

Automatic Differentiation for the Optimization of a Ship Propulsion and Steering System

A joint work with Karsten Urban

Problem

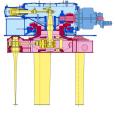
Voith-Schneider-Propeller (VSP) Optimization

Application in 2D Configuration Results

Application in 3D Configuration Results

Conclusion & Outlook

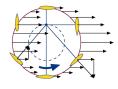
Problem


Voith-Schneider-Propeller (VSP)

Optimization

Application in 2D Configuration Results

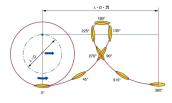
Application in 3D Configuration Results


Conclusion & Outlook

Source: Voith AG. Heidenheim

Functionality

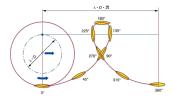
different angles of attack during one rotation


Source: Voith AG. Heidenheim

Functionality

March 27-29, 2008

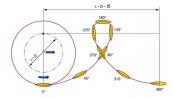
- different angles of attack during one rotation
- driving power is resulting force


Page 4

Source: Voith AG. Heidenheim

Functionality

- different angles of attack during one rotation
- driving power is resulting force
- enables resulting force in each direction

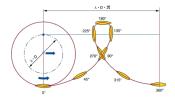


Source: Voith AG. Heidenheim

Functionality

- different angles of attack during one rotation
- driving power is resulting force
- enables resulting force in each direction

$$\vec{F} = \int p \vec{\nu} dS$$
 $\vec{F} = (F_X, M)^T$

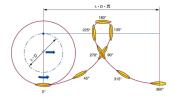


Source: Voith AG, Heidenheim

Functionality

- different angles of attack during one rotation
- driving power is resulting force
- enables resulting force in each direction

$$\begin{split} \vec{F} &= \int p \vec{\nu} dS & \vec{F} &= (F_{\text{x}}, \textit{M})^{\text{T}} \\ F_{\textit{m}} &= \frac{n_{\textit{f}}}{2\pi} \int_{0}^{2\pi} F_{\textit{x}} \ d\Theta & \text{(thrust)} \\ M_{\textit{m}} &= \frac{n_{\textit{f}}}{2\pi} \int_{0}^{2\pi} \textit{M} \ d\Theta & \text{(driving torque)} \end{split}$$

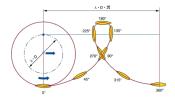

Source: Voith AG, Heidenheim

Functionality

- different angles of attack during one rotation
- driving power is resulting force
- enables resulting force in each direction

$$\begin{split} \vec{F} &= \int p \vec{\nu} dS & \vec{F} &= (F_{\text{x}}, \textit{M})^{\text{T}} \\ F_{\textit{m}} &= \frac{n_{\textit{f}}}{2\pi} \int_{0}^{2\pi} F_{\textit{x}} \ d\Theta & \text{(thrust)} \\ M_{\textit{m}} &= \frac{n_{\textit{f}}}{2\pi} \int_{0}^{2\pi} \textit{M} \ d\Theta & \text{(driving torque)} \end{split}$$

$$J=rac{U_{\infty}}{nD},~U_{\infty}$$
 flow rate, \emph{D} diameter, \emph{n} # revolutions



Source: Voith AG, Heidenheim

Functionality

- different angles of attack during one rotation
- driving power is resulting force
- enables resulting force in each direction

$$J=rac{U_{\infty}}{nD}$$
 , U_{∞} flow rate, D diameter, n # revolutions K_t dimensionless value of F_m K_q dimensionless value of M_m

Source: Voith AG, Heidenheim

Functionality

- different angles of attack during one rotation
- driving power is resulting force
- enables resulting force in each direction

$$J=rac{U_{\infty}}{nD}$$
 , U_{∞} flow rate, D diameter, n # revolutions K_t dimensionless value of F_m K_q dimensionless value of M_m

$$\eta := \frac{k_t}{k_q} \frac{J}{2\pi} \tag{1}$$

Problem

Voith-Schneider-Propeller (VSP)

