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Coverings

Covering
A covering is a total correspondence between two non-empty sets, that

is, a triple (X, C, R) such that:

(1) X,C#0,and RC X x C;

(2) Vx e X,3c e C,(x,c) € R;

(3) Ve e C,3x € X,(x,c) € R.

Isomorphism of Coverings

An isomorphism of covering (Xp, Co, Ro) onto covering (X1, G, Ry) is a
pair (f, g) of bijections f : Xy — Xj and g : Gy — Cj, such that:

Vx € Xp, ¢ € Go, (xRoc <= f(x)Rig(c)).



Coverings

Frame
Give a covering A = (X, C,R),¥s C C, s* = {x € X |s C R(x)} is

called cell of the A (corresponding to s). The Frame F(A) of a
covering A is the set of all its non-empty cells ordered by the inverse

inclusion.

Note:lt is easy to see that s* = [_.. R™1(c).

cEs

Separable
A covering (X, C, R) is said separale, if

Vx,y € X,(R(x) C R(y) = x=y).
Note:Give a separable covering A = X, C, R, then every one-element
subset of X is a cell of A.



Coloring

A coloring of a covering A = (X, C, R) is a splitting v = {Xp, X1} of
X, such that Ve € C,R7}(c) N Xy # 0 and R71(c) N Xy # 0.
Skeleton

A cell a C X is called v — regular iff an Xo # () and an Xy # 0.

Let X7 be the set of all minimal v — regular cells of A, and

Vae X?,ce C, aR"ciffa C R7(c).

A triple A7 = (X7, C, R") is called the skeleton of coloring .

Note: A7 is a separable covering, and F(AY) = {P(a)N X7 | a'is
~ — regular cell of A}.

Let 5 be a cell of AY. Then, for some s C C,
B=n((R")c))={ae X" |aCs*}=P(s*)NX".



Reduce between Coverings
A coloring v of a covering A = (X, C, R) is called good iff X is the only

cell containing all minimal ~ — regular cells.

A coloring 7 of a covering A = (X, C, R) is called nice iff X7 covers X.
Let A and I be coverings, A is reducible to [ iff I is isomorphic to AY
and -y is a good coloring of A. And we write Aredl .

V. Shehtman, 1990
If Ared"T and A is separable, then I is separable, and F(A)-»F(I)(").



T(n) and S(m)

Give two covering Ag = (Xp, Co, Ro) and Ay = (X1, G, Ry).

Sum of Ag and Ay is :

Ao |Ar:=(Xo x {0} UXy x {1}, G x {0} U G x {1}, R), where
Rs(x, 1) = Ri(x) x {i}.

Product of Ag and Ay is :

Ag x Aq = (Xg x Xq, Go x {0} U G x {1}, R,), where

Ro(x0,x1) = Ro(x0) x {0} U Ri(x1) x {1}.



T(n) and S(m)

T(n)
Let T(n) be the covering (X, X,=x), where X = {1, ..., n}, and
xi= {(x,x) | x € X}. And T(n,m) = T(n) x...x T(n)
If A and X are coverings, and AredX, then (A x T(n))red(X x T(n))
and (A x T(n,m))red(X x T(n, m)).



Figure 1: T(2,3)



T(n) and S(m)

S(m)
Let S(m) be the covering (X, X, #x), where X = {1, ..., m}, and

#x:={(x,y) | x # y, and x,y € X}.
Note:

e Since #x (x) = X — {x}, S(m) is separable.



T(n) and S(m)

S(m)
Let S(m) be the covering (X, X, #x), where X = {1, ..., m}, and
#x:={(x,y) | x # y, and x,y € X}.

Note:

e Since #x (x) = X — {x}, S(m) is separable.
e Give a non-empty set D, the frame P°(D) is the set of all

non-empty subsets of D ordered by the inverse inclusion.
s* =X —s, thus F(S(m)) = PO(LZ. ey M).






Reduce between Covering

Vn >4, S(n) red S(n—2) x T(2).
Further more, Vn > 2, S(2n) red"~! T(2, n).
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S(6)redS(4)xT(2)

Figure 3: S(6)redS(4)*T(2)
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Reduce between Covering

Yn>2, T(2,n) red S(n)[|S(n).
Further more, ¥n > 2, 5(2n) red" S(n)|_|S(n).
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T(2.3)redS(3)[ S(3)

Figure 4: T(2,3)redS(3)+5(3)
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Description of F(A| | A1)

Let Fo = (Wh, Ro) and F = (W, Ry) be two generated H-frames,
Wo = Ro(up), Wi = Ri(u1). Then Fo vV F1 = (W, R), in which:

W =Wy x {0} U (W) —{ur}) x {1} and (x, NR(y,J) iff

(Riy A i = )V((x, ) = (t6,0)).

