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Source: Voith AG, Heidenheim

Efficiency of the VSP

F = [pidsS F = (Fe,m)T
Fm = 2'77’; 027r FX de (thrust)
Mm = 2’77'; 02‘” M doe (driving torque)

Functionality

> different angles of attack during

one rotation

» driving power is resulting force
» enables resulting force in each

direction
= 7D Uso flow rate, D diameter, n # revolutions

K¢ dimensionless value of Fr

kq dimensionless value of My,

ke J
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Optimization Aim

Optimization Targets
» optimize blade angle curve (sebastian singer
» optimize blade profilerobert beiningen
» optimize VSP & boat together (ichael Hoptensitz, Juan Matutat)

Optimization Approaches
» derivative free methods
» derivative based methods, compute derivatives with AD

Model Problem
» single blade
» variable angle of attack
» instead of n consider forces in y-direction
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Geometry & Optimization Problem

Eppler 420
Tfm f Configuration
Ix]
o » solver: caffa’
> angle of attack: «
-_— N ) > surface forces: f(a) = (f[X](a),f[y](a)>T
a=0 a = %ﬂ a = %7' a = %’r

Optimization Problem
> max fi
a€e(0,am { D/](a)}
> from experlments is known that fiy;(«) ¥V o € (0, amax) is concave

> arg{ max (f;()) } <« arg {fe) =0}

5 ’ n fia(ak—1)
. . . — _m
> Newton-Fixpoint-lteration: ®; (o) = ax—1 Ay

'Computer Aided Fluid Flow Analysis from Ferziger & Peric
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Regularization Effect
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Regularization Effect
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Newton-Fixpoint-lteration
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Geometry & Simulation Parameters

Boundary-Conditions

» Red: Inflow

» Green: Outflow

> Blue: Non-reflection
> Yellow: Wall

Simulation Parameters
» solver: Comet?
» no moving grid - grid moving realized with scipt language
» |dea: variable inflow direction

2is a commercial software from CD-adapco
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Regularization Effect
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Regularization Effect
F | [ly],‘FD(O“) &‘AD‘G}],/‘\D(Q‘)

Forces: fi)(«)

y-forces &
derivative of the y-forces ~ x
finite differences of the y-forces o

Comments
» smooth forces curve
» FD: strong, many outliers
> AD: good regularization effect
» justify the application of AD 3D flow simulations
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Conclusion & Oulook

Conclusion
» justify the application of AD in 2D & 3D flow simulation
» regularisation effect of AD in 2D & 3D flow simulation
» many handwork until a AD simulation runs

Outlook
» more complex geometries
» moving grids in 3D (Comet)
» optimization of a full VSP
» more flexible approach of AD
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