Set Theories through Ordinary Mathematics

Ned Wontner

ILLC Universiteit van Amsterdam

29th April 2020 UvA/UHH Set Theory Group

Presentation

Contents

2 Toposes & Graphs

3 Algebra

Ned Wontner (ILLC)

- ∢ ≣ →

・ロト ・日本・ ・ 日本

- Stipulate some basic mathematical object, O
- Stipulate some believable(!) endogenous axioms, A, for O
- Stipulate an interpretation for the primitive notions of set theory, *I*, in the relevant language.
- **③** See which set theory the structure $\langle O, A, \mathcal{I} \rangle$ models

Philosophical motivation: a candidate foundation $\langle O, A, \mathcal{I} \rangle$ must preserve the direction of plausibility - not all theorems as axioms!

2 Toposes & Graphs

・ロト ・日下 ・ 日下

Topos Model

Theorem (Mac Lane & Moerdijk [6] §10, Lawvere [5])

A well-pointed topos with a natural number object and choice models Bounded ZFC - Replacement.

Topos Model

Theorem (Mac Lane & Moerdijk [6] §10, Lawvere [5])

A well-pointed topos with a natural number object and choice models Bounded ZFC - Replacement.

Definition

Well pointed topos is a category which:

- has finite limits
- 2 is Cartesian closed (internalises homomorphisms)
- Shas a subobject classifier (identifies characteristic functions)
- I is not initial (non-degenerate)
- o for f,g: A ⇒ B, f = g iff fx = gx for every global element x of A (somewhat like extensionality).

c has Choice if every epi splits, i.e. if $e: X \to Y$ is epi, then there is a morphism $s: Y \to X$ such that $e \circ s = id_Y$.

Topos Model - Simulating the Graph Model

Theorem (Mac Lane & Moerdijk [6] §10, Lawvere [5])

A well-pointed topos with a natural number object and choice models Bounded ZFC - Replacement.

Union: adjoin the representatives 0_1 and 0_2 at a root using colimits, then colimits again to quotient

Theorem (Mac Lane & Moerdijk [6] §10, Lawvere [5])

A well-pointed topos with a natural number object (NNO) and choice models Bounded ZFC - Replacement.

Definition (NNO)

A NNO on a topos \mathcal{E} is an object N of \mathcal{E} with arrows

$$1 \stackrel{O}{\rightarrow} N \stackrel{s}{\rightarrow} N$$

such that for any object X of \mathcal{E} with arrows x and f such that

$$1 \xrightarrow{x} X \xrightarrow{f} X$$

then there exists a unique $h: N \rightarrow N$ such that the following commute

Topos Model - Infinity

Category-ese for s is a successor function on N.

Claim

A well-pointed topos has independent motivation as a foundational category.

Claim

A well-pointed topos has independent motivation as a foundational category.

Parasitical Claim

NNO and Choice have no independent motivation, besides modeling ω and the Axiom of Choice

So too for Replacement? The constraint on the category depends on "how much Replacement you want" ([7] 2.3.10).

Does the parasitical claim hold up?

topos axiom	set axiom
NNO	Inf
Choice	AC
various replacement analogues	various strengths of Replacement

Image: A matrix of the second seco

Does the parasitical claim hold up?

topos axiom	set axiom
NNO	Inf
Choice	AC
various replacement analogues	various strengths of Replacement

Definition of a WPT

requirement	internalisation	set axiom
finite limits	products	Union (with Powers)
Cartesian closed	homomorphisms	-
subobject classifier	χf	Powers
1 is not initial	non-degeneracy	(Found?)
$f = g$ iff $\forall x$ global $fx = gx$	equality	Ext(+)

Image: A matrix and a matrix

- Parasitic or not, certain toposes can interpret standard set theories, Z, FinSet, ZC, etc.
- Method: imitate the graph theoretic model and identify any "copies".

Parasitic or not, certain toposes can interpret standard set theories, Z, FinSet, ZC, etc.

Method: imitate the graph theoretic model and identify any "copies".

Question

How about natural topos axioms to models strengthening of ZFC? Reflection principles?

2 Toposes & Graphs

-

・ロト ・日下 ・ 日下

Which basic algebraic entities and constructions are required for a model of a standard set theory?

Or for a substantial fragment of concrete mathematics

Encode a Graph

Natural approach: encode graphs again. E.g. G:

Adjacency matrix?

$$\begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}$$

Encoding Finite Graphs

For this kind of representation, our foundation must include:

- A collection, S, $|S| \ge 2$ (e.g. C_2)
- The general theory of (2 dimensional) matrices on a collection S, M^{On×On}(S).

