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Optimal control of parabolic PDEs

Let us consider optimal control problems for parabolic PDEs

abstract Cauchy problem

ẋ(t) = Ax(t) + Bu(t),
x(0) = x0 ∈ H = L2(Ω).

(1)

output equation

y(t) = Cx(t) (2)

LQR problem for the abstract Cauchy equation

Minimize the quadratic cost functional

J(u) =

∫ Tf

0

< y,Qy >Y + < u,Ru >U dt+ < xTf
,GxTf

>X ,

with respect to the linear constraints (1), (2), Tf <∞.
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Optimal control of parabolic PDEs

[Lions ’71, Gibson ’78, Balakrishnan ’77, Lasiecka/Triggiani ’00,. . . ]
show that under suitable conditions on A,B,C,Q,G and R, the
optimal control u is given as the

feedback law

u = −R−1B∗X(t)x(t),

where X(t) is the unique nonnegative solution of the

differential operator Riccati equation

Ẋ(t) = −F(X(t))
= −(A∗X(t) + X(t)A− X(t)BR−1B∗X(t) + C∗QC),

X(Tf ) = G.

Note: Ẋ(t) = −F(X(t)) ⇔ d
dt < v, X(t)w >= − < v, F(X(t))w > ∀v, w ∈ dom(A)
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Optimal control of parabolic PDEs

Consider a semi-discrete LQR problem for a parabolic PDE on HN

ẋN = ANxN + BNu,

yN = CNxN

with cost function

JN(u) =

Z Tf

0

< yN ,QNyN > + < u,Ru > dt+ < xTf ,GNxTf >,

then uN is given in feedback form as

uN = −R−1(BN)
T
XNxN ,

where XN is the solution of the

Differential Riccati Equation (DRE)

ẊN = −
`
CNQNCN + (AN)

T
XN + XNAN

−XNBNR−1(BN)
T
XN´,

XN(Tf ) = GN .
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Optimal control of parabolic PDEs

Consider a semi-discrete LQR problem for a parabolic PDE on HN

MẋN = ANxN + BNu,

yN = CNxN

with cost function

JN(u) =

Z Tf

0

< yN ,QNyN > + < u,Ru > dt+ < xTf ,GNxTf >,

then uN is given in feedback form as

uN = −R−1(BN)
T
XNMxN ,

where XN is the solution of the

Differential Riccati Equation (DRE)

ẊN = −
`
CNQNCN + (AN)

T
XNM + MXNAN

−MXNBNR−1(BN)
T
XNM

´
,

XN(Tf ) = GN .



On the
Numerical
Solution of

Operator DREs

Peter Benner

Optimal control
of parabolic
PDEs

Convergence
results

Introduction

Autonomous
case

Non-
autonomous
case

Summarizing
theorem

Numerical
methods for
DREs

Numerical
examples

Introduction

Goal:

convergence results for approximate DRE solution operators.
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Introduction

Goal:

convergence results for approximate DRE solution operators.

Previous results:

Convergence in terms of Riccati integral equations [Gibson 1979].

Approximation schemes and convergence rates [Ito 1991,

Kroller/Kunisch 1991, Lasiecka/Triggiani 2000, . . . ], mostly

in terms of Riccati integral equations,
for distributed control,
for autonomous systems (except for [Kroller/Kunisch 1991]),
assuming HN ⊂ H for approximating spaces.
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Introduction

Goal:

convergence results for approximate DRE solution operators.

Here: convergence results

for differential Riccati equations,

for distributed and (some) boundary control problems,

for autonomous and non-autonomous systems,

for HN ⊂ H and HN 6⊂ H for approximating spaces,

but no convergence rates.

Note: some of our results may be corollaries of [Kroller/Kunisch 1991].
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Introduction

Autonomous

1. HN ⊆ H
2. HN * H

← Semigroup theory →
Non-autonomous

3. HN ⊆ H
4. HN * H

General assumptions:
(H, ||.||), (HN , ||.||N) are Hilbert spaces, in general HN * H.

A,AN generate strongly continuous semigroups T,TN on
H,HN .

PN : H → HN , ||PNφ||N → ||φ|| for all φ ∈ H.

(PN is the canonical orthogonal projection.)

