
Some modal logics which are non-finitely

axiomatisable

Mathematical Logic Seminar

Han Xiao

May 11, 2020

University of Hamburg



Table of contents

1. Coverings and Colorings

2. Finitely Axiomatisable Logic

1



Coverings and Colorings



Coverings

Covering
A covering is a total correspondence between two non-empty sets, that

is, a triple (X ,C ,R) such that:

(1) X ,C 6= ∅, and R ⊆ X × C ;

(2) ∀x ∈ X ,∃c ∈ C , (x , c) ∈ R;

(3) ∀c ∈ C ,∃x ∈ X , (x , c) ∈ R.

Isomorphism of Coverings
An isomorphism of covering (X0,C0,R0) onto covering (X1,C1,R1) is a

pair (f , g) of bijections f : X0 → X1 and g : C0 → C1, such that:

∀x ∈ X0, c ∈ C0, (xR0c ⇐⇒ f (x)R1g(c)).
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Coverings

Frame
Give a covering ∆ = (X ,C ,R),∀s ⊆ C , s? = {x ∈ X | s ⊆ R(x)} is

called cell of the ∆ (corresponding to s). The Frame F (∆) of a

covering ∆ is the set of all its non-empty cells ordered by the inverse

inclusion.

Note:It is easy to see that s? =
⋂

c∈s R
−1(c).

Separable
A covering (X ,C ,R) is said separale, if

∀x , y ∈ X , (R(x) ⊆ R(y) =⇒ x = y).

Note:Give a separable covering ∆ = X ,C ,R, then every one-element

subset of X is a cell of ∆.
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Colorings

Coloring
A coloring of a covering ∆ = (X ,C ,R) is a splitting γ = {X0,X1} of

X , such that ∀c ∈ C ,R−1(c) ∩ X0 6= ∅ and R−1(c) ∩ X1 6= ∅.

Skeleton
A cell a ⊆ X is called γ − regular iff a ∩ X0 6= ∅ and a ∩ X1 6= ∅.
Let X γ be the set of all minimal γ − regular cells of ∆, and

∀a ∈ X γ , c ∈ C , aRγc iff a ⊆ R−1(c).

A triple ∆γ = (X γ ,C ,Rγ) is called the skeleton of coloring γ.

Note: ∆γ is a separable covering, and F (∆γ) = {P(a) ∩ X γ | a is

γ − regular cell of ∆}.
Let β be a cell of ∆γ . Then, for some s ⊆ C ,

β = ∩((Rγ)−1(c)) = {a ∈ X γ | a ⊆ s?} = P(s?) ∩ X γ .
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Colorings

Reduce between Coverings
A coloring γ of a covering ∆ = (X ,C ,R) is called good iff X is the only

cell containing all minimal γ − regular cells.

A coloring γ of a covering ∆ = (X ,C ,R) is called nice iff X γ covers X .

Let ∆ and Γ be coverings, ∆ is reducible to Γ iff Γ is isomorphic to ∆γ

and γ is a good coloring of ∆. And we write ∆redΓ.

V. Shehtman, 1990
If ∆rednΓ and ∆ is separable, then Γ is separable, and F (∆)�̇F (Γ)(n).
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T(n) and S(m)

Give two covering ∆0 = (X0,C0,R0) and ∆1 = (X1,C1,R1).

Sum of ∆0 and ∆1 is :

∆0

⊔
∆1 := (X0 × {0} ∪ X1 × {1},C0 × {0} ∪ C1 × {1},Rs), where

Rs(x , i) = Ri (x)× {i}.
Product of ∆0 and ∆1 is :

∆0 ×∆1 := (X0 × X1,C0 × {0} ∪ C1 × {1},Rp), where

Rp(x0, x1) = R0(x0)× {0} ∪ R1(x1)× {1}.
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T(n) and S(m)

T(n)
Let T (n) be the covering (X ,X ,=X ), where X = {1, ..., n}, and

=X := {(x , x) | x ∈ X}. And T (n,m) = T (n)×...×︸ ︷︷ ︸
m

T (n).

If ∆ and Σ are coverings, and ∆redΣ, then (∆× T (n))red(Σ× T (n))

and (∆× T (n,m))red(Σ× T (n,m)).
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T(2,3)

Figure 1: T(2,3)
8



T(n) and S(m)

S(m)
Let S(m) be the covering (X ,X , 6=X ), where X = {1, ...,m}, and

6=X := {(x , y) | x 6= y , and x , y ∈ X}.

Note:

• Since 6=X (x) = X − {x}, S(m) is separable.

• Give a non-empty set D, the frame P0(D) is the set of all

non-empty subsets of D ordered by the inverse inclusion.

s? = X − s, thus F (S(m)) = P0(1, 2, ...,m).
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T(n) and S(m)

S(m)
Let S(m) be the covering (X ,X , 6=X ), where X = {1, ...,m}, and

6=X := {(x , y) | x 6= y , and x , y ∈ X}.

Note:

• Since 6=X (x) = X − {x}, S(m) is separable.

• Give a non-empty set D, the frame P0(D) is the set of all

non-empty subsets of D ordered by the inverse inclusion.

s? = X − s, thus F (S(m)) = P0(1, 2, ...,m).
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S(3)

Figure 2: S(3)
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Reduce between Covering

∀n ≥ 4, S(n) red S(n − 2)× T (2).

Further more, ∀n ≥ 2, S(2n) redn−1 T (2, n).
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S(6)redS(4)×T(2)

Figure 3: S(6)redS(4)*T(2)
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Reduce between Covering

∀n ≥ 2, T (2, n) red S(n)
⊔
S(n).

