An Overview of (Anti-)Localisation Cardinals on Products of Discrete Spaces

Tristan van der Vlugt Universität Hamburg

STiHAC Forschungsseminar Mathematische Logik June 24, 2022

Introduction

The Baire space is the set ${}^{\omega}\omega = \{f \mid f : \omega \to \omega\}$, with clopen sets $[s] = \{f \in {}^{\omega}\omega \mid s \subseteq f\}$ for $s \in {}^{<\omega}\omega$ generating the topology. Let \mathcal{N} and \mathcal{M} resp. be the σ -ideals of Lebesgue null and meagre sets.

$$\begin{aligned} &\operatorname{cov}(\mathcal{I}) = \min\left\{ |\mathcal{C}| \mid \mathcal{C} \subseteq \mathcal{I} \text{ and } \bigcup \mathcal{C} = {}^{\omega}\omega \right\}, \\ &\operatorname{non}(\mathcal{I}) = \min\left\{ |N| \mid N \subseteq {}^{\omega}\omega \text{ and } N \notin \mathcal{I} \right\}, \\ &\operatorname{add}(\mathcal{I}) = \min\left\{ |\mathcal{A}| \mid \mathcal{A} \subseteq \mathcal{I} \text{ and } \bigcup \mathcal{A} \notin \mathcal{I} \right\}, \\ &\operatorname{cof}(\mathcal{I}) = \min\left\{ |\mathcal{J}| \mid \mathcal{J} \subseteq \mathcal{I} \text{ and } \forall X \in \mathcal{I} \exists Y \in \mathcal{J}(X \subseteq Y) \right\}. \end{aligned}$$

$$\begin{array}{c} \operatorname{cov}(\mathcal{N}) \to \operatorname{\mathbf{non}}(\mathcal{M}) \to \operatorname{cof}(\mathcal{M}) \to \operatorname{\mathbf{cof}}(\mathcal{N}) \to 2^{\aleph_0} \\ \uparrow & \uparrow & \uparrow & \uparrow \\ & & \uparrow & \uparrow & \uparrow \\ \aleph_1 \to \operatorname{\mathbf{add}}(\mathcal{N}) \to \operatorname{add}(\mathcal{M}) \to \operatorname{\mathbf{cov}}(\mathcal{M}) \to \operatorname{non}(\mathcal{N}) \end{array}$$

Introduction

Let κ be uncountable, then ${}^{\kappa}\kappa$ is a **generalised Baire space**. We say $f \in {}^{\kappa}\kappa$ are κ -reals. If κ is strongly inaccessible, we can generalise the middle part of the Cichoń Diagram:

$$\begin{array}{c} \operatorname{non}(\mathcal{M}_{\kappa}) \longrightarrow \operatorname{cof}(\mathcal{M}_{\kappa}) \longrightarrow 2^{\kappa} \\ & \uparrow & \uparrow \\ \mathfrak{b}_{\kappa} \longrightarrow \mathfrak{d}_{\kappa} \\ & \uparrow & \uparrow \\ \kappa^{+} \longrightarrow \operatorname{add}(\mathcal{M}_{\kappa}) \longrightarrow \operatorname{cov}(\mathcal{M}_{\kappa}) \end{array}$$

There is no Lebesgue measure on ${}^{\kappa}\kappa$, so there is no generalisation of \mathcal{N} to ${}^{\kappa}\kappa$. We can generalise $\operatorname{add}(\mathcal{N})$ and $\operatorname{cof}(\mathcal{N})$ using a combinatorial definition instead.