BN ∈ L(U ,HN), GN , QN ∈ L(HN), QN ,GN ≥ 0.

For simplicity we will not consider an output equation.
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Autonomous case

Let TN(t) be a sequence of strongly continuous semigroups on HN

with infinitesimal generator AN ∈ L(HN)

Assumptions (H)

Similar to [Banks/Kunisch 1984]:

(i) For all ϕ ∈ H it holds that TN(t)PNϕ→ T(t)ϕ uniformly
on any bounded subinterval of [0,Tf ].

(ii) For all φ ∈ H it holds that TN(t)∗PNφ→ T(t)∗φ uniformly
on any bounded subinterval of [0,Tf ].

(iii) For all v ∈ U it holds BNv → Bv and for all ϕ ∈ H it holds
that BN∗PNϕ→ B∗ϕ.

(iv) For all ϕ ∈ H it holds that QNPNϕ→ Qϕ.

(v) For all ϕ ∈ H it holds that GNPNϕ→ Gϕ.
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Autonomous case

Theorem 1

Let (H) hold, then

uN → u uniformly on [0,Tf ],

xN → x uniformly on [0,Tf ],

and for ϕ ∈ H,

XN(t)PNϕ→ X(t)ϕ uniformly in t ∈ [0,Tf ].

Here uN , u, xN , x denote optimal controls and trajectories of the
finite and infinite dimensional problems, respectively.

Outline of Proof.

Consider a related family of LQR problems defined on HN .

Prove that the solution of the corresponding DRE is XN(t)PN .

Apply theorems of [Curtain/Pritchard 1978] and [Gibson 1979].
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Autonomous case

Assumptions (HN * H) (H’)

(i) There exist constants M, ω such that ‖TN(t)‖N ≤ Meωt

for all N and for each φ ∈ H, ‖TN(t)PNφ− PNT(t)φ‖N → 0
as N →∞, uniformly on any bounded subinterval of [0,Tf ].

(ii) For all φ ∈ H it holds ‖(TN(t))∗PNφ− PNT∗(t)φ‖N → 0 as
N →∞, uniformly on any bounded subinterval of [0,Tf ].

(iii) For all v ∈ U , the operators B ∈ L(U ,H), BN ∈ L(U ,HN)
satisfy ‖BNv − PNBv‖N → 0 and for all ϕ ∈ H it holds
that ‖BN∗PNϕ− B∗ϕ‖U → 0.

(iv) There exist bounded operators QN ∈ L(HN) N = 1, 2, . . . ,
s.t. for all ϕ ∈ H , ‖QNPNϕ− PNQϕ‖N → 0.

(v) There exist bounded operators GN ∈ L(HN), N = 1, 2, . . . ,
s.t for all ϕ ∈ H , ‖GNPNϕ− PNGϕ‖N → 0.

(vi) For all N, the operators QN , GN are nonnegative self-adjoint.
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s.t. for all ϕ ∈ H , ‖QNPNϕ− PNQϕ‖N → 0.

(v) There exist bounded operators GN ∈ L(HN), N = 1, 2, . . . ,
s.t for all ϕ ∈ H , ‖GNPNϕ− PNGϕ‖N → 0.

(vi) For all N, the operators QN , GN are nonnegative self-adjoint.
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Autonomous case

Assumptions (HN * H) (H’)

(i) There exist constants M, ω such that ‖TN(t)‖N ≤ Meωt

for all N and for each φ ∈ H, ‖TN(t)PNφ− PNT(t)φ‖N → 0
as N →∞, uniformly on any bounded subinterval of [0,Tf ].

(ii) For all φ ∈ H it holds ‖(TN(t))∗PNφ− PNT∗(t)φ‖N → 0 as
N →∞, uniformly on any bounded subinterval of [0,Tf ].

(iii) For all v ∈ U , the operators B ∈ L(U ,H), BN ∈ L(U ,HN)
satisfy ‖BNv − PNBv‖N → 0 and for all ϕ ∈ H it holds
that ‖BN∗PNϕ− B∗ϕ‖U → 0.

(iv) There exist bounded operators QN ∈ L(HN) N = 1, 2, . . . ,
s.t. for all ϕ ∈ H , ‖QNPNϕ− PNQϕ‖N → 0.

