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semi discrete parabolic PDE

ẋ(t) = Ax(t) + Bu(t) x(0) = x0 ∈ X .
(Cauchy)

output equation

y(t) = Cx(t)
(output)

cost function

J (u) =
1

2

Tf∫
0

< y , y > + < u, u > dt (cost)

and the linear quadratic regulator problem is

LQR problem

Minimize the quadratic (cost) with respect to the linear constraints
(Cauchy),(output).
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In the open literature1 it is well understood that the

optimal feedback control

is given as
u = −BTX∞x ,

where in case Tf = ∞, X∞ is the minimal, positive semidefinite,
selfadjoint solution of the

algebraic Riccati equation (ARE)

0 = R(X ) := CTC + ATX + XA− XBBTX .

1 e.g. [Lions ‘71; Lasiecka/Triggiani ‘00; Bensoussan et al. ‘92;

Pritchard/Salamon ‘87; Curtain/Zwart ’95]
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In the open literature1 it is well understood that the

optimal feedback control

is given as
u = −BTX∞x ,

where in case Tf < ∞, X∞ is the minimal, positive semidefinite,
selfadjoint solution of the

differential Riccati equation (DRE)

− Ẋ = R(X ) := CTC + ATX + XA− XBBTX .

1 e.g. [Lions ‘71; Lasiecka/Triggiani ‘00; Bensoussan et al. ‘92;

Pritchard/Salamon ‘87; Curtain/Zwart ’95]
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nonlinear parabolic PDE with noise

ẋ(t) = f (x(t)) + B u(t) + F v(t) for t > 0, x(0) = x0 + η0,

y(t) = C x(t) + w(t).

Here,

v(t) is the input noise

w(t) is the output noise

η0 is the noise in the initial condition.
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nonlinear parabolic PDE with noise

ẋ(t) = f (x(t)) + B u(t) + F v(t) for t > 0, x(0) = x0 + η0,

y(t) = C x(t) + w(t).

Strategy [Benner, Hein (geb. Görner) 2006] (based on [Ito, Kunisch 2006])

1 Linearize the nonlinear state equation on sub-intervals (Model
Predictive Control (MPC) or Receding Horizon Control (RHC)).

2 Find estimates of the states (Linear Quadratic Gaussian Design
(LQG)) on the sub-intervals.

Needs the additional solution of the Filter Algebraic Riccati Equation
(FARE)

0 = AΣ + Σ AT − Σ CTW−1C Σ + FVFT .

Here V , W are the symmetric and positive definite covariance
matrices.

Σ is used to compute the best approximation to the state for the
feedback loop
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SPP 1253 Project Benner/Bänsch (Researcher: A. Heubner)

[Raymond 2006]

Navier Stokes equation exponentially stabilizable by boundary feedback
control for sufficiently small initial conditions.

origin of saddle-point formulation

Problem: Test space of divergence free functions not directly FE
discretizable.

Strategies:

1 Matrix assembly after Helmholtz projection of the basis functions
(expensive for reasonable grids)

2 projections on matrix level after standard Galerkin discretization
following [Heinkenschloss,Sorenson,Sun 2007]
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Main Ingredients of the proof

Helmholtz decomposition of the state y = Py + (I − P)y ⇒

Cauchy equation for Py
elliptic equation for (I − P)y

elimination of (I − P)y from the cost functional
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Numerical methods for DRE
Matrix versions of the ODE solvers

[Mena 2007] showed that ODE solvers of BDF and Rosenbrock type can
efficiently be applied to matrix valued problems.
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Numerical methods for DRE
Matrix versions of the ODE solvers

[Mena 2007] showed that ODE solvers of BDF and Rosenbrock type can
efficiently be applied to matrix valued problems.

Low Rank Approximation guarantees efficiency in terms of computational
effort and memory usage
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Motivation of the low rank approximation

The spectrum of an AREs solution

Motivating example

Linear 1D heat equation with
point control.

