A Hierarchy of Compactness Cardinals below Vopěnka's Principle

Jonathan Osinski

University of Hamburg

STiHAC seminar

March 18, 2022

Jonathan Osinski

Compactness Cardinals below VP

March 18, 2022

1/18

Vopěnka's Principle (VP) is the statement

"For every language τ , if \mathcal{K} is a proper class of τ -structures, then there are distinct $\mathcal{A}, \mathcal{B} \in \mathcal{K}$ s.t. there is an elementary embedding $j : \mathcal{A} \preccurlyeq \mathcal{B}$."

Proposition

Assume VP. Then there is a proper class of extendible cardinals.

Proposition

Assume VP. Then there is a proper class of extendible cardinals.

Proposition

Assume VP. Then there is a proper class of extendible cardinals.

Proposition

 $\operatorname{Con}(\operatorname{ZFC} + \operatorname{there} \text{ is an almost huge cardinal}) \rightarrow \operatorname{Con}(\operatorname{ZFC} + \operatorname{VP}).$

Definition

A cardinal κ is called α -extendible for $\alpha > \kappa$ iff

Definition

A cardinal κ is called α -extendible for $\alpha > \kappa$ iff there is β and an elementary embedding $j: V_{\alpha} \preccurlyeq V_{\beta}$ s.t.

Definition

A cardinal κ is called α -extendible for $\alpha > \kappa$ iff there is β and an elementary embedding $j: V_{\alpha} \preccurlyeq V_{\beta}$ s.t.

(i) $\operatorname{crit}(j) = \kappa$

Definition

A cardinal κ is called α -extendible for $\alpha > \kappa$ iff there is β and an elementary embedding $j: V_{\alpha} \preccurlyeq V_{\beta}$ s.t.

- (i) $\operatorname{crit}(j) = \kappa$
- (ii) $\alpha < j(\kappa)$.

Definition

A cardinal κ is called α -extendible for $\alpha > \kappa$ iff there is β and an elementary embedding $j: V_{\alpha} \preccurlyeq V_{\beta}$ s.t.

- (i) $\operatorname{crit}(j) = \kappa$
- (ii) $\alpha < j(\kappa)$.

 κ is *extendible* iff it is α -extendible for every $\alpha > \kappa$.

Definition

A cardinal κ is called α -extendible for $\alpha > \kappa$ iff there is β and an elementary embedding $j: V_{\alpha} \preccurlyeq V_{\beta}$ s.t.

- (i) $\operatorname{crit}(j) = \kappa$
- (ii) $\alpha < j(\kappa)$.

 κ is *extendible* iff it is α -extendible for every $\alpha > \kappa$.

Definition

Let \mathcal{L} be a logic, κ a cardinal.

Definition

A cardinal κ is called α -extendible for $\alpha > \kappa$ iff there is β and an elementary embedding $j: V_{\alpha} \preccurlyeq V_{\beta}$ s.t.

- (i) $\operatorname{crit}(j) = \kappa$
- (ii) $\alpha < j(\kappa)$.

 κ is *extendible* iff it is α -extendible for every $\alpha > \kappa$.

Definition

Let \mathcal{L} be a logic, κ a cardinal.

(a) An \mathcal{L} -theory T is $< \kappa$ -satisfiable iff every $< \kappa$ -sized subset of T has a model.

Definition

A cardinal κ is called α -extendible for $\alpha > \kappa$ iff there is β and an elementary embedding $j: V_{\alpha} \preccurlyeq V_{\beta}$ s.t.

- (i) $\operatorname{crit}(j) = \kappa$
- (ii) $\alpha < j(\kappa)$.

 κ is *extendible* iff it is α -extendible for every $\alpha > \kappa$.

Definition

Let \mathcal{L} be a logic, κ a cardinal.

- (a) An \mathcal{L} -theory T is $< \kappa$ -satisfiable iff every $< \kappa$ -sized subset of T has a model.
- (b) \mathcal{L} is κ -compact iff every $< \kappa$ -satisfiable \mathcal{L} -theory T has a model.

Definition

A cardinal κ is called α -extendible for $\alpha > \kappa$ iff there is β and an elementary embedding $j: V_{\alpha} \preccurlyeq V_{\beta}$ s.t.