(v) There exist bounded operators GN ∈ L(HN), N = 1, 2, . . . ,
s.t for all ϕ ∈ H , ‖GNPNϕ− PNGϕ‖N → 0.

(vi) For all N, the operators QN , GN are nonnegative self-adjoint.
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Autonomous case

Assumptions (HN * H) (H’)

(i) There exist constants M, ω such that ‖TN(t)‖N ≤ Meωt

for all N and for each φ ∈ H, ‖TN(t)PNφ− PNT(t)φ‖N → 0
as N →∞, uniformly on any bounded subinterval of [0,Tf ].

(ii) For all φ ∈ H it holds ‖(TN(t))∗PNφ− PNT∗(t)φ‖N → 0 as
N →∞, uniformly on any bounded subinterval of [0,Tf ].

(iii) For all v ∈ U , the operators B ∈ L(U ,H), BN ∈ L(U ,HN)
satisfy ‖BNv − PNBv‖N → 0 and for all ϕ ∈ H it holds
that ‖BN∗PNϕ− B∗ϕ‖U → 0.

(iv) There exist bounded operators QN ∈ L(HN) N = 1, 2, . . . ,
s.t. for all ϕ ∈ H , ‖QNPNϕ− PNQϕ‖N → 0.

(v) There exist bounded operators GN ∈ L(HN), N = 1, 2, . . . ,
s.t for all ϕ ∈ H , ‖GNPNϕ− PNGϕ‖N → 0.

(vi) For all N, the operators QN , GN are nonnegative self-adjoint.
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Autonomous case

Theorem 2

Let (H’) hold, then

uN → u uniformly on [0,Tf ],

xN → x uniformly on [0,Tf ],

and for ϕ ∈ H,

‖XN(t)PNϕ− PNX(t)ϕ‖N → 0 uniformly in t ∈ [0,Tf ].

Here uN , u, xN , x denote optimal controls and trajectories of the
finite and infinite dimensional problems , respectively.

Proof. Corollary of Theorem 4 (→ later).
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Non-autonomous case

Let U(·, ·),UN(·, ·) be evolution operators on H,HN with generators
A(·) ∈ L(H),AN(·) ∈ L(HN).

Assumptions (NH)

Suppose that, for each ϕ ∈ H and v ∈ U ,

(i) UN(t, s)PNϕ→ U(t, s)ϕ strongly, t0 ≤ s ≤ t ≤ T,
(ii) (UN)∗(t, s)PNϕ→ U∗(t, s)ϕ strongly, t0 ≤ s ≤ t ≤ T,
(iii) BN(t)v → B(t)v strongly a.e.,
(iv) BN∗(t)PNϕ→ B∗(t)ϕ strongly a.e.,
(v) QN(t)PNϕ→ Q(t)ϕ strongly a.e.,
(vi) GNPNϕ→ Gϕ strongly,

for N →∞.
Let ‖UN(t, s)‖, ‖BN‖, ‖QN‖, ‖RN‖, ‖GN‖ be uniformly bounded
in N, t, and s and require a constant m such that for each N,
R(t) ≥ m > 0 for almost all t.
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Non-autonomous case

Let U(·, ·),UN(·, ·) be evolution operators on H,HN with generators
A(·) ∈ L(H),AN(·) ∈ L(HN).

Assumptions (NH)

Suppose that, for each ϕ ∈ H and v ∈ U ,

(i) UN(t, s)PNϕ→ U(t, s)ϕ strongly, t0 ≤ s ≤ t ≤ T,
(ii) (UN)∗(t, s)PNϕ→ U∗(t, s)ϕ strongly, t0 ≤ s ≤ t ≤ T,
(iii) BN(t)v → B(t)v strongly a.e.,
(iv) BN∗(t)PNϕ→ B∗(t)ϕ strongly a.e.,
(v) QN(t)PNϕ→ Q(t)ϕ strongly a.e.,
(vi) GNPNϕ→ Gϕ strongly,

for N →∞.
Let ‖UN(t, s)‖, ‖BN‖, ‖QN‖, ‖RN‖, ‖GN‖ be uniformly bounded
in N, t, and s and require a constant m such that for each N,
R(t) ≥ m > 0 for almost all t.
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Non-autonomous case

Theorem 3

Let (NH) hold, then

uN(t)→ u(t) strongly a.e. and in L2(0,Tf ;U),
xN(t)→ x(t) strongly pointwise and in L2(0,Tf ;H),

(3)

and for ϕ ∈ H,

XN(t)PNϕ→ X(t)ϕ strongly pointwise and in L2(0,Tf ;H).
(4)

If U(·, ·) is strongly continuous and B(·), B∗(·), Q(·), and R(·) are
piecewise strongly continuous, uniform convergence in (NH) implies
uniform convergence in (3)–(4).