- Slaloms & cardinal characteristics
- $\,\circ\,$ Relations and consistency results for ω
- \circ Relations for κ
- $\,\circ\,$ Consistency results for $\mathfrak{b}^{b,h}_\kappa(\in^*)$ and $\mathfrak{d}^{b,h}_\kappa(\in^*)$
- $\,\circ\,$ Consistency results for $\mathfrak{b}^{b,h}_\kappa(\in^\infty)$ and $\mathfrak{d}^{b,h}_\kappa(\in^\infty)$

Let κ be regular strong limit and let h, b be increasing cardinal function with domain κ . We define the bounded space $\prod b = \prod_{\alpha \in \kappa} b(\alpha) = \{f : \kappa \to \text{Ord} \mid \forall \alpha < \kappa(f(\alpha) < b(\alpha))\}.$ Let φ with $\text{dom}(\varphi) = \kappa$ be an (h, b)-slalom if $\varphi(\alpha) \in [b(\alpha)]^{<h(\alpha)}$ for all $\alpha \in \kappa$, and Loc_h^b be the set of (h, b)-slaloms.

For
$$f,g \in \prod b$$
 and $\varphi \in \operatorname{Loc}_h^b$, we say

$$- \ f \in^* \varphi \text{ iff } f(\alpha) \in \varphi(\alpha) \text{ for almost all } \alpha < \kappa,$$

$$- \ f \in ^\infty \varphi \text{ iff } f(\alpha) \in \varphi(\alpha) \text{ for cofinally many } \alpha < \kappa,$$

$$- f = ^{\infty} g$$
 iff $f(\alpha) = g(\alpha)$ for cofinally many $\alpha < \kappa$,

$$- f \leq^* g$$
 iff $f(\alpha) \leq g(\alpha)$ for almost all $\alpha < \kappa$.

Let $\mathscr{R} = \langle X, Y, R \rangle$ be a relational system, i.e. $R \subseteq X \times Y$. Let $\|\mathscr{R}\| = \min \{|\mathcal{Z}| \mid \mathcal{Z} \subseteq Y \text{ and } \forall a \in X \exists b \in \mathcal{Z}(a \ R \ b)\}$ be the norm of \mathscr{R} . The dual $\mathscr{R}^{-1} = \{(b, a) \in Y \times X \mid (a, b) \notin R\}$ provides a dual relational system $\mathscr{R}^{\perp} = \langle Y, X, \mathscr{R}^{-1} \rangle$.

Given $\mathscr{R} = \langle X, Y, R \rangle$ and $\mathscr{R}' = \langle X', Y', R' \rangle$, a **Tukey connection** from \mathscr{R} to \mathscr{R}' is a pair $\rho_- : X \to X'$ and $\rho_+ : Y' \to Y$ such that for any $x \in X$ and $y' \in Y'$ with $(\rho_-(x), y') \in R'$ we also have $(x, \rho_+(y')) \in R$. We let $\mathscr{R} \preceq \mathscr{R}'$ denote that there exists a Tukey connection from \mathscr{R} to \mathscr{R}' , and $\mathscr{R} \equiv \mathscr{R}'$ that $\mathscr{R} \preceq \mathscr{R}' \preceq \mathscr{R}$.

Lemma

If $\mathscr{R} \preceq \mathscr{R}'$, then $\|\mathscr{R}\| \le \|\mathscr{R}'\|$ and $\|\mathscr{R}'^{\perp}\| \le \|\mathscr{R}^{\perp}\|$.

Cardinal characteristics

We define the following relational systems:

$$\begin{split} \mathscr{L}_{h}^{b} &= \left\langle \prod b, \operatorname{Loc}_{h}^{b}, \in^{*} \right\rangle \quad \text{(localisation)} \\ \mathscr{A}_{h}^{b} &= \left\langle \prod b, \operatorname{Loc}_{h}^{b}, \in^{\infty} \right\rangle \quad \text{(anti-localisation)} \\ \mathscr{C}_{h}^{b} &= \left\langle \prod b, \prod b, \neq^{\infty} \right\rangle \quad \text{(eventually different / cofinally equal)} \\ \mathscr{D}^{b} &= \left\langle \prod b, \prod b, \leq^{*} \right\rangle \quad \text{(dominating / unbounding)} \end{split}$$