V. Shehtman, 1990

Give two coverings Ay = ()(07 Go, Ro) and A1 = (Xl, G, Rl),

Xi ¢ F(A;). Then F(Ag| | A1) is isomorphic to F(Ag) \/ F(Aq).
Let F; and G; be generated H-frames, and F;—G; (i=0,1).Then
FoV Fi-=»Gy V G.
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Lemma
PO(1,...,2n)»(P°(1, ...,n) vV P°(1, ..., n))(").

Proof.
n =1 is obvious.

Suppose n > 2. Since 5(2n) red” S(n)]S(n), thus
n

F(S(2n))=>F(S(n) LI S(n)™. Then F(S(2n))-»F(S(n) v S(n))™
Notice that F(S(m)) = P0(1,27 cery M). O
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Chinese Lantern

Chinese Lantern
For m > 1 and k > 3, the Chinese Lantern is the H-frame CL(k, m)

formed by the set: {(i,j) |(1<i<k—20<j<1)\/(i=k—1,1<

J<mV(i=kj=0)}
with the accessibility relation being an ordering: (i,j) < (/’,j) iff

i>i"V(i,j) = (i"J")-
Note: CL(/,m)V CL(/, n)—CL(l, m+ n).
If F(S(n))—»CL(k, m), then F(5(2n))—»CL(k 4+ n,2m).
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Chinese Lantern

Lantern.png



Chinese Lantern

Lemma
P°(17 ey 2M) = CL(2",2M).

Proof.
It is enough to prove F(S(2")) — CL(2",2") by induction over n.
n =1 is obvious.

Inductive step follow the last note. [
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Finitely Axiomatisable Logic




l-axiomatisable

l-axiomatisable
For a number /, a modal logic L is 1-axiomatisable if it has an

axiomatisation using only formulas whose propositional variables are

among pi, ..., p;-

Thus every finitely axiomtisable logic is 1-axiomatisable for a suitable
l.

20



Medvedev frame

Medvedev frame
A Medvedev frame is a frame that is isomorphic (as a directed graph) to

PO(D), the set of all non-empty subsets of D ordered by the inverse
inclusion for a non-empty finite set D.

ML, := ({ modal logic of P°(D) | D is non-empty finite set }.
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Chinese Lantern

Chinese Lantern
For m > 1 and k > 3, the Chinese Lantern is the H-frame CL(k, m)

formed by the set: {(i,j) |(1<i<k—-2,0<;<1)\/(i=k—-1,1<

i <mV(i=k,j=0)}
with the accessibility relation being an ordering: (i,j) < (/', ') iff

i>"V(,j) = ("J).
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Finitely Axiomatisable Logic

Lemma
Let A be a modal formula using | variables, m > 2!, and CL(k, m) ¥ A.

Then CL(k,2') ¥ A.
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Finitely Axiomatisable Logic

Lemma (K. Fine)
Let F be a generated finite S4-frame. Then there is a modal formula

X(F) with the following properties:
(A) For any S4-frame G, we have G ¥ x(F) iff 3uG" — F.
(B) For any logic L, S4 C L, we have L C modal logic of F iff x(F) ¢ L.

Thus if PO(1,...,2") — CL(2",2"), then CL(2",2") IF ML,
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Finitely Axiomatisable Logic

Lemma
Let L be a normal modal logic with S4 C L C ML_,. Suppose that for

every 1 < | < k, there is n > k, such that x(CL(k,2")) € L. Then L is
not l-aziomatisable for any number |,
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Finitely Axiomatisable Logic

Proof.
Suppose L is |-axiomatizable, that is, L = S4 + X. ¥ is a set of formulas

that can use only the first | propositional variables. Let k = 2'.

By assumption there is n > k, such that x(CL(k,2")) € L.

And because ¥ axiomatizes L, every formula in L can be derived from a
finite set from X. Thus there is an |-formula A € L, such that
X(CL(k,2")) € (S4+ A). Then A dose not belong to the modal logic of

CL(k,2").
So CL(k,2') ¥ A, further more CL(k,2')¥ L. But CL(2!,2") = ML, a
contradiction. O
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Finitely Axiomatisable Logic

Lemma
Let F be a frame, L is modal logic of F and S, C L C ML_,,. Suppose

for any k > 1, there is n > k such that (Vu € F, F* — CL(k,2")) is
false. Then L is not 1-aziomatisable for any number |.

Proof.
Vk > 1, 3n > k such that x(CL(k,2")) € L. O
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Thank You!
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