Outline of Proof.

Analogous to Theorem 1, consider a related family of LQR
problems defined on HN .

Prove that the solution of the corresponding DRE is XN(t)PN .
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Non-autonomous case

Theorem 3

Let (NH) hold, then

uN(t)→ u(t) strongly a.e. and in L2(0,Tf ;U),
xN(t)→ x(t) strongly pointwise and in L2(0,Tf ;H),

(3)

and for ϕ ∈ H,

XN(t)PNϕ→ X(t)ϕ strongly pointwise and in L2(0,Tf ;H).
(4)

If U(·, ·) is strongly continuous and B(·), B∗(·), Q(·), and R(·) are
piecewise strongly continuous, uniform convergence in (NH) implies
uniform convergence in (3)–(4).

Outline of Proof.

Analogous to Theorem 1, consider a related family of LQR
problems defined on HN .

Prove that the solution of the corresponding DRE is XN(t)PN .
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Non-autonomous case

Assumptions (HN * H) (NH’)

(i) There exist M, ω such that ‖UN(t, s)‖N ≤ Meω(t−s), t ≥ s,
for all N and for each φ ∈ H, ‖UN(t, s)PNφ− PNU(t, s)φ‖N → 0
as N →∞, uniformly on any bounded subinterval of [0,Tf ].

(ii) For all φ ∈ H it holds ‖(UN(t, s))∗PNφ− PNU∗(t, s)φ‖N → 0 as
N →∞, uniformly on any bounded subinterval of [0,Tf ].

(iii) For all v ∈ U , the operators B ∈ L(U ,H), BN ∈ L(U ,HN)
satisfy ‖BNv − PNBv‖N → 0 and for all ϕ ∈ H it holds
that ‖BN∗PNϕ− B∗ϕ‖U → 0.

(iv) There exist bounded operators QN ∈ L(HN), N = 1, 2, . . . ,
s.t. for all ϕ ∈ H , ‖QNPNϕ− PNQϕ‖N → 0.

(v) There exist bounded operators GN ∈ L(HN), N = 1, 2, . . . ,
s.t. for all ϕ ∈ H , ‖GNPNϕ− PNGϕ‖N → 0.

(vi) For all N, the operators QN , GN are nonnegative self-adjoint.
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Non-autonomous case

Assumptions (HN * H) (NH’)

(i) There exist M, ω such that ‖UN(t, s)‖N ≤ Meω(t−s), t ≥ s,
for all N and for each φ ∈ H, ‖UN(t, s)PNφ− PNU(t, s)φ‖N → 0
as N →∞, uniformly on any bounded subinterval of [0,Tf ].

(ii) For all φ ∈ H it holds ‖(UN(t, s))∗PNφ− PNU∗(t, s)φ‖N → 0 as
N →∞, uniformly on any bounded subinterval of [0,Tf ].

(iii) For all v ∈ U , the operators B ∈ L(U ,H), BN ∈ L(U ,HN)
satisfy ‖BNv − PNBv‖N → 0 and for all ϕ ∈ H it holds
that ‖BN∗PNϕ− B∗ϕ‖U → 0.

(iv) There exist bounded operators QN ∈ L(HN), N = 1, 2, . . . ,
s.t. for all ϕ ∈ H , ‖QNPNϕ− PNQϕ‖N → 0.

(v) There exist bounded operators GN ∈ L(HN), N = 1, 2, . . . ,
s.t. for all ϕ ∈ H , ‖GNPNϕ− PNGϕ‖N → 0.