with the norms:

$$\begin{split} \left\| \mathscr{L}_{h}^{b} \right\| &= \mathfrak{d}_{\kappa}^{b,h}(\in^{*}) \qquad \qquad \left\| \mathscr{L}_{h}^{b^{\perp}} \right\| &= \mathfrak{b}_{\kappa}^{b,h}(\in^{*}) \\ \left\| \mathscr{A} \mathscr{L}_{h}^{b} \right\| &= \mathfrak{d}_{\kappa}^{b,h}(\in^{\infty}) \qquad \qquad \left\| \mathscr{A} \mathscr{L}_{h}^{b^{\perp}} \right\| &= \mathfrak{b}_{\kappa}^{b,h}(\in^{\infty}) \\ \left\| \mathscr{E} \mathscr{D}^{b} \right\| &= \mathfrak{d}_{\kappa}^{b}(\neq^{\infty}) \qquad \qquad \left\| \mathscr{E} \mathscr{D}^{b^{\perp}} \right\| &= \mathfrak{b}_{\kappa}^{b}(\neq^{\infty}) \\ \left\| \mathscr{D}^{b} \right\| &= \mathfrak{d}_{\kappa}^{b}(\leq^{*}) \qquad \qquad \left\| \mathscr{D}^{b^{\perp}} \right\| &= \mathfrak{b}_{\kappa}^{b}(\leq^{*}) \end{split}$$

- Slaloms & localisation cardinals
- $\bullet\,$ Relations and consistency results for ω
- \circ Relations for κ
- $\,\circ\,$ Consistency results for $\mathfrak{b}^{b,h}_\kappa(\in^*)$ and $\mathfrak{d}^{b,h}_\kappa(\in^*)$
- $\,\circ\,$ Consistency results for $\mathfrak{b}^{b,h}_\kappa(\in^\infty)$ and $\mathfrak{d}^{b,h}_\kappa(\in^\infty)$

Let $\overline{\omega}: n \mapsto \omega$ for all $n \in \omega$ and let $h \in {}^{\omega}\omega$ be cofinal.

Theorem Bartoszyński [1987] $\mathfrak{b}_{\omega}^{\overline{\omega},h}(\in^*) = \operatorname{add}(\mathcal{N}) \text{ and}$ $\mathfrak{d}_{\omega}^{\overline{\omega},h}(\in^*) = \operatorname{cof}(\mathcal{N}).$

Theorem Bartoszyński [1987] or Bartoszyński and Judah [1995] $\mathfrak{d}_{\omega}^{\overline{\omega},h}(\in^{\infty}) = \mathfrak{d}_{\omega}^{\overline{\omega}}(\neq^{\infty}) = \operatorname{non}(\mathcal{M}) \text{ and}$ $\mathfrak{d}_{\omega}^{\overline{\omega},h}(\in^{\infty}) = \mathfrak{d}_{\omega}^{\overline{\omega}}(\neq^{\infty}) = \operatorname{cov}(\mathcal{M}).$

Proposition

$$\begin{split} \mathfrak{b}_{\omega}^{\overline{\omega},\overline{\omega}}(\in^*) &= \mathfrak{d}_{\omega}^{\overline{\omega},\overline{\omega}}(\in^{\infty}) = \mathfrak{b}_{\omega}^{\overline{\omega}}(\leq^*) = \mathfrak{b} \text{ and } \\ \mathfrak{d}_{\omega}^{\overline{\omega},\overline{\omega}}(\in^*) &= \mathfrak{b}_{\omega}^{\overline{\omega},\overline{\omega}}(\in^{\infty}) = \mathfrak{d}_{\omega}^{\overline{\omega}}(\leq^*) = \mathfrak{d}. \end{split}$$

Theorem Cardona et al. [2021]