Ω = [0, 1].

FEM discretization using linear
B-splines.

h=0.01.
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Large Scale Riccati and Lyapunov Equations

We are interested in solving

algebraic Riccati equations

0 = ATX + XA− XBBTX + CTC =: R(X ). (ARE)

where

A ∈ Rn×n sparse, n ∈ N “large”

B ∈ Rn×m and m ∈ N with m � n
C ∈ Rp×n and p ∈ N with p � n

and

Lyapunov equations

FTX + XF = −GGT . (LE)

with

F ∈ Rn×n sparse or sparse + low
rank update, n ∈ N “large”

G ∈ Rn×m and m ∈ N with m � n

12/28 jens.saak@mathematik.tu-chemnitz.de Jens Saak large scale matrix eqns. in LQR/LQG design for par. PDEs



Origin of the Matrix Equations
Numerical methods for DRE

LRCF Newton Method for the ARE
Recent Improvements in the Software

Conclusions and Outlook

Large Scale Riccati and Lyapunov Equations
Newton’s method for solving the ARE
Cholesky factor ADI for Lyapunov equations

LRCF Newton Method for the ARE
Large Scale Riccati and Lyapunov Equations

We are interested in solving

algebraic Riccati equations

0 = ATX + XA− XBBTX + CTC =: R(X ). (ARE)

where

A ∈ Rn×n sparse, n ∈ N “large”

B ∈ Rn×m and m ∈ N with m � n
C ∈ Rp×n and p ∈ N with p � n

and

Lyapunov equations

FTX + XF = −GGT . (LE)

with

F ∈ Rn×n sparse or sparse + low
rank update, n ∈ N “large”

G ∈ Rn×m and m ∈ N with m � n

12/28 jens.saak@mathematik.tu-chemnitz.de Jens Saak large scale matrix eqns. in LQR/LQG design for par. PDEs



Origin of the Matrix Equations
Numerical methods for DRE

LRCF Newton Method for the ARE
Recent Improvements in the Software

Conclusions and Outlook

Large Scale Riccati and Lyapunov Equations
Newton’s method for solving the ARE
Cholesky factor ADI for Lyapunov equations

LRCF Newton Method for the ARE
Newton’s method for solving the ARE

Newton’s iteration for the ARE

R′|X (Nl) = −R(Xl), Xl+1 = Xl + Nl ,

where the Frechét derivative of R at X is the Lyapunov operator

R′|X : Q 7→ (A− BBTX )TQ + Q(A− BBTX ),

can be rewritten as

one iteration step

(A− BBT Xl )
T Xl+1 + Xl+1(A− BBT Xl ) = −CT C − XlBBT Xl

i.e. in every Newton step we have to solve a Lyapunov equation of the
form (LE)

13/28 jens.saak@mathematik.tu-chemnitz.de Jens Saak large scale matrix eqns. in LQR/LQG design for par. PDEs



Origin of the Matrix Equations
Numerical methods for DRE

LRCF Newton Method for the ARE
Recent Improvements in the Software

Conclusions and Outlook

Large Scale Riccati and Lyapunov Equations
Newton’s method for solving the ARE
Cholesky factor ADI for Lyapunov equations

LRCF Newton Method for the ARE
Cholesky factor ADI for Lyapunov equations

Recall Peaceman Rachford ADI2:
Consider Au = s where A ∈ Rn×n spd, s ∈ Rn. ADI Iteration Idea:
Decompose A = H + V with H,V ∈ Rn×n such that

(H + pI )v = r
(V + pI )w = t

can be solved easily/efficiently.

ADI Iteration

If H,V spd ⇒ ∃pj , j = 1, 2, ...J such that
u0 = 0

(H + pj I )uj− 1
2

= (pj I − V )uj−1 + s

(V + pj I )uj = (pj I − H)uj− 1
2
+ s

(PR-ADI)

converges to u ∈ Rn solving Au = s.