Optimization

Optimization Targets

- ▶ optimize blade angle curve (Sebastian Singer)
- optimize blade profile(Robert Deininger)
- optimize VSP & boat together (Michael Hopfensitz, Juan Matutat)

Optimization Aim

Optimization Targets

- optimize blade angle curve (Sebastian Singer)
- optimize blade profile(Robert Deininger)
- optimize VSP & boat together (Michael Hopfensitz, Juan Matutat)

Optimization Approaches

- derivative free methods
- derivative based methods, compute derivatives with AD

Optimization Aim

Optimization Targets

- optimize blade angle curve (Sebastian Singer)
- optimize blade profile(Robert Deininger)
- optimize VSP & boat together (Michael Hopfensitz, Juan Matutat)

Optimization Approaches

- derivative free methods
- derivative based methods, compute derivatives with AD

Model Problem

- single blade
- variable angle of attack
- instead of η consider forces in y-direction

Problem

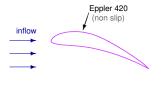
Voith-Schneider-Propeller (VSP) Optimization

Application in 2D

Configuration Results

Application in 3D Configuration Results

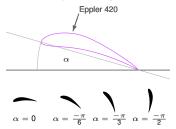
Conclusion & Outlook


Problem

Voith-Schneider-Propeller (VSP) Optimization

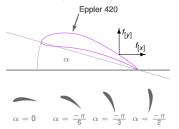
Application in 2D Configuration

Application in 3D Configuration Results


Conclusion & Outlook

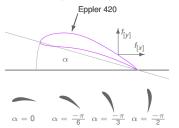
Configuration

solver: caffa¹


¹Computer Aided Fluid Flow Analysis from Ferziger & Peric

Configuration

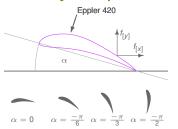
- solver: caffa¹
- ightharpoonup angle of attack: α


¹Computer Aided Fluid Flow Analysis from Ferziger & Peric

Configuration

- solver: caffa¹
- angle of attack: α
 - surface forces: $f(\alpha) = (f_{[x]}(\alpha), f_{[y]}(\alpha))^T$

¹Computer Aided Fluid Flow Analysis from Ferziger & Peric

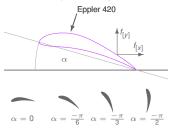


Configuration

- solver: caffa¹
- angle of attack: α
- surface forces: $f(\alpha) = (f_{[x]}(\alpha), f_{[y]}(\alpha))^T$

Optimization Problem

 $\sum_{\alpha \in (0,\alpha_{max})} \{ f_{[y]}(\alpha) \}$

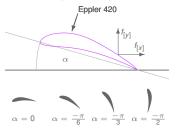


Configuration

- solver: caffa¹
- angle of attack: α
- surface forces: $f(\alpha) = (f_{[x]}(\alpha), f_{[y]}(\alpha))^T$

Optimization Problem

- $\qquad \max_{\alpha \in (0,\alpha_{max})} \{f_{[y]}(\alpha)\}$
- from experiments is known that $f_{[v]}(\alpha) \ \forall \ \alpha \in (0, \alpha_{max})$ is concave


Configuration

- solver: caffa¹
- angle of attack: α
- ▶ surface forces: $f(\alpha) = (f_{[x]}(\alpha), f_{[y]}(\alpha))^T$

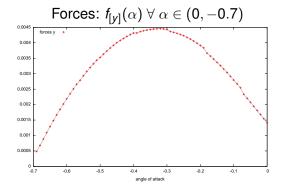
Optimization Problem

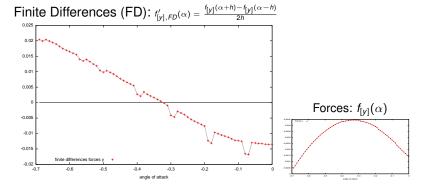
- $\sum_{\alpha \in (0,\alpha_{max})} \{f_{[y]}(\alpha)\}$
- ▶ from experiments is known that $f_{[y]}(\alpha) \forall \alpha \in (0, \alpha_{max})$ is concave
- $\Rightarrow \arg \left\{ \max_{\alpha \in [0, \alpha_{max}]} \{ f_{[y]}(\alpha) \} \right\} \Leftrightarrow \arg \left\{ f'_{[y]}(\alpha) = 0 \right\}$