(vi) For all N, the operators QN , GN are nonnegative self-adjoint.
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Non-autonomous case

Assumptions (HN * H) (NH’)

(i) There exist M, ω such that ‖UN(t, s)‖N ≤ Meω(t−s), t ≥ s,
for all N and for each φ ∈ H, ‖UN(t, s)PNφ− PNU(t, s)φ‖N → 0
as N →∞, uniformly on any bounded subinterval of [0,Tf ].

(ii) For all φ ∈ H it holds ‖(UN(t, s))∗PNφ− PNU∗(t, s)φ‖N → 0 as
N →∞, uniformly on any bounded subinterval of [0,Tf ].

(iii) For all v ∈ U , the operators B ∈ L(U ,H), BN ∈ L(U ,HN)
satisfy ‖BNv − PNBv‖N → 0 and for all ϕ ∈ H it holds
that ‖BN∗PNϕ− B∗ϕ‖U → 0.

(iv) There exist bounded operators QN ∈ L(HN), N = 1, 2, . . . ,
s.t. for all ϕ ∈ H , ‖QNPNϕ− PNQϕ‖N → 0.

(v) There exist bounded operators GN ∈ L(HN), N = 1, 2, . . . ,
s.t. for all ϕ ∈ H , ‖GNPNϕ− PNGϕ‖N → 0.

(vi) For all N, the operators QN , GN are nonnegative self-adjoint.
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Non-autonomous case

Assumptions (HN * H) (NH’)

(i) There exist M, ω such that ‖UN(t, s)‖N ≤ Meω(t−s), t ≥ s,
for all N and for each φ ∈ H, ‖UN(t, s)PNφ− PNU(t, s)φ‖N → 0
as N →∞, uniformly on any bounded subinterval of [0,Tf ].

(ii) For all φ ∈ H it holds ‖(UN(t, s))∗PNφ− PNU∗(t, s)φ‖N → 0 as
N →∞, uniformly on any bounded subinterval of [0,Tf ].

(iii) For all v ∈ U , the operators B ∈ L(U ,H), BN ∈ L(U ,HN)
satisfy ‖BNv − PNBv‖N → 0 and for all ϕ ∈ H it holds
that ‖BN∗PNϕ− B∗ϕ‖U → 0.

(iv) There exist bounded operators QN ∈ L(HN), N = 1, 2, . . . ,
s.t. for all ϕ ∈ H , ‖QNPNϕ− PNQϕ‖N → 0.

(v) There exist bounded operators GN ∈ L(HN), N = 1, 2, . . . ,
s.t. for all ϕ ∈ H , ‖GNPNϕ− PNGϕ‖N → 0.

(vi) For all N, the operators QN , GN are nonnegative self-adjoint.
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Non-autonomous case

Assumptions (HN * H) (NH’)

(i) There exist M, ω such that ‖UN(t, s)‖N ≤ Meω(t−s), t ≥ s,
for all N and for each φ ∈ H, ‖UN(t, s)PNφ− PNU(t, s)φ‖N → 0
as N →∞, uniformly on any bounded subinterval of [0,Tf ].

(ii) For all φ ∈ H it holds ‖(UN(t, s))∗PNφ− PNU∗(t, s)φ‖N → 0 as
N →∞, uniformly on any bounded subinterval of [0,Tf ].

(iii) For all v ∈ U , the operators B ∈ L(U ,H), BN ∈ L(U ,HN)
satisfy ‖BNv − PNBv‖N → 0 and for all ϕ ∈ H it holds
that ‖BN∗PNϕ− B∗ϕ‖U → 0.

(iv) There exist bounded operators QN ∈ L(HN), N = 1, 2, . . . ,
s.t. for all ϕ ∈ H , ‖QNPNϕ− PNQϕ‖N → 0.

(v) There exist bounded operators GN ∈ L(HN), N = 1, 2, . . . ,
s.t. for all ϕ ∈ H , ‖GNPNϕ− PNGϕ‖N → 0.

(vi) For all N, the operators QN , GN are nonnegative self-adjoint.
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Non-autonomous case

Assumptions (HN * H) (NH’)

(i) There exist M, ω such that ‖UN(t, s)‖N ≤ Meω(t−s), t ≥ s,
for all N and for each φ ∈ H, ‖UN(t, s)PNφ− PNU(t, s)φ‖N → 0
as N →∞, uniformly on any bounded subinterval of [0,Tf ].