Further more, ∀n ≥ 2, S(2n) redn S(n)
⊔
S(n).
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T(2,3)redS(3)
⊔

S(3)

Figure 4: T(2,3)redS(3)+S(3)
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Description of F (∆0

⊔
∆1)

Let F0 = (W0,R0) and F1 = (W1,R1) be two generated H-frames,

W0 = R0(u0), W1 = R1(u1).Then F0 ∨ F1 = (W ,R), in which:

W = W0 × {0} ∪ (W1 − {u1})× {1} and (x , i)R(y , j) iff

(xRiy ∧ i = j)
∨

((x , i) = (u0, 0)).

V. Shehtman, 1990
Give two coverings ∆0 = (X0,C0,R0) and ∆1 = (X1,C1,R1),

Xi /∈ F (∆i ). Then F (∆0

⊔
∆1) is isomorphic to F (∆0)

∨
F (∆1).

Let Fi and Gi be generated H-frames, and Fi�̇Gi (i=0,1).Then

F0 ∨ F1�̇G0 ∨ G1.
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P0(D)

Lemma
P0(1, ..., 2n)�̇(P0(1, ..., n) ∨ P0(1, ..., n))(n).

Proof.
n = 1 is obvious.

Suppose n ≥ 2. Since S(2n) redn S(n)
⊔
S(n), thus

F (S(2n))�̇F (S(n)
⊔
S(n))(n). Then F (S(2n))�̇F (S(n) ∨ S(n))(n) .

Notice that F (S(m)) = P0(1, 2, ...,m).
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Chinese Lantern

Chinese Lantern
For m ≥ 1 and k ≥ 3, the Chinese Lantern is the H-frame CL(k,m)

formed by the set: {(i , j) | (1 ≤ i ≤ k − 2, 0 ≤ j ≤ 1)
∨

(i = k − 1, 1 ≤
j ≤ m)

∨
(i = k , j = 0)},

with the accessibility relation being an ordering: (i , j) ≤ (i ′, j ′) iff

i > i ′
∨

(i , j) = (i ′, j ′).

Note: CL(l ,m) ∨ CL(l , n)�̇CL(l ,m + n).

If F (S(n))�̇CL(k ,m), then F (S(2n))�̇CL(k + n, 2m).
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Chinese Lantern

Lantern.png

Figure 5: Chinese Lantern
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Chinese Lantern

Lemma
P0(1, ..., 2n) � CL(2n, 2n).

Proof.
It is enough to prove F (S(2n)) � CL(2n, 2n) by induction over n.

n = 1 is obvious.

Inductive step follow the last note.
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Finitely Axiomatisable Logic



l-axiomatisable

l-axiomatisable
For a number l , a modal logic L is l-axiomatisable if it has an

axiomatisation using only formulas whose propositional variables are

among p1, ..., pl .

Thus every finitely axiomtisable logic is l-axiomatisable for a suitable

l.
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Medvedev frame

Medvedev frame
A Medvedev frame is a frame that is isomorphic (as a directed graph) to

P0(D), the set of all non-empty subsets of D ordered by the inverse

inclusion for a non-empty finite set D.

ML<ω :=
⋂
{ modal logic of P0(D) | D is non-empty finite set }.
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Chinese Lantern

Chinese Lantern
For m ≥ 1 and k ≥ 3, the Chinese Lantern is the H-frame CL(k,m)

formed by the set: {(i , j) | (1 ≤ i ≤ k − 2, 0 ≤ j ≤ 1)
∨

(i = k − 1, 1 ≤
j ≤ m)

∨
(i = k , j = 0)},

with the accessibility relation being an ordering: (i , j) ≤ (i ′, j ′) iff

i > i ′
∨

(i , j) = (i ′, j ′).
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Finitely Axiomatisable Logic

Lemma
Let A be a modal formula using l variables, m > 2l , and CL(k,m) 2 A.

Then CL(k, 2l) 2 A.
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Finitely Axiomatisable Logic

Lemma (K. Fine)
Let F be a generated finite S4-frame. Then there is a modal formula

χ(F ) with the following properties:

(A) For any S4-frame G, we have G 2 χ(F ) iff ∃uG u � F .

(B) For any logic L, S4 ⊆ L, we have L ⊆ modal logic of F iff χ(F ) /∈ L.

Thus if P0(1, ..., 2n) � CL(2n, 2n), then CL(2n, 2n) 
 ML<ω.
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Finitely Axiomatisable Logic

Lemma
Let L be a normal modal logic with S4 ⊆ L ⊆ ML<ω. Suppose that for

every 1 ≤ l < k, there is n ≥ k, such that χ(CL(k , 2n)) ∈ L. Then L is

not l-axiomatisable for any number l.
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Finitely Axiomatisable Logic

Proof.
Suppose L is l-axiomatizable, that is, L = S4 + Σ. Σ is a set of formulas

that can use only the first l propositional variables. Let k = 2l .

By assumption there is n ≥ k , such that χ(CL(k , 2n)) ∈ L.

And because Σ axiomatizes L, every formula in L can be derived from a

finite set from Σ. Thus there is an l-formula A ∈ L, such that

χ(CL(k, 2n)) ∈ (S4 + A). Then A dose not belong to the modal logic of

CL(k, 2n).

So CL(k, 2l) 2 A, further more CL(k , 2l) 2 L. But CL(2l , 2l) |= ML<ω, a

contradiction.
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Finitely Axiomatisable Logic

Lemma
Let F be a frame, L is modal logic of F and S4 ⊆ L ⊆ ML<ω. Suppose

for any k ≥ 1, there is n ≥ k such that (∀u ∈ F , F u � CL(k, 2n)) is

false. Then L is not l-axiomatisable for any number l.

Proof.
∀k ≥ 1, ∃n ≥ k such that χ(CL(k , 2n)) ∈ L.
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Thank You!
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