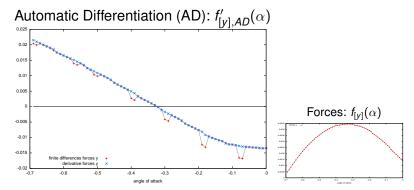
¹Computer Aided Fluid Flow Analysis from Ferziger & Peric

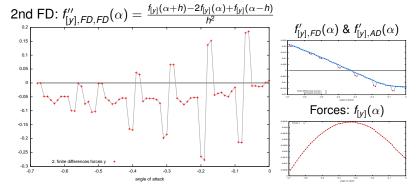
Configuration

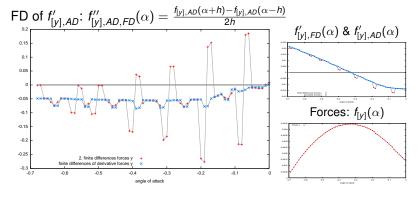
- solver: caffa¹
- angle of attack: α
- surface forces: $f(\alpha) = (f_{[x]}(\alpha), f_{[y]}(\alpha))^T$

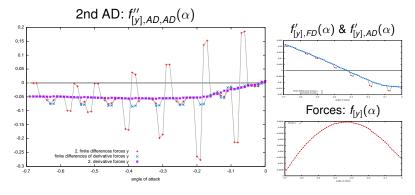

Optimization Problem

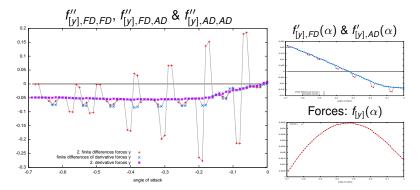

- $\max_{\alpha \in (0,\alpha_{max})} \{f_{[y]}(\alpha)\}$
- from experiments is known that $f_{[v]}(\alpha) \forall \alpha \in (0, \alpha_{max})$ is concave
- $\Rightarrow \arg \left\{ \max_{\alpha \in [0, \alpha_{max}]} \{ f_{[y]}(\alpha) \} \right\} \Leftrightarrow \arg \left\{ f'_{[y]}(\alpha) = 0 \right\}$
- Newton-Fixpoint-Iteration: $\Phi_{f_{[y]}}(\alpha_k) = \alpha_{k-1} \frac{f'_{[y]}(\alpha_{k-1})}{f'_{k,1}(\alpha_{k-1})}$
- Computer Aided Fluid Flow Analysis from Ferziger & Peric

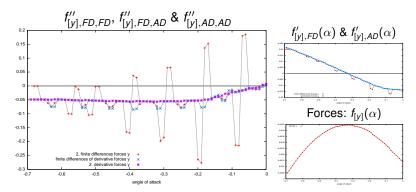

Voith-Schneider-Propeller (VSP)


Application in 2D


Results







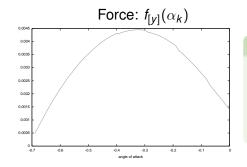
Comments

Justify the application of AD in 2D flow simulation

Comments

- Justify the application of AD in 2D flow simulation
- Regularization effect grows from f'_[ν](α) to f''_[ν](α)

Page 12


Newton-Fixpoint-Iteration

Angle of attack (AOA) of the profil

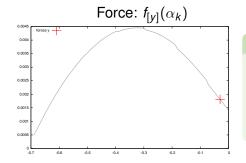
Remark

- starting point: $\alpha_0 = -0.03$
- maximum change rate of α : $\alpha_{\Delta,max} = 0.1$ [radian]

Newton-Iterations

AOA: α

 $f'_{[v]}(\alpha)$


Newton-Fixpoint-Iteration

Angle of attack (AOA) of the profil

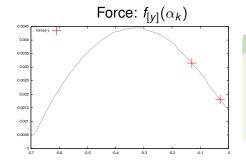
Remark

- starting point: $\alpha_0 = -0.03$
- maximum change rate of α : $\alpha_{\Delta,max} = 0.1$ [radian]