- (i) $\operatorname{crit}(j) = \kappa$
- (ii) $\alpha < j(\kappa)$.

 κ is *extendible* iff it is α -extendible for every $\alpha > \kappa$.

Definition

Let \mathcal{L} be a logic, κ a cardinal.

- (a) An \mathcal{L} -theory T is $< \kappa$ -satisfiable iff every $< \kappa$ -sized subset of T has a model.
- (b) \mathcal{L} is κ -compact iff every $< \kappa$ -satisfiable \mathcal{L} -theory T has a model. Such a κ is called *compactness cardinal* for \mathcal{L} .

The following are equivalent:

The following are equivalent: (i) κ is extendible.

The following are equivalent:

- (i) κ is extendible.
- (ii) $\mathcal{L}^2_{\kappa\omega}$ is κ -compact.

The following are equivalent:

- (i) κ is extendible.
- (ii) $\mathcal{L}^2_{\kappa\omega}$ is κ -compact.
- (iii) For any n: $\mathcal{L}_{\kappa\kappa}^n$ is κ -compact.

The following are equivalent:

(i) κ is extendible.

(ii) $\mathcal{L}^2_{\kappa\omega}$ is κ -compact.

(iii) For any n: $\mathcal{L}_{\kappa\kappa}^n$ is κ -compact.

The proof needs the following:

Lemma

There is a sentence, known as *Magidor's* Φ , of second-order logic in the language $\{E\}$ s.t. $(M, E^M) \models \Phi$ iff there is a limit ordinal α s.t. $(M, E^M) \cong (V_{\alpha}, \in)$.

Proposition

The following are equivalent:

Proposition

The following are equivalent:

(i) There is a proper class of extendible cardinals.

Proposition

The following are equivalent:

- (i) There is a proper class of extendible cardinals.
- (ii) Every logic of the form $\mathcal{L}_{\kappa\lambda}^n$ has a compactness cardinal.

Proposition

The following are equivalent:

- (i) There is a proper class of extendible cardinals.
- (ii) Every logic of the form $\mathcal{L}_{\kappa\lambda}^n$ has a compactness cardinal.

In particular, VP implies (ii) above. But one can show much more:

Proposition

The following are equivalent:

- (i) There is a proper class of extendible cardinals.
- (ii) Every logic of the form $\mathcal{L}_{\kappa\lambda}^n$ has a compactness cardinal.

In particular, VP implies (ii) above. But one can show much more:

Theorem (Makowsky [4])

The following are equivalent

(i) Vopěnka's Principle.

Proposition

The following are equivalent:

- (i) There is a proper class of extendible cardinals.
- (ii) Every logic of the form $\mathcal{L}_{\kappa\lambda}^n$ has a compactness cardinal.

In particular, VP implies (ii) above. But one can show much more:

Theorem (Makowsky [4])

The following are equivalent

- (i) Vopěnka's Principle.
- (ii) Every logic has a compactness cardinal.

7/18

The existence of a proper class of extendibles does *not* imply VP. But VP can be characterized in similar terms.

Theorem (Bagaria [1])

The existence of a proper class of extendibles does *not* imply VP. But VP can be characterized in similar terms.

Theorem (Bagaria [1])

The following are equivalent:

- (i) Vopěnka's Principle.
- (ii) For every n: there is a $C^{(n)}$ -extendible cardinal.

 $C^{(n)}$ is the following class:

$$C^{(n)} := \{ \alpha \in Ord \colon (V_{\alpha}, \in) \preccurlyeq_n (V, \in) \}.$$

 $C^{(n)}$ is the following class: $C^{(n)} := \{ \alpha \in Ord: (V_{\alpha}, \in) \preccurlyeq_n (V, \in) \}.$

For every n one can show (in ZFC) that $C^{(n)}$ is a Π_n -definable club proper class.

 $C^{(n)}$ is the following class: $C^{(n)} := \{ \alpha \in Ord: (V_{\alpha}, \in) \preccurlyeq_n (V, \in) \}.$

For every n one can show (in ZFC) that $C^{(n)}$ is a Π_n -definable club proper class.