It is consistent that there exist $h_{\xi}, b_{\xi} \in {}^{\omega}\omega$ for each $\xi < \mathfrak{c}$ and a strictly increasing sequence of cardinals $\langle \kappa_{\xi} | \xi < \mathfrak{c} \rangle$ such that $\mathfrak{b}^{b,h}_{\omega}(\in^*) = \mathfrak{d}^{b,h}_{\omega}(\in^*) = \mathfrak{d}^{b,h}_{\omega}(\in^{\infty}) = \mathfrak{d}^{b,h}_{\omega}(\in^{\infty}) = \kappa_{\xi}.$

The proof is the culmination of the investigation into these cardinals using creature forcings, originating from Goldstern and Shelah [1993] and improved by Kellner and Shelah, and later in connection with Yorioka ideals in several papers by Kamo, Osuga, Brendle, Mejía, Klausner and Cardona.

- Slaloms & localisation cardinals
- $\,\circ\,$ Relations and consistency results for ω
- Relations for κ
- $\,\circ\,$ Consistency results for $\mathfrak{b}^{b,h}_\kappa(\in^*)$ and $\mathfrak{d}^{b,h}_\kappa(\in^*)$
- $\circ~$ Consistency results for $\mathfrak{b}^{b,h}_\kappa(\in^\infty)$ and $\mathfrak{d}^{b,h}_\kappa(\in^\infty)$

For some choices of b and h, the bounded (anti-)localisation cardinals may be trivial.

Lemma

 $\mathfrak{d}_{\kappa}^{b,h}(\in^*) = 1$ iff $b <^* h$, which implies $\mathfrak{b}_{\kappa}^{b,h}(\in^*)$ is undefined. $\mathfrak{d}_{\kappa}^{b,h}(\in^{\infty}) = 1$ iff $b <^{\infty} h$, which implies $\mathfrak{b}_{\kappa}^{b,h}(\in^{\infty})$ is undefined.

Lemma Cardona and Mejía [2019] & Goldstern and Shelah [1993] ($\kappa = \omega$) If $\lambda < \kappa$ exists and is minimal s.t. $D_{\lambda} = \{\alpha \in \kappa \mid h(\alpha) = \lambda\}$ is cofinal in κ , then $\mathfrak{b}_{\kappa}^{b,h}(\in^*) = \lambda$ and $2^{\kappa} \leq \mathfrak{d}_{\kappa}^{b,h}(\in^*)$. If no such λ exists, $\kappa^+ \leq \mathfrak{b}_{\kappa}^{b,h}(\in^*)$, and if also $b \leq 2^{\kappa}$, then $\mathfrak{d}_{\kappa}^{b,h}(\in^*) \leq 2^{\kappa}$.

Trivial cases

Let increasing $f : \kappa \to \text{Ord}$ be **continuous** at $\gamma \in \kappa$ if $f(\gamma) = \bigcup_{\alpha < \gamma} f(\alpha)$. We call f stationarily continuous there exists S stationary in κ s.t. f is continuous at all limit $\gamma \in S$.

Lemma

For $\lambda < \kappa$ let $D_{\lambda} = \{ \alpha \in \kappa \mid b(\alpha) \leq \lambda \} \cup \{ \alpha \in \kappa \mid h(\alpha) = b(\alpha) \wedge \operatorname{cf}(b(\alpha)) \leq \lambda \}.$

(i) If $\lambda < \kappa$ exists and is minimal s.t. D_{λ} is cofinal in κ , then $\mathfrak{d}_{\kappa}^{b,h}(\in^{\infty}) = \lambda$.

(ii) If all D_{λ} are bounded, b is stat.cont., then $\mathfrak{d}_{\kappa}^{b,h}(\in^{\infty}) = \kappa$.

(iii) If all D_{λ} are bounded, b is not stat.cont., then $\kappa^+ \leq \mathfrak{d}_{\kappa}^{b,h}(\in^{\infty})$.

A dual result for the relation between $\mathfrak{b}^{b,h}_\kappa(\in^\infty)$ and 2^κ is not known yet.

