Multi scale shape optimization under uncertainty

Sergio Conti 1 Harald Held 1 Martin Pach 1 Martin Rumpf 2 Rüdiger Schultz 1

¹Department of Mathematics University Duisburg-Essen {conti,held,pach,schultz}@math.uni-duisburg.de

> ²Institute for Numerical Simulation Rheinische Friedrich-Wilhelms-Universität Bonn martin.rumpf@ins.uni-bonn.de

SPP1253 Workshop Hamburg 2008

1/33

- Introduction
- 2 Two-Stage Stochastic Programming
 - Two-Stage Stochastic Linear Programming Formulation
 - Random Shape Optimization Problem
- 3 Level set method
 - Shape gradient
 - Level set method
- Mumerical Results
 - Test Setting
 - Examples
- 6 Extension
 - Topological Derivative

Conceptual sketch

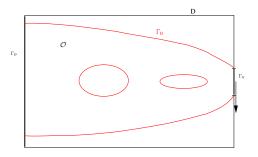


Figure: General setting in 2D

Conceptual sketch

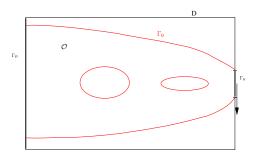


Figure: General setting in 2D

Information Constraint

 $\operatorname{decide} \mathcal{O} \ \longrightarrow \ \operatorname{observe} f(\omega), g(\omega) \ \longrightarrow \ \operatorname{decide} u = u(\mathcal{O}, \omega)$

Linear elasticity model

The displacement u is given by the equation system

PDE
$$\begin{cases} -\operatorname{div}(Ae(u)) = f & \text{in } \mathcal{O}, \\ u = 0 & \text{on } \Gamma_D, \\ (Ae(u))n = g & \text{on } \Gamma_N \end{cases}$$

Linear elasticity model

The displacement u is given by the equation system

PDE $\begin{cases} -\operatorname{div}(Ae(u)) = f & \text{in } \mathcal{O}, \\ u = 0 & \text{on } \Gamma_D, \\ (Ae(u))n = g & \text{on } \Gamma_N \end{cases}$

 \bullet Elastic body $\mathcal{O} \subset \mathbb{R}^3$

$$\partial \mathcal{O} = \Gamma_N \cup \Gamma_D, \ \Gamma_D \neq \emptyset$$

- Volume forces f in \mathcal{O}
- Neumann forces g on Γ_N

Linear elasticity model

The displacement u is given by the equation system

PDE $\begin{cases} -\operatorname{div}(Ae(u)) = f & \text{in } \mathcal{O}, \\ u = 0 & \text{on } \Gamma_D, \\ (Ae(u))n = g & \text{on } \Gamma_N \end{cases}$

• Elastic body $\mathcal{O} \subset \mathbb{R}^3$

$$\partial \mathcal{O} = \Gamma_N \cup \Gamma_D, \ \Gamma_D \neq \emptyset$$

- Volume forces f in \mathcal{O}
- Neumann forces g on Γ_N

where $e(u) = \frac{1}{2}(\nabla u + \nabla u^T)$ is the linearized strain tensor and Hooke's law

$$A\xi = 2\mu\xi + \lambda(\text{tr}\xi)\text{Id}$$
, for any symmetric matrix ξ

Shape optimization problem

Compliance

$$J(\mathcal{O}) = \int_{\mathcal{O}} f \cdot u \, \mathrm{d}x + \int_{\Gamma_N} g \cdot u \, \mathrm{d}s$$

Least square error compared to target displacement

$$J(\mathcal{O}) = \left(\int_{\mathcal{O}} |u - u_0|^2 \, \mathrm{d}x \right)^{\frac{1}{2}}$$