(ii) For all φ ∈ H it holds ‖(UN(t, s))∗PNφ− PNU∗(t, s)φ‖N → 0 as
N →∞, uniformly on any bounded subinterval of [0,Tf ].

(iii) For all v ∈ U , the operators B ∈ L(U ,H), BN ∈ L(U ,HN)
satisfy ‖BNv − PNBv‖N → 0 and for all ϕ ∈ H it holds
that ‖BN∗PNϕ− B∗ϕ‖U → 0.

(iv) There exist bounded operators QN ∈ L(HN), N = 1, 2, . . . ,
s.t. for all ϕ ∈ H , ‖QNPNϕ− PNQϕ‖N → 0.

(v) There exist bounded operators GN ∈ L(HN), N = 1, 2, . . . ,
s.t. for all ϕ ∈ H , ‖GNPNϕ− PNGϕ‖N → 0.

(vi) For all N, the operators QN , GN are nonnegative self-adjoint.
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Non-autonomous case

Assumptions (HN * H) (NH’)

(i) There exist M, ω such that ‖UN(t, s)‖N ≤ Meω(t−s), t ≥ s,
for all N and for each φ ∈ H, ‖UN(t, s)PNφ− PNU(t, s)φ‖N → 0
as N →∞, uniformly on any bounded subinterval of [0,Tf ].

(ii) For all φ ∈ H it holds ‖(UN(t, s))∗PNφ− PNU∗(t, s)φ‖N → 0 as
N →∞, uniformly on any bounded subinterval of [0,Tf ].

(iii) For all v ∈ U , the operators B ∈ L(U ,H), BN ∈ L(U ,HN)
satisfy ‖BNv − PNBv‖N → 0 and for all ϕ ∈ H it holds
that ‖BN∗PNϕ− B∗ϕ‖U → 0.

(iv) There exist bounded operators QN ∈ L(HN), N = 1, 2, . . . ,
s.t. for all ϕ ∈ H , ‖QNPNϕ− PNQϕ‖N → 0.

(v) There exist bounded operators GN ∈ L(HN), N = 1, 2, . . . ,
s.t. for all ϕ ∈ H , ‖GNPNϕ− PNGϕ‖N → 0.

(vi) For all N, the operators QN , GN are nonnegative self-adjoint.
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Non-autonomous case

Theorem 4

Let (NH’) hold, then

uN(t)→ u(t) uniformly on [0,Tf ],
xN(t)→ x(t) uniformly on [0,Tf ],

and for ϕ ∈ H,

XN(t)PNϕ→ X(t)ϕ uniformly on [0,Tf ].

Here uN , u, xN , x denote the optimal control and trajectories for the
finite and infinite dimensional problems, respectively.

Outline of Proof. Follows mainly as a consequence of the repeated
application of a general convergence result for non-autonomous
operators.
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Non-autonomous case

Theorem 4

Let (NH’) hold, then

uN(t)→ u(t) uniformly on [0,Tf ],
xN(t)→ x(t) uniformly on [0,Tf ],

and for ϕ ∈ H,

XN(t)PNϕ→ X(t)ϕ uniformly on [0,Tf ].

Here uN , u, xN , x denote the optimal control and trajectories for the
finite and infinite dimensional problems, respectively.

Outline of Proof. Follows mainly as a consequence of the repeated
application of a general convergence result for non-autonomous
operators.
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Summarizing theorem

Let us consider a sequence of control problems related to JN(u).

Theorem

Under suitable conditions on A,B,Q,G and AN ,BN ,QN ,GN we have

uN → u, xN → x uniformly on [0,Tf ],

and for ϕ ∈ H,

XN(t)PNϕ→ X(t)ϕ uniformly in t ∈ [0,Tf ].

Here uN , u, xN , x denote optimal controls and trajectories of the
finite and infinite dimensional problems, respectively.
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Numerical methods for DREs

Solution of large-scale DREs by ordinary ODE solvers possible:
unrolling matrices into vector  vector ODE in n2 (or 1

2n(n + 1)
if symmetry is exploited) unknowns.
⇒ Computationally infeasible for 2D/3D problems.