Newton-Iterations

AOA: α -0.03000000

 $f'_{[y]}(\alpha)$ -0.01327457810

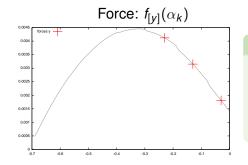

Newton-Fixpoint-Iteration

Angle of attack (AOA) of the profil

Remark

- starting point: $\alpha_0 = -0.03$
- maximum change rate of α : $\alpha_{\Delta,max} = 0.1$ [radian]

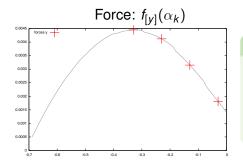
Newton-Iterations


AOA: α $f'_{[v]}(\alpha)$ -0.03000000 -0.13000000 -0.01114433244

Angle of attack (AOA) of the profil

Remark

- starting point: $\alpha_0 = -0.03$
- maximum change rate of α : $\alpha_{\Delta,max} = 0.1$ [radian]



Newton-Iterations

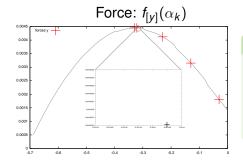
lt.	AOA: α	$f'_{[y]}(\alpha)$
0.	-0.03000000	-0.01327457810
1.	-0.13000000	-0.01114433244

Angle of attack (AOA) of the profil

Remark

- starting point: $\alpha_0 = -0.03$
- maximum change rate of α : $\alpha_{\Delta,max} = 0.1$ [radian]

Newton-Iterations


It.	AOA: α	$f_{[v]}(\alpha)$
0.	-0.03000000	-0.01327457810
1.	-0.13000000	-0.01114433244
2.	-0.23000000	-0.00603337754
3.	-0.33000000	+0.00048255801

Angle of attack (AOA) of the profil

Remark

- starting point: $\alpha_0 = -0.03$
- maximum change rate of α : $\alpha_{\Delta,max} = 0.1$ [radian]

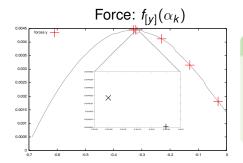
Newton-Iterations

lt.	AOA: α
0.	-0.03000000
	0.4000000

-0.13000000 -0.23000000

-0.33000000

-0.32140508

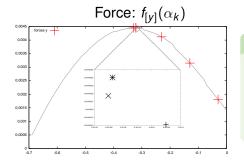

 $f'_{[y]}(\alpha)$ -กั 01327457810

-0.01114433244 -0.00603337754

+0.00048255801 -0.00000113055

Angle of attack (AOA) of the profil

Remark


- starting point: $\alpha_0 = -0.03$
- maximum change rate of α : $\alpha_{\Delta,max} = 0.1$ [radian]

Newton-Iterations

lt.	AOA: α	$f'_{[y]}(\alpha)$
0.	-0.03000000	-0.01327457810
1.	-0.13000000	-0.01114433244
2.	-0.23000000	-0.00603337754
3.	-0.33000000	+0.00048255801
4.	-0.32140508	-0.00000113055
5.	-0.32142512	+0.00000008440

Angle of attack (AOA) of the profil

Remark

- starting point: $\alpha_0 = -0.03$
- maximum change rate of α : $\alpha_{\Delta,max} = 0.1$ [radian]

Newton-Iterations

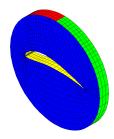
lt.	AOA: α	$f'_{[y]}(\alpha)$	
0.	-0.03000000	-0.01327457810	
1.	-0.13000000	-0.01114433244	
2.	-0.23000000	-0.00603337754	
3.	-0.33000000	+0.00048255801	
4.	-0.32140508	-0.00000113055	
5.	-0.32142512	+0.00000008440	
6.	-0.32142362	+0.00000007550	

Problem

Voith-Schneider-Propeller (VSP) Optimization

Application in 2D Configuration Results

Application in 3D


Configuration Results

Conclusion & Outlook

Voith-Schneider-Propeller (VSP)

