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Motivation

Vopénka’s Principle (VP) is the statement
“For every language T, if K is a proper class of
T-structures, then there are distinct A,B € K s.t. there is an
elementary embedding j : A < B.”
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Even though VP does not directly talk about cardinals, it is well
established in the large cardinal hierarchy.
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Even though VP does not directly talk about cardinals, it is well
established in the large cardinal hierarchy.

Proposition

Assume VP. Then there is a proper class of extendible cardinals.

Con(ZFC + there is an almost huge cardinal) — Con(ZFC + VP).
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There is an interesting interplay between VP, extendible cardinals and
compactness cardinals of logics.
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Definition

Let £ be a logic, k a cardinal.

(a) An L-theory T is < k-satisfiable iff every < k-sized subset of T
has a model.

(b) L is k-compact iff every < k-satisfiable L£-theory T has a model.
Such a « is called compactness cardinal for L.

A,
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Theorem (Magidor [3])

The following are equivalent:
(i) K is extendible.
(ii) L2, is Kk-compact.

(iii) For any n: L], is k-compact.

The proof needs the following:

There is a sentence, known as Magidor’s ®, of second-order logic in the
language {E} s.t. (M, EM) |= ® iff there is a limit ordinal « s.t.
(M, BM) = (Va, €).
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Very similarly to Magidor’s theorem one can show:
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Theorem (Makowsky [4])

The following are equivalent
(i) Vopénka’s Principle.
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Summarizing what we stated until now, we get the following picture:
VP

Every logic has a
compactness cardinal

Every logic of the form L},
has a compactness cardinal

<—>| There is a proper class of extendibles ‘(—

——— = direct implication

‘Hn(ﬁiw is k-compact) Jk(k is extendible) ——— = consistency strength
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The existence of a proper class of extendibles does not imply VP. But
VP can be characterized in similar terms.
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The existence of a proper class of extendibles does not imply VP. But
VP can be characterized in similar terms.

Theorem (Bagaria [1])

The following are equivalent:
(i) Vopénka’s Principle.

(ii) For every n: there is a C"™ -extendible cardinal.
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Definition

(™ is the following class:
C™ = {a € Ord: (Va,€) <n (V,€)}.
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Definition

(™ is the following class:
C™ .= {a € Ord: (Va, €) <n (V,€)}.

For every n one can show (in ZFC) that C(") is a II,-definable club
proper class.

Definition

A cardinal & is called a-C(™ -extendible for o > k iff there is 3 and an
elementary embedding j: V, < V3 s.t.

(i) crit(j) =k
(i) o <j(k)
(i) j(k) € C™,

Kk is O™ _extendible iff it is a- C(™-extendible for every a > k.
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We collect some useful properties of this.

Proposition

(a) “k is C(M-extendible” is a I, o-statement.
(b) & is C™-extendible — x € C("+2),

(c) For n > 2, the set of C(" V-extendibles below a C(M-extendible is
unbounded.

(d) & is extendible iff x is C(D-extendible.

Now consider the smallest C®-extendible cardinal «, should it exist.
By items (c)+(d) above, {x < k: z is extendible} is unbounded below
k. Then by item (a)+(b),

Vi | ZFC A there is a proper class of extendibles
A =3z(z is CP-extendible).

Now we can update our picture:
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Consider the following class:
C*™ = (M, EM): 3a e ™ . (M, EM) = (V,,€)}.
Let @« be the quantifier with the following semantics:

(M, BM) = Qoo zyzp(a)y(y, 2) iff
there is a structure B € C*™ st. B={a € A: A = ¢(a)}
and E® = {(a,b) € B*: A= v(a,b)}.

Definition

For every n and every cardinal x, we let

E,(f) = zw(Qc*u),---an*(n))’

i.e., second-order logic with infinitary conjunctions and disjunctions of
size < k, extended by the quantifiers Qgx1),..., Qg -
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With those logics, the following holds:

Theorem

For every n and every cardinal x:

L™ is k-compact iff r is C™ -extendible.
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In particular: VP < ¥n : there is a k s.t. E,(.gn) s Kk-compact.

Handwritten.
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Theorem

For every n and every cardinal x:
L™ is k-compact iff r is C™ -extendible.

In particular: VP < ¥n : there is a k s.t. E,(.gn) s Kk-compact.

Handwritten. ]

Will Boney similarly observed in [2] that & is C(™-extendible iff the
sort logic ]Lf;,.iE " is k-compact. I am not sure about the relation of these
results. It is clear that E,(in) < Lfmz n
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Every logic has a
compactness cardinal ,\

[

For every n: there is a & s.t. For every n: there is a
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roy 3 n
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Kw

‘ k(L2 is k-compact)
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