Shape optimization problem

$$\label{eq:local_def} \begin{split} \min_{\mathcal{O} \in \mathcal{O}_{ad}} \quad & J(\mathcal{O}) \; + \; lV(\mathcal{O}) \qquad \text{with } l \, \in \mathbb{R}, \; l > 0 \\ & \mathcal{O}_{ad} = \{ \mathcal{O} \subset D : \; \partial \mathcal{O} \; \text{Lipschitz-continuous } \} \end{split}$$

- Introduction
- 2 Two-Stage Stochastic Programming
 - Two-Stage Stochastic Linear Programming Formulation
 - Random Shape Optimization Problem
- 3 Level set method
 - Shape gradient
 - Level set method
- Mumerical Results
 - Test Setting
 - Examples
- Extension
 - Topological Derivative

6/33

Two-Stage Stochastic Linear Program

$$\min\{c^Tx + q^Ty : Tx + Wy = z(\omega), y \in Y, x \in X\}$$

Information Constraint

decide
$$x \longrightarrow \text{observe } z(\omega) \longrightarrow \text{decide } y = y(x, z(\omega))$$

$$\min_{\boldsymbol{x}}\{\boldsymbol{c}^T\boldsymbol{x} + \min_{\boldsymbol{y}}\{\boldsymbol{q}^T\boldsymbol{y}: \ \boldsymbol{W}\boldsymbol{y} = \boldsymbol{z}(\omega) - T\boldsymbol{x}, \ \boldsymbol{y} \in \boldsymbol{Y}\} \\ = \min_{\boldsymbol{x}}\{\boldsymbol{c}^T\boldsymbol{x} + \boldsymbol{G}(\boldsymbol{x},\omega) \\ \vdots \ \boldsymbol{x} \in \boldsymbol{X}\}$$

→ looking for a minimal member in family of random variables

$$\{c^Tx + G(x,\omega) : x \in X\}$$

- Introduction
- 2 Two-Stage Stochastic Programming
 - Two-Stage Stochastic Linear Programming Formulation
 - Random Shape Optimization Problem
- 3 Level set method
 - Shape gradient
 - Level set method
- Mumerical Results
 - Test Setting
 - Examples
- Extension
 - Topological Derivative

General Objective Function

$$J(\mathcal{O}, u(\mathcal{O}, \omega)) = \int_{\mathcal{O}} j(u) \, dx + \int_{\partial \mathcal{O}} k(u) \, ds + \ell \int_{\mathcal{O}} dx, \ \mathcal{O} \in \mathcal{U}_{ad}, \ell > 0$$

- $u = u(\mathcal{O}, \omega)$ is the solution of the PDE
- assume j(.) and k(.) are linear or quadratic and independent of ω

The two Stages

We now introduce random forces $f(\omega)$ and $g(\omega)$ to the shape optimization problem.

- First stage Non-anticipative decision on \mathcal{O} has to be taken
- observe the random forces $f(\omega)$ and $g(\omega)$ by choosing a scenario
- **Second Stage** The variational formulation of elasticity, given \mathcal{O} and ω , takes the role of the second-stage problem

Information constraint here

decide $\mathcal{O} \longrightarrow \text{observe } f(\omega), g(\omega) \longrightarrow \text{decide } u = u(\mathcal{O}, \omega)$

Variational two stage formulation

variational description of linearized elasticity:

$$\begin{split} E(\mathcal{O},u,\omega) &:= \frac{1}{2}A(\mathcal{O},u,u) - l(\mathcal{O},u,\omega) \quad \text{with} \\ A(\mathcal{O},\psi,\vartheta) &:= \int_{\mathcal{O}} A_{ijkl}e_{ij}(\psi)e_{kl}(\vartheta)dx \\ l(\mathcal{O},\vartheta,\omega) &:= \int_{\mathcal{O}} f_i(\omega)\vartheta_i dx + \int_{\partial\mathcal{O}} g_i(\omega)\vartheta_i \ d\mathcal{H}^{d-1} \end{split}$$