Application in 3D Configuration

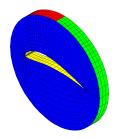
Geometry & Simulation Parameters

Boundary-Conditions

Red: Inflow

Green: Outflow

▶ Blue: Non-reflection


Yellow: Wall

Simulation Parameters

solver: Comet²

² is a commercial software from CD-adapco

Geometry & Simulation Parameters

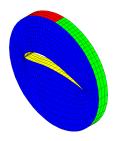
Boundary-Conditions

Red: Inflow

Green: Outflow

Blue: Non-reflection

Yellow: Wall


Simulation Parameters

▶ solver: Comet²

no moving grid - grid moving realized with scipt language

² is a commercial software from CD-adapco

Geometry & Simulation Parameters

Boundary-Conditions

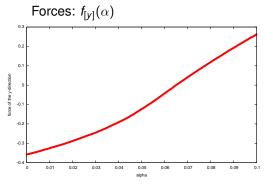
- Red: Inflow
- Green: Outflow
- Blue: Non-reflection
- Yellow: Wall

Simulation Parameters

- ▶ solver: Comet²
- no moving grid grid moving realized with scipt language
- ▶ Idea: variable inflow direction

² is a commercial software from CD-adapco

Problem

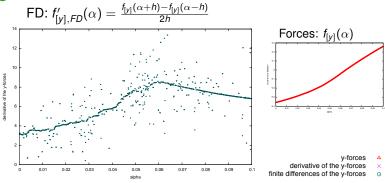

Voith-Schneider-Propeller (VSP)
Optimization

Application in 2D Configuration Results

Application in 3D Configuration Results

Conclusion & Outlook

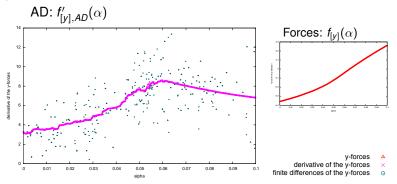
Regularization Effect



y-forces derivative of the y-forces finite differences of the y-forces

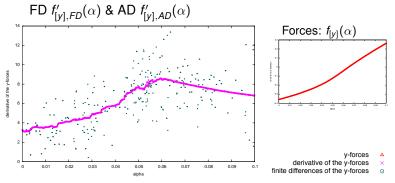
Comments

smooth forces curve


Regularization Effect

Comments

- smooth forces curve
- ▶ FD: strong, many outliers


Regularization Effect

Comments

- smooth forces curve
- ▶ FD: strong, many outliers
- AD: good regularization effect

Comments

- smooth forces curve
- FD: strong, many outliers
- AD: good regularization effect
- justify the application of AD 3D flow simulations

Problem

Voith-Schneider-Propeller (VSP) Optimization

Application in 2D Configuration Results

Application in 3D Configuration Results

Conclusion & Outlook

Conclusion & Oulook

Conclusion

- justify the application of AD in 2D & 3D flow simulation
- regularisation effect of AD in 2D & 3D flow simulation
- many handwork until a AD simulation runs

Conclusion

- justify the application of AD in 2D & 3D flow simulation
- regularisation effect of AD in 2D & 3D flow simulation
- many handwork until a AD simulation runs

Outlook

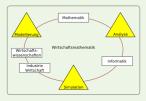
- more complex geometries
- moving grids in 3D (Comet)
- optimization of a full VSP
- more flexible approach of AD

Literature

R. Leidenberger

Automatic differentiation in flow simulation. diploma-thesis, University of Ulm, 2007.

Literature



R. Leidenberger

Automatic differentiation in flow simulation.

diploma-thesis, University of Ulm, 2007.

Contact

DFG Research Training Group 1100, Institute for Numerical Mathematics, Ulm University

Ralf Leidenberger

Ralf.Leidenberger@uni-ulm.de

Literature

R. Leidenberger

Automatic differentiation in flow simulation.

diploma-thesis, University of Ulm, 2007.

Contact

DFG Research Training Group 1100, Institute for Numerical Mathematics, Ulm University

Ralf Leidenberger

Ralf.Leidenberger@uni-ulm.de

Thank you for your attention.