Our approach (following earlier work by Choi/Laub, Dieci,. . . ):
Derive matrix versions of suitable ODE solvers feasible for
large-scale computations, exploiting sparsity and low-rank
structure of coefficients:
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Numerical methods for DREs

Solution of large-scale DREs by ordinary ODE solvers possible:
unrolling matrices into vector  vector ODE in n2 (or 1

2n(n + 1)
if symmetry is exploited) unknowns.
⇒ Computationally infeasible for 2D/3D problems.

Our approach (following earlier work by Choi/Laub, Dieci,. . . ):
Derive matrix versions of suitable ODE solvers feasible for
large-scale computations, exploiting sparsity and low-rank
structure of coefficients:
Note: due to stiffness, need implicit methods.



On the
Numerical
Solution of

Operator DREs

Peter Benner

Optimal control
of parabolic
PDEs

Convergence
results

Numerical
methods for
DREs

Numerical
examples

Numerical methods for DREs

Solution of large-scale DREs by ordinary ODE solvers possible:
unrolling matrices into vector  vector ODE in n2 (or 1

2n(n + 1)
if symmetry is exploited) unknowns.
⇒ Computationally infeasible for 2D/3D problems.

Our approach (following earlier work by Choi/Laub, Dieci,. . . ):
Derive matrix versions of suitable ODE solvers feasible for
large-scale computations, exploiting sparsity and low-rank
structure of coefficients:

BDF methods [B./Mena 2004].

– require solution of one ARE/time step,
– use Newton-ADI with XN

k as initial guess,
– main technical difficulty: step size and order control using

factors of the solutions only.
– Variable order code uses orders 1–3.
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Numerical methods for DREs

Solution of large-scale DREs by ordinary ODE solvers possible:
unrolling matrices into vector  vector ODE in n2 (or 1

2n(n + 1)
if symmetry is exploited) unknowns.
⇒ Computationally infeasible for 2D/3D problems.

Our approach (following earlier work by Choi/Laub, Dieci,. . . ):
Derive matrix versions of suitable ODE solvers feasible for
large-scale computations, exploiting sparsity and low-rank
structure of coefficients:

Rosenbrock methods [B./Mena 2007].

– require solution of one Lyapunov equation/stage (Lyapunov
equations for different stages share the same Lyapunov
operator!),

– use low-rank ADI for Lyapunov equations,
– main technical difficulty: step size control using factors of

the solutions only.
– Very efficient: Steihaug/Wolfbrand method of 2nd order,

variable order code uses orders 1-2.
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Numerical methods for DREs

Matrix versions of the ODE methods
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Numerical examples
Summarizing theorem

Example 1

Mathematical model: boundary control
for linearized 2D heat equation.

c · ρ ∂
∂t

x = λ∆x , ξ ∈ Ω,

λ
∂

∂n
x = κ(uk − x), ξ ∈ Γk , k = 1 : 7,

∂

∂n
x = 0, ξ ∈ Γ0.

FEM discretization, different models for
initial mesh (n = 371),
1, 2, 3, steps of mesh refinement ⇒
n = 1357, 5177, 20209.

2

3
4

9 10

1516

22

34

43

47

51

55

60 63

83
92

Convergence (Tf =∞): [B./Saak 2005].

Math. model: [Tröltzsch/Unger 1999/2001], [Penzl 1999] and [Saak 2003].
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Example 2

We consider the Burgers equation

xt(t, ξ) = νxξξ(t, ξ)− x(t, ξ)xξ(t, ξ)
+B(ξ)u(t) + F (ξ)v(t),

x(t, 0) = x(t, 1) = 0, t > 0,

x(0, ξ) = x0(ξ) + η0(ξ), ξ ∈]0, 1[

and the observation process

y(t, ξ) = Cx(t, ξ) + w(t, ξ).

Aim is to control the state to 0.

Consider disturbances in state,
output, initial condition.

Use LQG design within MPC
framework based on DRE and
compare to ARE approach
[Ito/Kunisch 2001–03].
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Values of cost function (∗1000)

n ARE DRE reduction

without noise in x0

30 11.5 9.8 14.8%

201 9.7 8.0 17.5%

with noise in x0

31 13.1 11.4 13.0%

201 14.6 12.8 12.3%
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