Definition

A cardinal κ is called α - $C^{(n)}$ -extendible for $\alpha > \kappa$ iff

 $C^{(n)}$ is the following class: $C^{(n)} := \{ \alpha \in Ord: (V_{\alpha}, \in) \preccurlyeq_n (V, \in) \}.$

For every n one can show (in ZFC) that $C^{(n)}$ is a Π_n -definable club proper class.

Definition

A cardinal κ is called α - $C^{(n)}$ -extendible for $\alpha > \kappa$ iff there is β and an elementary embedding $j : V_{\alpha} \preccurlyeq V_{\beta}$ s.t.

(i)
$$\operatorname{crit}(j) = \kappa$$

(ii)
$$\alpha < j(\kappa)$$

 $C^{(n)}$ is the following class: $C^{(n)} := \{ \alpha \in Ord: (V_{\alpha}, \in) \preccurlyeq_n (V, \in) \}.$

For every n one can show (in ZFC) that $C^{(n)}$ is a Π_n -definable club proper class.

Definition

A cardinal κ is called α - $C^{(n)}$ -extendible for $\alpha > \kappa$ iff there is β and an elementary embedding $j : V_{\alpha} \preccurlyeq V_{\beta}$ s.t.

(i)
$$\operatorname{crit}(j) = \kappa$$

(ii)
$$\alpha < j(\kappa)$$

(iii) $j(\kappa) \in C^{(n)}$.

 $C^{(n)}$ is the following class: $C^{(n)} := \{ \alpha \in Ord: (V_{\alpha}, \in) \preccurlyeq_n (V, \in) \}.$

For every n one can show (in ZFC) that $C^{(n)}$ is a Π_n -definable club proper class.

Definition

A cardinal κ is called α - $C^{(n)}$ -extendible for $\alpha > \kappa$ iff there is β and an elementary embedding $j : V_{\alpha} \preccurlyeq V_{\beta}$ s.t.

- (i) $\operatorname{crit}(j) = \kappa$
- (ii) $\alpha < j(\kappa)$
- (iii) $j(\kappa) \in C^{(n)}$.

 κ is $C^{(n)}$ -extendible iff it is α - $C^{(n)}$ -extendible for every $\alpha > \kappa$.

Proposition

Jonathan Osinski

Compactness Cardinals below VP

March 18, 2022

10/18

Proposition

(a) " κ is $C^{(n)}$ -extendible" is a Π_{n+2} -statement.

- (a) " κ is $C^{(n)}$ -extendible" is a Π_{n+2} -statement.
- (b) κ is $C^{(n)}$ -extendible $\rightarrow \kappa \in C^{(n+2)}$.

- (a) " κ is $C^{(n)}$ -extendible" is a Π_{n+2} -statement.
- (b) κ is $C^{(n)}$ -extendible $\rightarrow \kappa \in C^{(n+2)}$.
- (c) For $n \ge 2$, the set of $C^{(n-1)}$ -extendibles below a $C^{(n)}$ -extendible is unbounded.

- (a) " κ is $C^{(n)}$ -extendible" is a Π_{n+2} -statement.
- (b) κ is $C^{(n)}$ -extendible $\rightarrow \kappa \in C^{(n+2)}$.
- (c) For $n \ge 2$, the set of $C^{(n-1)}$ -extendibles below a $C^{(n)}$ -extendible is unbounded.
- (d) κ is extendible iff κ is $C^{(1)}$ -extendible.

Proposition

- (a) " κ is $C^{(n)}$ -extendible" is a Π_{n+2} -statement.
- (b) κ is $C^{(n)}$ -extendible $\rightarrow \kappa \in C^{(n+2)}$.
- (c) For $n \ge 2$, the set of $C^{(n-1)}$ -extendibles below a $C^{(n)}$ -extendible is unbounded.
- (d) κ is extendible iff κ is $C^{(1)}$ -extendible.

Now consider the smallest $C^{(2)}$ -extendible cardinal κ , should it exist.

Proposition

- (a) " κ is $C^{(n)}$ -extendible" is a Π_{n+2} -statement.
- (b) κ is $C^{(n)}$ -extendible $\rightarrow \kappa \in C^{(n+2)}$.
- (c) For $n \ge 2$, the set of $C^{(n-1)}$ -extendibles below a $C^{(n)}$ -extendible is unbounded.
- (d) κ is extendible iff κ is $C^{(1)}$ -extendible.