2 [Peaceman & Rachford 1954], see also [Wachspress 1966]
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The Lyapunov operator

L : X 7→ FTX + XF

can be decomposed into the linear operators

LH : X 7→ FTX LV : X 7→ XF .

Such that in analogy to (PR-ADI) we find the

ADI iteration for the Lyapunov equation (LE)

X0 = 0
(FT + pj I )Xj− 1

2
= −GGT − Xj−1(F − pj I )

(FT + pj I )X
T
j = −GGT − XT

j− 1
2

(F − pj I )
(LE-ADI)
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Remarks:

If F is sparse or sparse + low rank update, i.e. F = A + VUT then
FT + pj I can be written as Ã + UV T , where Ã = AT + pj I and its
inverse can be expressed as

(FT + pj I )
−1 = (Ã + UV T )−1 = Ã−1 − Ã−1U(I + V T Ã−1U)−1V T Ã−1

by the Sherman-Morrison-Woodbury formula.

Note: We only need to be able to multiply with A, solve systems
with A and solve shifted systems with AT + pj I
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(FT + pj I )
−1 = (Ã + UV T )−1 = Ã−1 − Ã−1U(I + V T Ã−1U)−1V T Ã−1

by the Sherman-Morrison-Woodbury formula.

(LE-ADI) can be rewritten to iterate on the low rank Cholesky
factors Zj of Xj to exploit rk(Xj) � n. [Li & White 2002; Penzl 1999;

Benner, Li, Penzl 2000]

When solving (ARE) to compute the feedback in an LQR-problem
for a semidiscretized parabolic PDE, the LRCF-Newton-ADI can
directly iterate on the feedback matrix K ∈ Rn×p to save even more
memory. [Penzl 1999; Benner, Li, Penzl 2000]
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Recent Improvements in the Software
Reordering Strategies

Use sparse direct solvers ⇒ Store LU or Cholesky factors frequently used
(e.g. for M or A + pj I in case of cyclically used shifts).

⇒ Save storage by reordering

Upcoming LyaPack 2.0 let’s you choose between:

symmetric reverse Cuthill-McKee (RCM3) reordering

approximate minimum degree (AMD4) reordering

symmetric AMD4

3[A. George and J. W.-H. Liu 1981]
4[P. Amestoy, T. A. Davis, and I. S. Duff 1996.]
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Reordering Strategies

Motivating example: Mass matrix M from a FEM semidiscretization of a
2d heat equation. Dimension of the discrete system: 1357
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Recent Improvements in the Software
ADI Shift Parameters

Optimal ADI parameters solve the

min-max-problem

min
{pj |j=1,...,J}⊂R

max
γ∈σ(F )

∣∣∣∣∣∣
J∏

j=1

(pj − λ)

(pj + λ)

∣∣∣∣∣∣ .

Remark

Also known as rational Zolotarev problem since he solved it first on
real intervals enclosing the spectra in 1877.

Another solution for the real case was presented by
Wachspress/Jordan in 1963.
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ADI Shift Parameters

Optimal ADI parameters solve the

min-max-problem

min
{pj |j=1,...,J}⊂R

max
γ∈σ(F )

∣∣∣∣∣∣
J∏

j=1

(pj − λ)

(pj + λ)

∣∣∣∣∣∣ .

Remark

Wachspress and Starke presented different strategies to compute
suboptimal shifts for the complex case around 1990.