Encoding Finite Graphs

For this kind of representation, our foundation must include:

- A collection, S, $|S| \ge 2$ (e.g. C_2)
- The general theory of (2 dimensional) matrices on a collection S, M^{On×On}(S).

Problem

(2.) implausible for a natural axiom.

Encoding Finite Graphs

For this kind of representation, our foundation must include:

- A collection, S, $|S| \ge 2$ (e.g. C_2)
- The general theory of (2 dimensional) matrices on a collection S, M^{On×On}(S).

Problem

(2.) implausible for a natural axiom.

Problem

No clear way to 'connect' the matrix-representations of graphs (i.e. coproducts/sums).

Link '3' of one copy of G to '4' of another copy to make an 8×8 matrix? More generally, we must define addition on arbitrary matrices in $M^{\mathbf{On} \times \mathbf{On}}(S)$. Unclear how to describe such an addition algebraically.

Which basic algebraic entities and constructions are required for a model of a standard set theory?

Which basic algebraic entities and constructions are required for a model of a standard set theory?

Algebraic categories obviously have products.

They can have direct sums(/colimits), e.g. in GRP, colimits are quotients of the free product by suitable congruences.

Which basic algebraic entities and constructions are required for a model of a standard set theory?

Algebraic categories obviously have products.

They can have direct sums(/colimits), e.g. in GRP, colimits are quotients of the free product by suitable congruences.

Problem

No internal way to take direct sums(/colimits) of algebraic categories.

Which basic algebraic entities and constructions are required for a model of a standard set theory?

Algebraic categories obviously have products.

They can have direct sums(/colimits), e.g. in GRP, colimits are quotients of the free product by suitable congruences.

Problem

No internal way to take direct sums(/colimits) of algebraic categories.

Using congruence and quotients relies on structure beyond the relevant algebraic theory.

Major restriction on expressiveness: set theory is closed under limits (~products) and colimits (~sums and unions). This seems an unavoidable problem of algebraic foundations.

1 Idea

2 Toposes & Graphs

3 Algebra

- ∢ ≣ →

・ロト ・回ト ・ヨト

a topological intuition: the set of subsets of any set is a topology on that set

 Positive set theory (PST): naive comprehension for positive formulae φ, i.e. φ ∈ Form⁺ implies {x : φ(x)} is a set. (no Russell set).

- Positive set theory (PST): naive comprehension for positive formulae φ, i.e. φ ∈ Form⁺ implies {x : φ(x)} is a set. (no Russell set).
- Some PSTs are okay for constructions, e.g. have ordinals ([3]:1.3)

- Positive set theory (PST): naive comprehension for positive formulae ϕ , i.e. $\phi \in Form^+$ implies $\{x : \phi(x)\}$ is a set. (no Russell set).
- Some PSTs are okay for constructions, e.g. have ordinals ([3]:1.3)
- in all known models, the sets are classes closed under a topology (κ-compact κ-topological T₂ spaces homeomorphic to their own hyperspace)
- One PST, Topological Set Theory has axioms like
 - If $A \subseteq \mathbb{T}$ is nonempty, then $\bigcap A$ is \mathbb{T} -closed.
 - If a and b are \mathbb{T} -closed, then $a \cup b$ is \mathbb{T} -closed.

- Positive set theory (PST): naive comprehension for positive formulae φ, i.e. φ ∈ Form⁺ implies {x : φ(x)} is a set. (no Russell set).
- Some PSTs are okay for constructions, e.g. have ordinals ([3]:1.3)
- in all known models, the sets are classes closed under a topology (κ-compact κ-topological T₂ spaces homeomorphic to their own hyperspace)
- One PST, Topological Set Theory has axioms like
 - If $A \subseteq \mathbb{T}$ is nonempty, then $\bigcap A$ is \mathbb{T} -closed.
 - If a and b are \mathbb{T} -closed, then $a \cup b$ is \mathbb{T} -closed.
- but a strange family: no singletons, universal set, non-well-founded, only positive separation!
- very strong: GPK_{ω}^+ has consistency strength proper class ordinal weakly compact [2]

Suppose C = TOP. Let M be a set-model of set theory T.¹ Then discrete spaces $M \times M, 2 \in C$, and there is a TOP-map

 $\in_M: M \times M \to 2$

Encode \in -relation as \in_{M}^{-1} ({1}). Then $\langle M \times M, \in_{M}^{-1}$ ({1}), $\mathcal{I} \rangle$ models T.

¹Let T be no stronger than e.g. NBG with Choice

Suppose C = TOP. Let M be a set-model of set theory T.¹ Then discrete spaces $M \times M, 2 \in C$, and there is a TOP-map

 $\in_M: M \times M \to 2$

Encode \in -relation as \in_{M}^{-1} ({1}). Then $\langle M \times M, \in_{M}^{-1}$ ({1}), $\mathcal{I} \rangle$ models \mathcal{T} .