Now consider the smallest $C^{(2)}$ -extendible cardinal κ , should it exist. By items (c)+(d) above, $\{x < \kappa : x \text{ is extendible}\}$ is unbounded below κ .

Proposition

- (a) " κ is $C^{(n)}$ -extendible" is a Π_{n+2} -statement.
- (b) κ is $C^{(n)}$ -extendible $\rightarrow \kappa \in C^{(n+2)}$.
- (c) For $n \ge 2$, the set of $C^{(n-1)}$ -extendibles below a $C^{(n)}$ -extendible is unbounded.
- (d) κ is extendible iff κ is $C^{(1)}$ -extendible.

Now consider the smallest $C^{(2)}$ -extendible cardinal κ , should it exist. By items (c)+(d) above, $\{x < \kappa : x \text{ is extendible}\}$ is unbounded below κ . Then by item (a)+(b),

> $V_{\kappa} \models \operatorname{ZFC} \land$ there is a proper class of extendibles $\land \neg \exists x(x \text{ is } C^{(2)}\text{-extendible}).$

Now we can update our picture:

Consider the following class:

$$C^{*(n)} := \{ (M, E^M) : \exists \alpha \in C^{(n)} : (M, E^M) \cong (V_{\alpha}, \in) \}.$$

Let $Q_{C^{*(n)}}$ be the quantifier with the following semantics:

$$(M, E^M) \models Q_{C^{*(n)}} xyz\varphi(x)\psi(y, z) \text{ iff}$$

there is a structure $\mathcal{B} \in C^{*(n)}$ s.t. $B = \{a \in A \colon A \models \varphi(a)\}$
and $E^{\mathcal{B}} = \{(a, b) \in B^2 \colon \mathcal{A} \models \psi(a, b)\}.$

Definition

For every n and every cardinal κ , we let

$$\mathcal{L}_{\kappa}^{(n)} := \mathcal{L}_{\kappa\omega}^2(Q_{C^{*(1)}}, \dots, Q_{C^{*(n)}}),$$

i.e., second-order logic with infinitary conjunctions and disjunctions of size $< \kappa$, extended by the quantifiers $Q_{C^{*(1)}}, \ldots, Q_{C^{*(n)}}$.

With those logics, the following holds:

Theorem

For every n and every cardinal κ :

$$\mathcal{L}_{\kappa}^{(n)}$$
 is κ -compact iff κ is $C^{(n)}$ -extendible.

With those logics, the following holds:

Theorem

For every n and every cardinal κ :

$$\mathcal{L}_{\kappa}^{(n)}$$
 is κ -compact iff κ is $C^{(n)}$ -extendible.

In particular: $VP \leftrightarrow \forall n$: there is a κ s.t. $\mathcal{L}_{\kappa}^{(n)}$ is κ -compact.

Proof.

Handwritten.

With those logics, the following holds:

Theorem

For every n and every cardinal κ :

$$\mathcal{L}_{\kappa}^{(n)}$$
 is κ -compact iff κ is $C^{(n)}$ -extendible.

In particular: $VP \leftrightarrow \forall n$: there is a κ s.t. $\mathcal{L}_{\kappa}^{(n)}$ is κ -compact.

Proof.

Handwritten.

Will Boney similarly observed in [2] that κ is $C^{(n)}$ -extendible iff the sort logic $\mathbb{L}_{\kappa\kappa}^{s,\Sigma_n}$ is κ -compact. I am not sure about the relation of these results. It is clear that $\mathcal{L}_{\kappa}^{(n)} \leq \mathbb{L}_{\kappa\kappa}^{s,\Sigma_{n+1}}$.

- [1] J. Bagaria. $C^{(n)}$ -cardinals. In Archive for Mathematical Logic, 51(3-4):213-240, 2012.
- W. Boney. Model Theoretic Characterizations of Large Cardinals. In Israel J. Math., 236:133-181, 2020.
- [3] M. Magidor. On the Role of Supercompact and Extendible Cardinals in Logic. In Israel J. Math., 10:147-157, 1971.
- [4] J.A. Makowsky. Vopěnka's Principle and Compact Logics. In J. Symb. L., 50(1):42-48, 1985.