Wachspress: elliptic Integral evaluation based shifts

Starke: Leja Point based shifts (see also [Sabino 2006])
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Recent Improvements in the Software
ADI Shift Parameters

ADI shift parameter choices in upcoming MESS 1.0
1 heuristic parameters [Penzl 1999]

use selected Ritz values as shifts
suboptimal ⇒ convergence might be slow
in general complex for complex spectra

2 approximate Wachspress parameters [Benner, Mena, S. 2006]

optimal for real spectra
parameters real if imaginary parts are “small”
good approximation of the “outer” spectrum of F needed
⇒ possibly expensive computation

3 only real heuristic parameters

avoids complex computation and storage requirements
can be slow if many Ritz values are complex

4 real parts of heuristic parameters

avoids complex computation and storage requirements
suitable if imaginary parts are “small”
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Recent Improvements in the Software
ADI Shift Parameters

Test example

Centered finite difference discretized 2d convection diffusion equation:

ẋ = ∆x− 10xx − 100xy + b(x , y)u(t)

on the unit square with Dirichlet boundary conditions. (demo l1.m)

grid size: 75× 75 ⇒ #states = 5625 ⇒ #unknowns in X = 56252 ≈ 32 · 106

heuristic parameters time: 44s residual norm: 1.0461e-11

heuristic real parts time: 13s residual norm: 9.0846e-12

appr. Wachspress time: 16s residual norm: 5.3196e-12

Remark

heuristic parameters are complex

problem size exceeds memory limitations in complex case

Computations carried out on Intel Core2 Duo @2.13GHz Cache: 2048kB RAM: 2GB
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Column Compression for the low rank factors

Problem

Low rank factors Z of the solutions X grow rapidly, since a constant
number of columns is added in every ADI step.

If many ADI steps are used, at some point #columns in Z > rk(Z ).

Idea: Column compression using rank revealing QR factorization (RRQR)

Consider X = ZZT and rk(Z ) = r . Compute the RRQR5 of Z

ZT = QRΠ where R =

[
R11 R12

0 R22

]
and R11 ∈ Rr×r

now set Z̃T = [R11R12] Π
T then Z̃ Z̃T =: X̃ = X .

5[Bischof & Quintana-Ort́ı 1998]
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Column Compression for the low rank factors

Test example

Centered finite difference discretized 2d convection diffusion equation:

ẋ = ∆x− 10xx − 100xy + b(x , y)u(t)

on the unit square with Dirichlet boundary conditions. (demo l1.m)

grid size: 75× 75 ⇒ #states = 5625 ⇒ #unknowns in X = 56252 ≈ 32 · 106

truncation TOL # col. in LRCF time res. norm
– 47 13s 9.0846e-12

eps 46 14s 1.9516e-11√
eps 28 13s 1.9924e-11

Observation

[Benner & Quintana-Ort́ı 2005] showed that truncation tolerance
√

eps in the
low rank factor Z is sufficient to achieve an error eps in the solution X .

Computations carried out on Intel Core2 Duo @2.13GHz Cache: 2048kB RAM: 2GB
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Generalized Systems

Current Method

Transform

Mẋ = Ax + Bu
y = Cx

to
˙̃x = Ãx̃ + B̃u

y = C̃ x̃

where M = MLMU and x̃ = MUx , Ã = M−1
L AM−1

U , B̃ = M−1
L B, C̃ = CM−1

U .

- 2 additional sparse triangular solves in every multiplication with A

- 2 additional sparse matrix vector multiplies in solution of Ãx = b
and (Ã + pj I )x = b

- B̃ and C̃ are dense even if B and C are sparse.

+ preserves symmetry if M, A are symmetric.
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Generalized Systems

Alternative Method

Transform

Mẋ = Ax + Bu
y = Cx

to
ẋ = Ãx + B̃u
y = Cx

where Ã = M−1A and B̃ = M−1B

+ state variable untouched ⇒ solution to (ARE), (LE) not transformed

+ exploiting pencil structure in (Ã + pj I ) = M−1(A + pjM) reduces
overhead

- current user supplied function structure inefficient here
⇒ rewrite of LyaPack kernel routines needed (work in progress)

25/28 jens.saak@mathematik.tu-chemnitz.de Jens Saak large scale matrix eqns. in LQR/LQG design for par. PDEs



