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State constrained optimal control is well understood for continous states

This talk: states are possibly discontinuous, unbounded

Main result: Existence of measure valued Lagrange multipliers
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A simple model problem
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min o {ly — yallz, + Sllulz Ay —Bu=0

y >0

Basic theory:

existence of minimizers Ys —Ya+A"p+m=20
Slater condition au, — B*p =0
measure valued Lagrange multipliers m < 0
regularity of minimizers (m,ys) =0

Control-to-State Mapping:
y = Su

notorious assumption for state constraints:

S:U — C(Q2) iscontinuous

,Classic“ References:
Casas, Alibert/Raymond,...
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Why must all states be continuous?
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Hahn Banach separation theorem:
fundamental existence principle for dual spaces

separation of two convex sets, one of them must have non-empty interior
Optimal Control:
Ry x {(y,u) : Ay — Bu=0} empty interior

Ry x {(y,u) : y >0} non-empty interior in C(92)

Lagrange-Multiplier Theorems:

Robinson, Zowe-Kurcyusz apply Hahn-Banach and
sum-rules of convex and non-smooth analysis | nheed regularity conditions

Continuity seems essential, because
Lagrange-Multipliers ,,are” measures in this case
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Control problems with discontinuous states
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min Sy~ all2, + Sl Ay—Bu=0

y >0
Control-to-State mapping:

S:U—=Y Y%C(ﬁ)

Space of states is too large and irregular to
have a non-empty positive cone

Important classes:
elliptic boundary control in 3d, most of parabolic control
related: constraints on derivatives of the state

Common practice:

usually there is a subspace U, with S : U,, — C(Q)

impose additional control constraints, such that © € U
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A first idea
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Problem: no choice of space of states is correct
either: no continuous control-to-state mapping
or: no application of Hahn-Banach possible

Eliminate state

1
2
Yields existence of Lagrange multipliers in U™
If S' is continously invertible, then

(m,u) = (m, S™y) = (S~"m,y)

. (87
weU: min|Su—yal, + Tlul}  Su>0

The catch:
this works also for Su = 0, which is ill-posed
does not capture the structure of the problem
poor regularity results, no new information
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Extending the space
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Problems of the latter approach:
primal space was too small, Slater condition could not be exploited
reason for poor regularity of dual variables

Use larger space (but still sufficiently small)

1

. (87
uey min |Su+w—yal}, + Slul}  w=

Su+w>0
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Extending the space

MATHEON Z D B

Problems of the first approach:
primal space was too small, Slater condition could not be exploited
reason for poor regularity of dual variables

Use larger space (but still sufficiently small)

.1 Q
weu min 2|Su+w —yall3, + Sl w=0

w € C(Q) Su+w >0
This does not change the problem, but the space
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Extending the space

MATHEON Z,D

Problems of the first approach:
primal space was too small, Slater condition could not be exploited
reason for poor regularity of dual variables

Use larger space (but still sufficiently small)

1 Q
uweclU m1n§||SU+w—yd||%2+§||u||?f w =

w € C(Q) Su+w >0
This does not change the problem, but the space

First step of proof:
existence of Lagrange multipliers for this ,transformed settingin U x W
Slater condition can now be exploited

Remaining proof:
back-transformation to a space U x Y via the relation ¥ = Su + w
density arguments
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Main theorem (control-to-state mapping version) %
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.1 Q
min 2y — all2, + &l y = Su

y >0

Assumptions:

S : U — Ly(Q) is continuous
_ _ Us isdensein U
S : Ux — C(Q) Is continuous

Slater condition: Fu: St > 6 > 0

Conclusions:
existence of a Lagrange multiplier m

m is a measure, satisfying additionally |[(m, Su)| < Cl|u||u
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Main theorem (control-to-state mapping version)
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min = ly — yall?, + 5 lul y = Su
y =0

Conclusions in detail:

Yi={yeLlyQ):JueclUwecCH):y=Su+w}

— inf
oy = ¢ inf_[wlos + lullw

dm,ve Y* C M(Q) :
Ys —Ya+v+m=0 m < 0

au, — S v =0 (m,ys) =0

Note: by our assumptions C(Q)isdensein Y,so "Y* C M(Q)” is justified
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Intermezzo: some reflection
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Y i={yeLlyQ):JueclUwecCH):y=Su+w}

—  inf o
lylly =, inf_ fwlloe +
The space Y:
most regular case: S:U—-W—=C) = Y=09)

mostirregularcase S =1Id: Ly(Q) — L2(Q) = Y = Ly(0)

The dual space Y*:

can be identified with a subspace of M (£2)

less regular states imply more regular Lagrange multipliers/ |
M/

regularity of Lagrange multipliers characterizes meaningful perturbations

Lagrange multipliers as sensitivities:
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Application: boundary control in 3d