Problem

 \in is non-constructive, showing only that there is a model for ZFC 'somewhere in' TOP. Relies on prior knowledge of TOP.

Instead, we stipulate some basic entities and constructions, and *build* a category which contains a model of ZFC.

¹Let T be no stronger than e.g. NBG with Choice

Cheating less badly

- C is closed under
 - sums
 - quotients
 - finite products
- $2 \omega + 1 \in C$
- **③** $\forall \kappa \in Card^{\geq \omega}$, $\exists X \in C$, $\exists U \subseteq X$ open discrete subset with $|X| = \kappa$ which witnesses tightness κ exactly.

Theorem (Dow & Watson [1])

If 1., 2., and 3. hold, then C = TOP.

Cheating less badly

- C is closed under
 - sums
 - quotients
 - finite products
- $2 \ \omega + 1 \in \mathbf{C}$
- **③** $\forall \kappa \in Card^{\geq \omega}$, $\exists X \in C$, $\exists U \subseteq X$ open discrete subset with $|X| = \kappa$ which witnesses tightness κ exactly.

Theorem (Dow & Watson [1])

If 1., 2., and 3. hold, then C = TOP.

Problem

This essentially requires an ambient (external) set theory, especially for quotients.

3

イロト イヨト イヨト イヨト

More constructively...

topological axiom	set structure
0 space	Emptyset
1 space	singleton
0 eq 1	non-degeneracy (Found?)
finite limits	finite products
finite colimits	finite unions
suitably full	"correct" sums and products
Sierpiński space	open and closed sets
ω	ω (Inf)
(countable) powers $+$ discretisation	large sets (up to $\beth_\omega)$

There is a 0 space in C, i.e. $\exists 0 \in C$, such that for any space $x \in C$, there is a unique function $!: 0 \rightarrow x$.

Axiom

There is a 1-point space in C, i.e. unique function $!: x \rightarrow 1$.

Axiom $0 \neq 1.$

c has finite limits

TOP has finite (co-)limits so this is reasonable. Note the binary product, $Z = X \times Y$:

c has finite limits

TOP has finite (co-)limits so this is reasonable. Note the binary product, $Z = X \times Y$:

Axiom

c has finite colimits.

Proposition

If C has enough morphisms, $2 \in c$

Ned Wontner (ILLC)

Sierpiński Space, Opens

Axiom

The Sierpiński space is in C

Proposition

If $\rm C\,$ has a enough morphisms $\rm C\,$ can interpret open sets, and closed sets internally.

Ned Wontner (ILLC)

Presentation

29th April 2020 24 / 29

< ロ > < 同 > < 三 > < 三

э

Countable products would be useful, e.g. for 2^{ω} .

Problem

Our logic is finitary, so no countable limits in the language.

Problem

How to express countable families?

Suppose X_n are (somehow!) indexed by ω . Then $\exists Z = \prod_{n \in \omega} X_n \in \mathbb{C}$ i.e. for countably many maps $f_i : W \to X_i$, there is a unique $(f_i)_{\omega} : W \to \prod X_i$ such that all(!) diagrams of this shape commute:

topological axiom	set structure
indiscretisation	arbitrary subsets
discretisation	big sets, compare cardinalities
topological separation	Sep
hyperspaces	[subobject classifier]
G_{δ}	?
unit interval	?
Stone-Čech compactificiations	?
$eta \omega$?
internal function space	2^{ω} (from 1, ω , finite limits) ²
TOP congruences are C congruences	quotienting (e.g. $[0,1] = 2^{\omega}/R$)

メロト メポト メモト メモト

²i.e. *without* countable products

1 Idea

2 Toposes & Graphs

3 Algebra

Ned Wontner (ILLC)

イロト イ団ト イヨト イヨト

- DOW A., WATSON S. A Subcategory of Top, *Trans. of AMS* 337.2: 825-837, 1993.
- [2] ESSER O. Interprétations mutuelles entre une théorie positive des ensembles et une extension de la théorie de Kelley-Morse. PhD Thesis, ULB, 1997.
- [3] FACKLER A. Topological Set Theories and Hyperuniverses, PhD Thesis, LMU München, 2012.
- [4] FACKLER A. A topological set theory implied by ZF and GPK, *arXiv*, 2012.
- [5] LAWVERE F. W. An Elementary Theory of the Category of Sets, Proc. Natl. Acac. Sci. USA 52: 1506-1510, 1964.
- [6] MAC LANE S., MOERDIJK I. Sheaves in Geometry and Logic, 1994.
- [7] WONTNER N. J. H. Non-Set Theoretic Foundations of Concrete Mathematics, Master's Thesis, Oxford, 2018.