If $h \leq^* h'$ and $b \geq^* b'$, then:

$$\mathscr{A}\!\mathscr{L}_{h'}^{b'} \stackrel{\prec}{\underset{\mathsf{T}}{\overset{\mathsf{d}}}} \mathscr{L}_{h}^{b} \stackrel{;}{\underset{\mathsf{L}_{h'}}{\overset{\mathsf{d}}}} \stackrel{;}{\underset{\mathsf{T}}{\overset{\mathsf{d}}}} \mathscr{L}_{h}^{b} \qquad \mathscr{E}\!\mathscr{D}^{b} \stackrel{;}{\underset{\mathsf{T}}{\overset{\mathsf{d}}}} \mathscr{E}\!\!\mathscr{D}^{b'}$$

$$\begin{split} \mathfrak{d}_{\kappa}^{b',h'}(\in^{\infty}) &\leq \mathfrak{d}_{\kappa}^{b',h'}(\in^{*}) \leq \mathfrak{d}_{\kappa}^{b,h}(\in^{*}) \quad \mathfrak{b}_{\kappa}^{b,h}(\in^{*}) \leq \mathfrak{b}_{\kappa}^{b',h'}(\in^{*}) \leq \mathfrak{b}_{\kappa}^{b',h'}(\in^{\infty}) \\ \mathfrak{d}_{\kappa}^{b',h'}(\in^{\infty}) &\leq \mathfrak{d}_{\kappa}^{b,h}(\in^{\infty}) \leq \mathfrak{d}_{\kappa}^{b,h}(\in^{*}) \quad \mathfrak{b}_{\kappa}^{b,h}(\in^{*}) \leq \mathfrak{b}_{\kappa}^{b,h}(\in^{\infty}) \leq \mathfrak{b}_{\kappa}^{b',h'}(\in^{\infty}) \\ \mathfrak{d}_{\kappa}^{b}(\neq^{\infty}) &\leq \mathfrak{d}_{\kappa}^{b'}(\neq^{\infty}) \leq \mathfrak{d}_{\kappa}^{b'}(\leq^{*}) \quad \mathfrak{b}_{\kappa}^{b}(\leq^{*}) \leq \mathfrak{b}_{\kappa}^{b}(\neq^{\infty}) \leq \mathfrak{b}_{\kappa}^{b'}(\neq^{\infty}) \end{split}$$

Let $\overline{\kappa} : \alpha \mapsto \kappa$ for all $\alpha \in \kappa$.

The relation between eventual difference and the meagre ideal generalise to strongly inaccessible κ .

Theorem Landver [1992] and Blass et al. [2005] $\mathfrak{d}_{\kappa}^{\overline{\kappa}}(\neq^{\infty}) = \operatorname{cov}(\mathcal{M}_{\kappa}) \text{ and } \mathfrak{b}_{\kappa}^{\overline{\kappa}}(\neq^{\infty}) = \operatorname{non}(\mathcal{M}_{\kappa}).$

Theorem Brendle et al. [2018] $\max \left\{ \operatorname{non}(\mathcal{M}_{\kappa}), \mathfrak{d}_{\kappa}^{\overline{\kappa}}(\leq^{*}) \right\} = \operatorname{cof}(\mathcal{M}_{\kappa}) \leq \mathfrak{d}_{\kappa}^{\overline{\kappa},h}(\in^{*}) \text{ and}$ $\min \left\{ \operatorname{cov}(\mathcal{M}_{\kappa}), \mathfrak{b}_{\kappa}^{\overline{\kappa}}(\leq^{*}) \right\} = \operatorname{add}(\mathcal{M}_{\kappa}) \geq \mathfrak{b}_{\kappa}^{\overline{\kappa},h}(\in^{*}).$

Proposition

 $\text{If }h\in {^\kappa\kappa}, \text{ then } \mathfrak{d}_{\kappa}^{\overline{\kappa},h}(\in ^\infty)=\mathfrak{b}_{\kappa}^{\overline{\kappa}}(\neq ^\infty) \text{ and } \mathfrak{b}_{\kappa}^{\overline{\kappa},h}(\in ^\infty)=\mathfrak{d}_{\kappa}^{\overline{\kappa}}(\neq ^\infty).$

We will state a more general result.