.1 2 04 2
min o[y — yallz, + 5 [lullp y >0

/<Vy,VsO>+ysodw—/m(so)dw=0 Vo € H'(Q)
Q I

S La(I') — Ly(Q) Vp < o0

_ } L,(T') densein Ly(I)
S:L,T)— C(Q)Vq > 2

dm,v e Y* C M(Q) :
Yx —Ya +v+m =0 m <0

au, — S v =0 (m,ys) =0

MATHEON
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Towards an adjoint equation

SERFHS
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Im,veY™:
Y« —Ya+v+m =0 m <0

au, — STv =20 (m,y«) =0

adjoint state p

Q
au, —y(p) =0 a.e. inT

/(y—yd)god:v+/<Vp,Vg0>+pg0d:v+/godm:O VpoeY
Q Q

Traditional way:
analysis of PDEs with right hand sides in Y'*
relate S* to such a PDE
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Closed operators iﬁ >
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Aim:
theory in terms of differential operators, not control-to-state mappings
direct derivation of the desired optimality system

(Ay, @) = /Q (Vy, Vo) +ypde
Variants:
A:HYQ) — HY Q) isomorphism, variational setting
A:WhP(Q) - WhP(Q)* Ly L1_1  isomorphism, cf. Amann ‘94

p p
Sobolev embedding:

p>d: WY (Q)— C(Q)

A closed, densely defined, bijective operator:

A: C(Q) D domA — WhHP' (Q)* domA = WhP(Q)
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The adjoint of a densely defined operator
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A: C(Q) D domA — WhHP' (Q)* domA = WhP(Q)

(Ay, ) = /Q (Vy, Vo) +ypdx

Adjoint: A* - Wl’p/(ﬂ) 5 Clomdd — M(ﬁ)
(Ay, o) = (y, A%p) Vy € domA

domA* = ¢ : (Ay, ) is continuous on domA

(p, A"p) = /Q<V90,Vp> +opdx "V e C(Q)”

This is defined elementarily for ¢ € WP (Q)
and has a unique continuous extension to C(ﬁ), since p € domA”*
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Main theorem (differential operator version)

.1 Q
min Sy~ all2, + Sluly Ay —Bu=0

y=>0

Assumptions:
A: Ly (©2) D domA — P*

A:C(Q) DdomeA — P

closed, densely defined, bijective

B:U — P*

° .
* continuous

* Uy densein U

Slater condition

MATHEON
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Main theorem (differential operator version)

1
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. a
min |y — yal, + Slul? Ay - Bu=0

Conclusions:
A:Y D domA — P

dm € Y™, p € domA™ C Py

Ys —Yqg+A"p+m=20

auy, — B*p =0
m <0
(m,y,) =0

y=>0

is densely defined

measure valued Lagrange multiplier m € Y*
regular adjoint state p € P

well defined complementarity, positivity

Vi={yeL(Q):JueclUwecCQ):y=Su+w}

— inf
Jylly = ,inf_flwloo + lully
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Boundary control in 3d revisited
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min§||y_yd||%2+§”u“%] y=>0
/<Vy,Vso> + ypdr — / wy(p)de =0 VYo € H(Q)
Q r

Q
au, —y(p) =0 a.e.inT

/(y—yd)god:v+/<Vp,Vgo>+pg0d:v+/godm:O VpoeY
Q Q

m <0
(m,y,) =0
regular adjoint state: p € Wl’p/(ﬂ)
Lagrange multiplier: m € Y* C M(Q) S|
regularity of control: u € Lo(I') N W'~ P(T")
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Boundary control in 3d revisited
1 MATHEON D

: 9 o
min S ||y —vallz, + 5

5 > [[ull?s y >0
/<Vy,VsO>+ysodw—/m(so)dw=0 Vo € H(Q)
Q r

/(y—yd)god:v+/<Vp,Vgo>+pg0d:v+/godm:O VpoeY
Q Q

Q
> N "o, — v(p) =0 a.e.inl
, A”
(0, A%p) =0
(m,y,) =0
regular adjoint state: p € Wl’p/(ﬂ)
9 ¥ <

Lagrange multiplier: m € Y* C M(Q)
regularity of control: u € Lo(I') N W'~ P(T")
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Conclusions
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Optimality Conditions for States Constraints with Discontinuous States

new results about optimality conditions
- exploit higher regularity of states for higher regularity of controls
- crucial density relation

measure valued Lagrange multipliers with additional regularity

- direct approach in terms of differential operators

Reference: ZIB-Report 07-35
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Conclusions

Reference: ZIB-Report 07-35
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