤ f(x0)
• a (strict) local maximum if

∃ϵ > 0 ∀x ∈ D with ∥ x− x0 ∥< ϵ : f(x)
(<)

≤ f(x0)

• analogously for minima

Note: x0 is called an extremum if it is maximum or minimum
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Stationary points

• The points x0 ∈ D for which it holds

grad f(x0) = 0

are called stationary points (critical points) of f.
• Stationary points are not necessarily extrema.

11/21



Necessary optimality conditions

• Let f ∈ D is C1, x0 ∈ D - local extremum =⇒ grad f(x0) = 0

• Let f ∈ D is C2, x0 ∈ D - stationary point
• if x0 is local min (max)

=⇒ H f(x0) positive (negative) semi-definite.
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Sufficient optimality conditions

• Let f ∈ D is C2, x0 ∈ D - stationary point
• H f(x0) positive (negative) definite

=⇒ x0 is strict local min (max)
• H f(x0) indefinite =⇒ x0 is a saddle point
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Examples

Figure 1: f(x) = x3, f′(0) = 0 but
x∗ = 0 isn’t extremum

Figure 2:
f(x) = x4, f′′(x) = 12x2, f′′(0) = 0 but
still x∗ = 0 is minimum
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Exercise 5

Compute the stationary points of the following functions and
determine whether it is min/max/saddle point

1. f(x, y) = xy+ x− 2y− 2

2. f(x, y) = 2x3 − 3xy+ 2y3 − 3

3. f(x, y) = (x2 + 2y2)e−x2−y2

4. f(x, y) = x5 − 3x3 + y2 + 15,
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Implicitly Defined Functionss

Consider a system of nonlinear equations

g(x) = 0,

with g : D ⊂ Rn → Rm,m < n, i.e more unknowns than equations. -
underdetermined system of equations.

We want to solve such systems locally expressing some variables via
other.
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Implicit Function Theorem

Let g : D ⊂ Rn → Rm be a C1 - function. Let (x, y) ∈ D, where
x ∈ Rn−m, y ∈ Rm. Let (x0, y0) ∈ D - solution to g(x0, y0) = 0. If the
Jacobian matrix

∂g
∂y (x0, y0) :=




∂g1
∂y1 ... ∂g1

∂ym
... ...
∂gm
∂y1 ... ∂gm

∂ym




is regular, then there exist neighbourhoods U of x0, V of y0,U× V ⊂ D
and a uniquely determined continuous differentiable function
f : U→ V : f(x0) = y0 and g(x, f(x)) = 0 for all x ∈ U and

J f(x) = −
(
∂g
∂y (x, f(x))

)−1 (
∂g
∂x (x, f(x))

)
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Exercise 7

Can the equation (x2 + y2 + 2z2) 1
2 = cos(z) be solved uniquely for y

in terms of x, z near (0, 1, 0)? For z in terms of x and y?

F(x, y, z) =

F(0, 1, 0) =

∂F
∂y (0, 1, 0) =

∂F
∂z (0, 1, 0) =
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Exercise 8

Consider the function F(x, y, z,u, v) : R5 → R2 given by

F(x, y, z,u, v) =
(

xy2 + xzu+ yv2 − 3

u3yz+ 2xv− u2v2 − 2

)

Can we solve for u, v as functions of x, y, z near (1, 1, 1, 1, 1)?

Notice that F(1,1,1,1,1) = 0.

(
∂F1
∂u

∂F1
∂v

∂F2
∂u

∂F2
∂v

)
=

(
∂F1
∂u

∂F1
∂v

∂F2
∂u

∂F2
∂v

)
(1, 1, 1, 1, 1) =
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Some more exercises

Compute T2(x; x0) of a function

f(x, y) = cos(x) sin(y)ex−y

at the point x0 = (0, 0)T and the associated remainder R2(x; x0)
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Some more exercises

Compute Taylor polynomial of second degree T2(x; x0) of a function

f(x, y) = sin(x+ y) + yex−y

at the point x0 = (0, 0)T and the estimate for the Lagrange remainder
for |x| ≤ 0.1, |y| ≤ 0.1.
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Thank you!
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