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Idea

1 Stipulate some basic mathematical object, O

2 Stipulate some believable(!) endogenous axioms, A, for O

3 Stipulate an interpretation for the primitive notions of set theory, I,
in the relevant language.

4 See which set theory the structure 〈O,A, I〉 models

Philosophical motivation: a candidate foundation 〈O,A, I〉 must preserve
the direction of plausibility - not all theorems as axioms!
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Topos Model

Theorem (Mac Lane & Moerdijk [6] §10, Lawvere [5])

A well-pointed topos with a natural number object and choice models
Bounded ZFC - Replacement.

Definition

Well pointed topos is a category which:

1 has finite limits

2 is Cartesian closed (internalises homomorphisms)

3 has a subobject classifier (identifies characteristic functions)

4 1 is not initial (non-degenerate)

5 for f , g : A ⇒ B, f = g iff fx = gx for every global element x of A
(somewhat like extensionality).

c has Choice if every epi splits, i.e. if e : X → Y is epi, then there is a
morphism s : Y → X such that e ◦ s = idY .
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Topos Model - Simulating the Graph Model

Theorem (Mac Lane & Moerdijk [6] §10, Lawvere [5])

A well-pointed topos with a natural number object and choice models
Bounded ZFC - Replacement.

Union: adjoin the representatives 01 and 02 at a root using colimits, then
colimits again to quotient

· · · · · · · · · · · · · · · · · ·

0x 0x 0y 0x 0x 0y

01 02 =⇒

0 0

∼= ∼=
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Topos Model - Infinity

Theorem (Mac Lane & Moerdijk [6] §10, Lawvere [5])

A well-pointed topos with a natural number object (NNO) and choice
models Bounded ZFC - Replacement.

Definition (NNO)

A NNO on a topos E is an object N of E with arrows

1
O→ N

s→ N

such that for any object X of E with arrows x and f such that

1
x→ X

f→ X

then there exists a unique h : N → N such that the following commute

Ned Wontner (ILLC) Presentation 29th April 2020 7 / 29



Topos Model - Infinity

1 N N

X X

O

x

s

!h !h

f

Category-ese for s is a successor function on N.
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Topos Model - Parasitism?

Claim

A well-pointed topos has independent motivation as a foundational
category.

Parasitical Claim

NNO and Choice have no independent motivation, besides modeling ω and
the Axiom of Choice

So too for Replacement? The constraint on the category depends on “how
much Replacement you want” ([7] 2.3.10).
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Topos Model - Parasitism?

Does the parasitical claim hold up?

topos axiom set axiom

NNO Inf
Choice AC

various replacement analogues various strengths of Replacement

Definition of a WPT

requirement internalisation set axiom

finite limits products Union (with Powers)
Cartesian closed homomorphisms -

subobject classifier χf Powers
1 is not initial non-degeneracy (Found?)

f = g iff ∀x global fx = gx equality Ext(+)

Ned Wontner (ILLC) Presentation 29th April 2020 10 / 29



Topos Model - Parasitism?

Does the parasitical claim hold up?

topos axiom set axiom

NNO Inf
Choice AC

various replacement analogues various strengths of Replacement

Definition of a WPT

requirement internalisation set axiom

finite limits products Union (with Powers)
Cartesian closed homomorphisms -

subobject classifier χf Powers
1 is not initial non-degeneracy (Found?)

f = g iff ∀x global fx = gx equality Ext(+)

Ned Wontner (ILLC) Presentation 29th April 2020 10 / 29



Topos Model

Parasitic or not, certain toposes can interpret standard set theories, Z,
FinSet, ZC, etc.

Method: imitate the graph theoretic model and identify any “copies”.

Question

How about natural topos axioms to models strengthening of ZFC?
Reflection principles?
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Algebraic Model

Question

Which basic algebraic entities and constructions are required for a model
of a standard set theory?

Or for a substantial fragment of concrete mathematics
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Encode a Graph

Natural approach: encode graphs again. E.g. G :

1 3

2 4

Adjacency matrix? 
0 1 1 1
1 0 0 1
1 0 0 0
1 1 0 0


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Encoding Finite Graphs

For this kind of representation, our foundation must include:

1 A collection, S , |S | ≥ 2 (e.g. C2)

2 The general theory of (2 dimensional) matrices on a collection S ,
MOn×On(S).

Problem

(2.) implausible for a natural axiom.

Problem

No clear way to ‘connect’ the matrix-representations of graphs (i.e.
coproducts/sums).