Origin of the Matrix Equations
Numerical methods for DRE

LRCF Newton Method for the ARE
Recent Improvements in the Software

Conclusions and Outlook

Reordering Strategies
ADI Shift Parameters
Column Compression for the LRCF
Generalized Systems

Recent Improvements in the Software
Generalized Systems

Alternative Method

Transform

Mẋ = Ax + Bu
y = Cx

to
ẋ = Ãx + B̃u
y = Cx

where Ã = M−1A and B̃ = M−1B

+ state variable untouched ⇒ solution to (ARE), (LE) not transformed

+ exploiting pencil structure in (Ã + pj I )
−1 = (A + pjM)−1M reduces

overhead

- current user supplied function structure inefficient here
⇒ rewrite of LyaPack kernel routines needed (work in progress)
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Conclusions and Outlook
Conlusions

Reordering strategies can reduce memory requirements by
far

new shift parameter selection allows easy improvements in
ADI performance

Column compression via RRQR also drastically reduces
storage requirements.

Especially helpful in differential
Riccati equation solvers where 1 ARE (BDF) or
1 Lyapunov (Rosenbrock) solution needs to be stored in
every step.

Optimized treatment of generalized systems is work in
progress
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Theoretical Outlook

Improve stopping Criteria for the ADI process.
e.g. inside the LRCF-Newton method by interpretation as inexact
Newton method following the ideas of Sachs et al.

Optimize truncation tolerances for the RRQR
Investigate dependence of residual errors in X on the truncation
tolerance

Stabilizing initial feedback computation
Investigate whether the method in [Gallivan, Rao, Van Dooren 2006]
can be implemented exploiting sparse matrix arithmetics.
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Implementation TODOs

User supplied functions and saddle point solvers for B

(with Anne Heubner in SPP 1253)

Introduce solvers for DREs

(with Hermann Mena (EPN Quito))

Initial stabilizing feedback computation

Improve handling of generalized systems of the form Mẋ = Ax + Bu.

Improve the current Arnoldi implementation inside the heuristic ADI
Parameter computation

RRQR and column compression for complex factors.

. . .

Tha
nk

you
for

you
r att

en
tio

n!

28/28 jens.saak@mathematik.tu-chemnitz.de Jens Saak large scale matrix eqns. in LQR/LQG design for par. PDEs



Origin of the Matrix Equations
Numerical methods for DRE

LRCF Newton Method for the ARE
Recent Improvements in the Software

Conclusions and Outlook

Conlusions
Outlook

Conclusions and Outlook
Outlook

Implementation TODOs

User supplied functions and saddle point solvers for B
(with Anne Heubner in SPP 1253)

Introduce solvers for DREs
(with Hermann Mena (EPN Quito))

Initial stabilizing feedback computation

Improve handling of generalized systems of the form Mẋ = Ax + Bu.
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Improve the current Arnoldi implementation inside the heuristic ADI
Parameter computation

RRQR and column compression for complex factors.

. . .

Tha
nk

you
for

you
r att

en
tio

n!

28/28 jens.saak@mathematik.tu-chemnitz.de Jens Saak large scale matrix eqns. in LQR/LQG design for par. PDEs


	Origin of the Matrix Equations
	LQR for linear parabolic PDEs
	MPC/LQG design for Nonlinear Optimal Control Problems
	Exponential Stabilization of Navier-Stokes and Oseen Equations

	Numerical methods for DRE
	Matrix versions of the ODE solvers
	Motivation of the low rank approximation

	LRCF Newton Method for the ARE
	Large Scale Riccati and Lyapunov Equations
	Newton's method for solving the ARE
	Cholesky factor ADI for Lyapunov equations

	Recent Improvements in the Software
	Reordering Strategies
	ADI Shift Parameters
	Column Compression for the low rank factors
	Generalized Systems

	Conclusions and Outlook
	Conlusions
	Outlook