Say that b overshadows h if there exists an interval partition $\langle I_{\alpha} \mid \alpha < \kappa \rangle$ of κ with $|I_{\alpha}| = h(\alpha)$ for each $\alpha \in \kappa$ such that $b(\alpha) = b(\xi) = b(\alpha)^{h(\alpha)}$ for all $\xi \in I_{\alpha}$ and $\alpha \in \kappa$.

Theorem

If b overshadows h, then
$$\mathfrak{d}^{b,h}_{\kappa}(\in^{\infty}) = \mathfrak{b}^{b}_{\kappa}(\neq^{\infty})$$
 and $\mathfrak{b}^{b,h}_{\kappa}(\in^{\infty}) = \mathfrak{d}^{b}_{\kappa}(\neq^{\infty})$.

Note that $\overline{\kappa}$ overshadows any $h \in {}^{\kappa}\kappa$. In particular, the cardinalities of $\mathfrak{d}_{\kappa}^{\overline{\kappa},h}(\in^{\infty})$ and $\mathfrak{b}_{\kappa}^{\overline{\kappa},h}(\in^{\infty})$ do not depend on the choice of $h \in {}^{\kappa}\kappa$.

Nontrivial cases

Let $h \leq h' \leq \overline{\kappa}$ be increasing cofinal and $h \in {}^{\kappa}\kappa$. If $h' = {}^{*}b$, the dotted lines are equality.

Nontrivial cases

Let $h \leq b' \leq b \in {}^{\kappa}\kappa$ be increasing cofinal and b overshadows h.

- Slaloms & localisation cardinals
- $\,\circ\,$ Relations and consistency results for ω
- $\,\circ\,$ Relations for κ
- Consistency results for $\mathfrak{b}^{b,h}_\kappa(\in^*)$ and $\mathfrak{d}^{b,h}_\kappa(\in^*)$
- $\,\circ\,$ Consistency results for $\mathfrak{b}^{b,h}_\kappa(\in^\infty)$ and $\mathfrak{d}^{b,h}_\kappa(\in^\infty)$

Consistency results for $\mathfrak{b}_{\kappa}^{b,h}(\in^*)$ and $\mathfrak{d}_{\kappa}^{b,h}(\in^*)$

In Brendle et al. [2018] it is shown that $\kappa^+ < \mathfrak{b}_{\kappa}^{\overline{\kappa},h}(\in^*)$ and $\mathfrak{d}_{\kappa}^{\overline{\kappa},h}(\in^*) < 2^{\kappa}$ is consistent for any increasing cofinal $h \in {}^{\kappa}\kappa$, using an iteration of generalised Localisation forcing. Furthermore it is shown that $\mathfrak{d}_{\kappa}^{\overline{\kappa}, \mathsf{pow}}(\in^*) < \mathfrak{d}_{\kappa}^{\overline{\kappa}, \mathsf{id}}(\in^*)$ is consistent, where $\mathsf{id} : \alpha \mapsto |\alpha|$ and $\mathsf{pow} : \alpha \mapsto 2^{|\alpha|}$, using a product of the generalised Sacks forcing from Kanamori [1980].

In [vdV] we showed that there exists a set $\{h_{\xi} \in {}^{\kappa}\kappa \mid \xi < \kappa\}$ such that for any sequence of cardinals $\langle \kappa_{\xi} \mid \xi < \kappa \rangle$ with $\kappa_{\xi} \ge \kappa^+$ for each ξ it is consistent that $\forall \xi \in \kappa \left(\mathfrak{d}_{\kappa}^{\overline{\kappa},h_{\xi}}(\in^*) = \kappa_{\xi}\right)$. The forcing used is a product of Sacks-like forcings.