Link ‘3’ of one copy of G to ‘4’ of another copy to make an 8× 8 matrix?
More generally, we must define addition on arbitrary matrices in
MOn×On(S). Unclear how to describe such an addition algebraically.
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Why algebraic interpretations don’t work

Question

Which basic algebraic entities and constructions are required for a model
of a standard set theory?

Algebraic categories obviously have products.
They can have direct sums(/colimits), e.g. in Grp, colimits are quotients
of the free product by suitable congruences.

Problem

No internal way to take direct sums(/colimits) of algebraic categories.

Using congruence and quotients relies on structure beyond the relevant
algebraic theory.

Major restriction on expressiveness: set theory is closed under limits
(∼products) and colimits (∼sums and unions). This seems an unavoidable
problem of algebraic foundations.
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A diversion into Positive Set Theory

a topological intuition: the set of subsets of any set is a topology on that
set

Positive set theory (PST): naive comprehension for positive formulae
φ, i.e. φ ∈ Form+ implies {x : φ(x)} is a set. (no Russell set).

Some PSTs are okay for constructions, e.g. have ordinals ([3]:1.3)

in all known models, the sets are classes closed under a topology
(κ-compact κ-topological T2 spaces homeomorphic to their own
hyperspace)

One PST, Topological Set Theory has axioms like

If A ⊆ T is nonempty, then
⋂
A is T-closed.

If a and b are T-closed, then a ∪ b is T-closed.

but a strange family: no singletons, universal set, non-well-founded,
only positive separation!

very strong: GPK+
ω has consistency strength proper class ordinal

weakly compact [2]
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Cheating topologically

Suppose c = top. Let M be a set-model of set theory T .1 Then discrete
spaces M ×M, 2 ∈ c, and there is a top-map

∈M : M ×M → 2

Encode ∈-relation as ∈−1M ({1}). Then 〈M ×M,∈−1M ({1}), I〉 models T .

Problem

∈ is non-constructive, showing only that there is a model for ZFC
‘somewhere in’ top. Relies on prior knowledge of top.

Instead, we stipulate some basic entities and constructions, and build a
category which contains a model of ZFC.

1Let T be no stronger than e.g. NBG with Choice
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Cheating less badly

1 c is closed under

sums
quotients
finite products

2 ω + 1 ∈ c

3 ∀κ ∈ Card≥ω, ∃X ∈ c, ∃U ⊆ X open discrete subset with |X | = κ
which witnesses tightness κ exactly.

Theorem (Dow & Watson [1])

If 1., 2., and 3. hold, then c = top.

Problem

This essentially requires an ambient (external) set theory, especially for
quotients.
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Candidate Topological Model: First Axioms

More constructively...

topological axiom set structure

0 space Emptyset
1 space singleton
0 6= 1 non-degeneracy (Found?)

finite limits finite products
finite colimits finite unions
suitably full “correct” sums and products

Sierpiński space open and closed sets
ω ω (Inf)

(countable) powers + discretisation large sets (up to iω)
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Axiom

There is a 0 space in c, i.e. ∃0 ∈ c, such that for any space x ∈ c, there
is a unique function ! : 0→ x.

Axiom

There is a 1-point space in c, i.e. unique function ! : x → 1.

Axiom

0 6= 1.
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Axiom

c has finite limits

top has finite (co-)limits so this is reasonable. Note the binary product,
Z = X × Y :

W

X X × Y Y

f
f×g g

πY

πY

Axiom

c has finite colimits.

Proposition

If c has enough morphisms, 2 ∈ c
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Sierpiński Space, Opens

Axiom

The Sierpiński space is in c

1S 0S

Proposition

If c has a enough morphisms c can interpret open sets, and closed sets
internally.
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Things get strange: Countable Powers

Countable products would be useful, e.g. for 2ω.

Problem

Our logic is finitary, so no countable limits in the language.

Problem

How to express countable families?
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Things get strange: Countable Powers

Axiom

Suppose Xn are (somehow!) indexed by ω. Then ∃Z =
∏

n∈ω Xn ∈ c i.e.
for countably many maps fi : W → Xi , there is a unique (fi )ω : W →

∏
Xi

such that all(!) diagrams of this shape commute:

W

∏
Xn Xi

(fi )ω
fi

πi

Corollary (Cantor set)⋃
i∈ω 2(i) =: 2ω ∈ c
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Other axioms

topological axiom set structure

indiscretisation arbitrary subsets
discretisation big sets, compare cardinalities

topological separation Sep
hyperspaces [subobject classifier]

Gδ ?
unit interval ?

Stone-Čech compactificiations ?
βω ?

internal function space 2ω (from 1, ω, finite limits)2

top congruences are c congruences quotienting (e.g. [0, 1] = 2ω/R)

2i.e. without countable products
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