Two stage shape optimization problem

$$\begin{split} \min_{\mathcal{O} \in \mathcal{O}_{ad}} \{ J(\mathcal{O}, \omega) : u(\mathcal{O}, \omega) = argmin_u \ E(\mathcal{O}, u, \omega) \} \\ \mathcal{O}_{ad} = \{ \mathcal{O} \subset D : \ \partial \mathcal{O} \ \text{Lipschitz-continuous} \} \end{split}$$

Direct comparison with the linear case

shape optimization :
$$\min\{J(\mathcal{O},\omega):u(\mathcal{O},\omega)=\mathrm{argmin}_u\,E(\mathcal{O},u,\omega)\}$$
 linear program : $\min\{j(x,\omega)=c^Tx+\min\{q^Ty:\,Wy=z(\omega)-T(x)\}\}$ correspondences:
$$\mathcal{O}\qquad \leftrightarrow \quad x$$

$$\begin{array}{cccc} \mathcal{O} & \leftrightarrow & x \\ u(\mathcal{O},\omega) & \leftrightarrow & y \\ j(x,\omega) & \leftrightarrow & J(\mathcal{O},\omega) \end{array}$$

optimization task

$$\min\{\mathbb{Q}_{\mathbb{E}}(O) := \mathbb{E}_{\omega}(J(O,\omega)) : O \in \mathcal{O}_{ad}\}$$

load configuration:

assume that ω follows a discrete distribution with scenarios ω_{σ} and probabilities π_{σ} with $\sum_{\sigma=1}^{S} \pi_{\sigma} = 1$ and 'basis' loads (f^k, g^m) spanning the load space:

$$f(\omega) = \sum_{k=1}^{K} \alpha_k f^k$$
, $g(\omega) = \sum_{m=1}^{M} \beta_m f^m$

by linearity:

$$\bar{u}(\mathcal{O}, \omega) = \sum_{k=1}^{K} \alpha_k \, u_f^k \, + \, \sum_{m=1}^{M} \beta_m u_g^m$$
solves
$$A(\mathcal{O}, \bar{u}(\mathcal{O}, \omega_{\sigma}), \varphi) \, = \, l(\mathcal{O}, \varphi, \omega_{\sigma})$$

Derivative of the stochcastic functional

Given $\bar{u}(\mathcal{O}, \omega_{\sigma})$ we rewrite the stochastic program

$$\min\Bigl\{\mathbb{Q}_{\mathbb{E}}(\mathcal{O})=\ell\int_{\mathcal{O}}dx\ +\ \sum_{\sigma=1}^{S}\pi_{\sigma}\ \int_{\mathcal{O}}j(u)\,\mathrm{d}x+\int_{\partial\mathcal{O}}k(u)\,\mathrm{d}s\quad :\mathcal{O}\in\mathcal{O}_{ad}\Bigr\}$$

we obtain the shape derivative

$$\mathbb{Q'}_{\mathbb{E}}(\mathcal{O})(V) = \sum_{\sigma=1}^{S} \pi_{\sigma} J'(\mathcal{O}, \omega_{\sigma})(V)$$

The approach is computationally efficient if $K + M \ll S$.

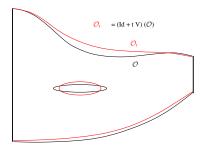
- Introduction
- 2 Two-Stage Stochastic Programming
 - Two-Stage Stochastic Linear Programming Formulation
 - Random Shape Optimization Problem
- 3 Level set method
 - Shape gradient
 - Level set method
- Mumerical Results
 - Test Setting
 - Examples
- 6 Extension
 - Topological Derivative

Shape gradient

We consider variations $\mathcal{O}_t = (Id + t \cdot V)(\mathcal{O})$, t > 0 of a smooth elastic domain \mathcal{O} for a smooth vector field V defined on the working domain D.