The same consistency generalises to increasing cofinal $b \in {}^{\kappa}\kappa$: there exists a set $\{h_{\xi} \in \prod b \mid \xi < \kappa\}$ such that $\forall \xi \in \kappa \left(\mathfrak{d}_{\kappa}^{b,h_{\xi}}(\in^{*}) = \kappa_{\xi}\right)$.

Let $h \in {}^{\kappa}\kappa$ be an increasing cofinal cardinal function. The conditions of the forcing \mathbb{S}_{κ}^{h} are trees $T \subseteq {}^{<\kappa}\kappa$ that satisfy the following properties:

(i) for any u ∈ T there exists splitting v ∈ T such that u ⊆ v,
(ii) if γ < κ and ⟨u_α | α < γ⟩ ∈ ^γT are splitting nodes with u_α ⊆ u_β for α < β, then u = ⋃_{α<γ} u_α ∈ T and u is splitting,
(iii) if u ∈ Split_α(T), then u is an h(α)-splitting node in T.

We say that $T \leq S$ iff $T \subseteq S$ and for every splitting $u \in T$, either suc(u, T) = suc(u, S) or |suc(u, T)| < |suc(u, S)|.

The $\leq \kappa$ -support product of forcings \mathbb{S}^h_{κ} is $<\kappa$ -closed, satisfies generalised fusion, and has the generalised *h*-Sacks property.

To separate $\mathfrak{b}^{b,h}_{\omega}(\in^*)$, typically creature forcings with a \liminf -norm are used. These resemble tree forcings that split everywhere above the stem, e.g. Laver forcing.

However, due to limit ordinals being present in κ , properties such as pure decision are not available. This makes separating cardinals of the form $\mathfrak{b}_{\kappa}^{b,h}(\in^*)$ significantly harder.

- Slaloms & localisation cardinals
- $\,\circ\,$ Relations and consistency results for ω
- $\,\circ\,$ Relations for κ
- $\,\circ\,$ Consistency results for $\mathfrak{d}^{b,h}_\kappa(\in^*)$
- $\,\circ\,$ Consistency results for $\mathfrak{b}^{b,h}_\kappa(\in^*)$ and $\mathfrak{d}^{b,h}_\kappa(\in^*)$
- Consistency results for $\mathfrak{b}^{b,h}_\kappa(\in^\infty)$ and $\mathfrak{d}^{b,h}_\kappa(\in^\infty)$

Forcing notion $\mathbb{P}^{b,h}_{\kappa}$

Let $\mathbb{P}_{\kappa}^{b,h}$ be a forcing with trees T on $\operatorname{Loc}_{h}^{b}$ as conditions, i.e. $u \in T$ implies $u : \alpha \to [\kappa]^{<\kappa}$ s.t. $u(\xi) \in [b(\xi)]^{<h(\xi)}$ for each $\xi < \alpha$. If $u \in T$ with $\alpha = \operatorname{ot}(u)$, let $||u||_{T}$ be the least $\nu < \kappa$ such that there exists $A \in [b(\alpha)]^{\nu}$ such that $A \not\subseteq A'$ for all $A' \in \operatorname{suc}(u, T)$. Let $T \in \mathbb{P}_{\kappa}^{b,h}$ iff

(i) for all u ∈ T, ν < κ there is v ∈ T with u ⊆ v and ν ≤ ||v||_T,
(ii) If ⟨u_ξ | ξ < γ⟩ is a sequence of splitting nodes and u_ξ ⊆ u'_ξ for ξ < ξ', then ⋃_{ξ ≤ γ} u_ξ splits in T,

(iii) if $u \in \text{Split}_{\alpha}(T)$, then $\max\{|\alpha|, 2\} \leq ||u||_{T}$.

Let
$$S \leq_{\mathbb{P}^{b,h}_{\kappa}} T$$
 if $S \subseteq T$ and for each $s \in S$ either $suc(s, S) = suc(s, T)$ or $\|s\|_{S} < \|s\|_{T}$.

Consistency results for $\mathfrak{b}_{\kappa}^{b,h}(\in^{\infty})$ and $\mathfrak{d}_{\kappa}^{b,h}(\in^{\infty})$

Theorem

If $b \in {}^{\kappa}\kappa$, then $\operatorname{cov}(\mathcal{M}_{\kappa}) = \mathfrak{b}_{\kappa}^{\overline{\kappa},h}(\in^{\infty}) \leq \mathfrak{d}_{\kappa}^{\overline{\kappa}}(\leq^{*}) < \mathfrak{b}_{\kappa}^{b,h}(\in^{\infty})$ is consistent.

26/27

 $\mathbb{P}^{b,h}_{\kappa} \text{ is } <\kappa\text{-closed, has fusion and is }^{\kappa}\kappa\text{-bounding. Moreover, the} \\ \leq \kappa\text{-support iteration of } \mathbb{P}^{b,h}_{\kappa} \text{ is }^{\kappa}\kappa\text{-bounding as well. Hence, forcing} \\ \text{with } \mathbb{P}^{b,h}_{\kappa} \text{ increases the size of } \mathfrak{b}^{b,h}_{\kappa}(\in^{\infty}) \text{ but keeps } \operatorname{cov}(\mathcal{M}_{\kappa}) \text{ and} \\ \mathfrak{d}^{\overline{\kappa}}_{\kappa}(\leq^{*}) \text{ small.}$

The goal is to use this forcing in a similar way to the methods described in Cardona et al. [2021] to separate cardinals of the form $\mathfrak{b}_{\kappa}^{b,h}(\in^{\infty})$ for different $b \in {}^{\kappa}\kappa$.

Separating cardinals of the form $\mathfrak{d}^{b,h}_{\kappa}(\in^{\infty})$ has similar problems as separating cardinals of the form $\mathfrak{b}^{b,h}_{\kappa}(\in^*)$.

References

- Tomek Bartoszyński. Combinatorial aspects of measure and category. Fundamenta Mathematicae, 127 (3):225–239, 1987.
- Tomek Bartoszyński and Haim Judah. Set Theory: On the Structure of the Real Line. A.K. Peters, Wellesley, MA, 1995.
- Andreas Blass, Tapani Hyttinen, and Yi Zhang. Mad families and their neighbors. preprint, 2005.
- Jörg Brendle, Andrew Brooke-Taylor, Sy-David Friedman, and Diana Carolina Montoya. Cichoń's diagram for uncountable cardinals. Israel Journal of Mathematics, 225(2):959–1010, 2018.
- Miguel A. Cardona and Diego A. Mejía. On cardinal characteristics of Yorioka ideals. Mathematical Logic Quarterly, 65(2):170–199, 2019.
- Miguel Antonio Cardona, Lukas Daniel Klausner, and Diego Alejandro Mejía. Continuum many different things: Localisation, anti-localisation and yorioka ideals. Preprint: https://arxiv.org/abs/2110.11614, 2021.
- Martin Goldstern and Saharon Shelah. Many simple cardinal invariants. Archive for Mathematical Logic, 32(3):203–221, 1993.
- Akihiro Kanamori. Perfect-set forcing for uncountable cardinals. Annals of Mathematical Logic, 19(1-2): 97–114, 1980.
- Avner Landver. Baire numbers, uncountable cohen sets and perfect-set forcing. The Journal of symbolic logic, 57(3):1086–1107, 1992.
- Tristan van der Vlugt. Separating Many Localisation Cardinals on the Generalised Baire Space. Preprint: https://arxiv.org/abs/2203.03256, 2022.