The shape derivative of $J(\mathcal{O})$ at \mathcal{O} in direction V is defined as the Fréchet derivative of the mapping $t \to J(\mathcal{O}_t)$, i.e.

$$J(\mathcal{O}_t) = J(\mathcal{O}) + \left\langle \frac{\partial J}{\partial \mathcal{O}}, V \right\rangle + o(\|V\|)$$



cf. [Sokolowski, Zolesio '92], [Delfour, Zolesio '01]

Shape gradient

As a classical result of the shape sensitivity analysis the shape derivative takes the form

$$< \frac{\partial J}{\partial \mathcal{O}}, V > = \int_{\Gamma_N} \left(2 \left[\frac{\partial (g \cdot u)}{\partial n} + hg \cdot u + f \cdot u \right] - \mathcal{A}\epsilon(u) : \epsilon(u) \right) V \cdot \vec{n} \, d\nu$$

$$+ \int_{\Gamma_D} \left(\mathcal{A}\epsilon(u) : \epsilon(u) \right) V \cdot \vec{n} \, d\nu$$

Here *h* denotes the mean curvature of $\partial \mathcal{O}$ and \vec{n} the outer normal.

Shape gradient in level set formulation

When the domain $\mathcal O$ is implicitly deformed by varying the level set function ϕ

$$\phi_t = \phi + t\psi$$

the level set equation

$$\partial_t \phi + |\nabla \phi| \, v \cdot n = 0 \qquad n = \frac{\nabla \phi}{|\nabla \phi|}$$

allows to define

$$<\frac{\partial J}{\partial \phi}, \psi>:=<\frac{\partial J}{\partial \mathcal{O}}, -\psi \cdot \frac{\vec{n}}{\|\nabla \phi\|}>$$

cf. [Osher, Sethian '88], [Burger, Osher '04]

Shape gradient in level set formulation

We take into account a regularized gradient descent, based on the metric

$$\mathcal{G}(\theta,\zeta) = \int_D \theta \zeta + \frac{\sigma^2}{2} \nabla \theta \cdot \nabla \zeta \, \mathrm{d}x$$

which is related to a Gaussian filter with width σ .

The shape gradient is the solution of equation

$$\mathcal{G}(grad_{\phi}J,\theta) = \langle \frac{\partial J}{\partial \mathcal{O}}, \theta \rangle \qquad \forall \theta \in H_0^{1,2}(\mathcal{D})$$

- Introduction
- 2 Two-Stage Stochastic Programming
 - Two-Stage Stochastic Linear Programming Formulation
 - Random Shape Optimization Problem
- 3 Level set method
 - Shape gradient
 - Level set method
- 4 Numerical Results
 - Test Setting
 - Examples
- 6 Extension
 - Topological Derivative

Optimization algorithm

time continuous regularized gradient descent:

$$\partial \phi(t) = -grad_{\phi}J(\phi)$$

with time discrete relaxation:

$$\mathcal{G}(\phi^{k+1} - \phi^k, \theta) = -\tau < \frac{\partial J}{\partial \mathcal{O}}, \theta > \qquad \forall \theta \in H_0^{1,2}(\mathcal{D})$$

additional ingrediens of the algorithm:

- multigrid method for the primal and the dual problem (d = 3)
- preconditioned CG (d=2)
- cascadic optimization (from coarse to fine grid resolution)
- morphological smoothing when switching the grid resolution $(\sigma = 2.5h \text{ or } 4.5h)$

- Introduction
- 2 Two-Stage Stochastic Programming
 - Two-Stage Stochastic Linear Programming Formulation
 - Random Shape Optimization Problem
- 3 Level set method
 - Shape gradient
 - Level set method
- Mumerical Results
 - Test Setting
 - Examples
- 6 Extension
 - Topological Derivative

Test Setting

$\partial \mathcal{O}$ is divided into 3 parts:

- Γ_D : the fixed Dirichlet boundary
- Γ_N : part of the Neumann boundary where the surface loads act on; this is also fixed and does not move during the optimization process
- Γ_0 : all other parts of the boundary; this is the only part of $\partial \mathcal{O}$ to be optimized

The objective function (compliance with $f \equiv 0$):

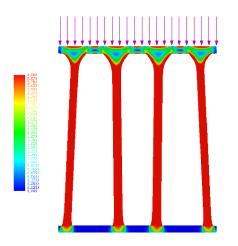
$$J(\mathcal{O},\omega) = \int_{\Gamma_N} g(\omega) \cdot u \, \mathrm{d}s + \ell R_i(\mathcal{O})$$

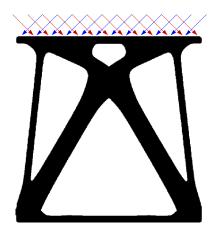
with regularization terms

$$R_1(\mathcal{O}) = \int_{\partial \mathcal{O}} ds$$
 (and volume preservation),

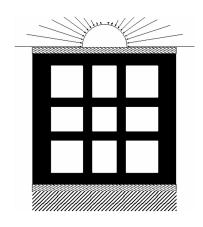
- Introduction
- 2 Two-Stage Stochastic Programming
 - Two-Stage Stochastic Linear Programming Formulation
 - Random Shape Optimization Problem
- 3 Level set method
 - Shape gradient
 - Level set method
- Mumerical Results
 - Test Setting
 - Examples
- 6 Extension
 - Topological Derivative

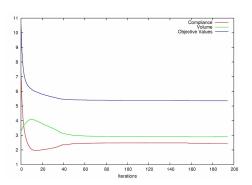
2-Stage vs. Expected Load



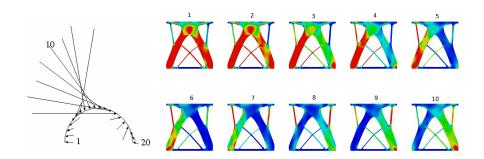


Initial Shape and Objective Values

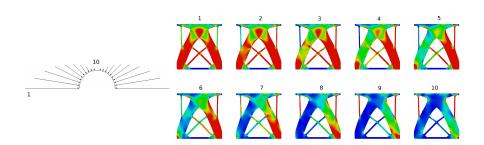




Instance with 20 Scenarios

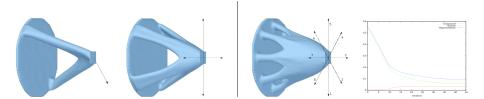


Instance with 21 Scenarios

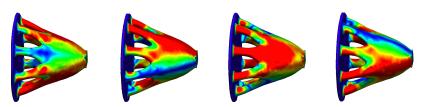


Cantilever

optimal cantilever construction with varying number of scenarios

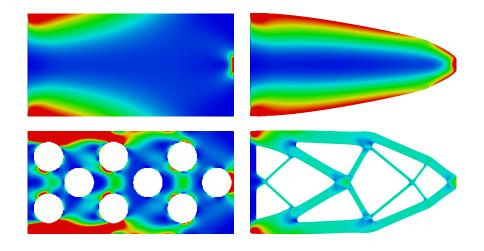


van Mises stress distribution for different scenarios



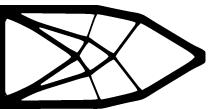
- Introduction
- 2 Two-Stage Stochastic Programming
 - Two-Stage Stochastic Linear Programming Formulation
 - Random Shape Optimization Problem
- 3 Level set method
 - Shape gradient
 - Level set method
- Mumerical Results
 - Test Setting
 - Examples
- 6 Extension
 - Topological Derivative

Different initial shapes yield different solutions



Topological Derivative

$$\mathcal{T}(x) = \lim_{\rho \downarrow 0} \frac{J(\mathcal{O} \setminus \overline{B_{\rho}(x)}) - J(\mathcal{O})}{|\overline{B_{\rho}(x)}|}$$



Thank you!