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@ Stipulate some basic mathematical object, O
@ Stipulate some believable(!) endogenous axioms, A, for O

© Stipulate an interpretation for the primitive notions of set theory, Z,
in the relevant language.

© See which set theory the structure (O, A, Z) models

Philosophical motivation: a candidate foundation (O, A,Z) must preserve
the direction of plausibility - not all theorems as axioms!
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Topos Model

Theorem (Mac Lane & Moerdijk [6] §10, Lawvere [5])

A well-pointed topos with a natural number object and choice models
Bounded ZFC - Replacement.
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Topos Model

Theorem (Mac Lane & Moerdijk [6] §10, Lawvere [5])

A well-pointed topos with a natural number object and choice models
Bounded ZFC - Replacement.

Definition

| A

Well pointed topos is a category which:

© has finite limits

@ is Cartesian closed (internalises homomorphisms)

@ has a subobject classifier (identifies characteristic functions)

Q 1 is not initial (non-degenerate)

O for f,g: A=2 B, f = g iff fx = gx for every global element x of A

(somewhat like extensionality).

C has Choice if every epi splits, i.e. if e : X — Y is epi, then there is a
morphism s : Y — X such that eo s = idy.

v
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Topos Model - Simulating the Graph Model

Theorem (Mac Lane & Moerdijk [6] §10, Lawvere [5])

A well-pointed topos with a natural number object and choice models
Bounded ZFC - Replacement.

Union: adjoin the representatives 0; and 0, at a root using colimits, then
colimits again to quotient
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Topos Model - Infinity

Theorem (Mac Lane & Moerdijk [6] §10, Lawvere [5])

A well-pointed topos with a natural number object (NNO) and choice
models Bounded ZFC - Replacement.

Definition (NNO)
A NNO on a topos € is an object N of £ with arrows

1=-N=>N

such that for any object X of £ with arrows x and f such that

15 x5 x

then there exists a unique h: N — N such that the following commute

v
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Topos Model - Infinity

X —Ff .x

Category-ese for s is a successor function on N.
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Topos Model - Parasitism?

A well-pointed topos has independent motivation as a foundational
category.
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Topos Model - Parasitism?

A well-pointed topos has independent motivation as a foundational
category.

Parasitical Claim

NNO and Choice have no independent motivation, besides modeling w and
the Axiom of Choice

So too for Replacement? The constraint on the category depends on “how
much Replacement you want” ([7] 2.3.10).
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Topos Model - Parasitism?

Does the parasitical claim hold up?

topos axiom ‘ set axiom
NNO Inf
Choice AC

various replacement analogues | various strengths of Replacement
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Topos Model - Parasitism?

Does the parasitical claim hold up?

topos axiom ‘ set axiom
NNO Inf
Choice AC

various replacement analogues | various strengths of Replacement

Definition of a WPT

requirement internalisation set axiom
finite limits products Union (with Powers)
Cartesian closed homomorphisms -
subobject classifier Xf Powers
1 is not initial non-degeneracy (Found?)
f = g iff Vx global fx = gx equality Ext(+)
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Topos Model

Parasitic or not, certain toposes can interpret standard set theories, Z,
FinSet, ZC, etc.

Method: imitate the graph theoretic model and identify any “copies”.
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Topos Model

Parasitic or not, certain toposes can interpret standard set theories, Z,
FinSet, ZC, etc.

Method: imitate the graph theoretic model and identify any “copies”.

How about natural topos axioms to models strengthening of ZFC?
Reflection principles?
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Algebraic Model

Which basic algebraic entities and constructions are required for a model
of a standard set theory?

Or for a substantial fragment of concrete mathematics
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Encode a Graph

Natural approach: encode graphs again. E.g. G:

l1——3
2 4
Adjacency matrix?
0111
1 001
1000
1100
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Encoding Finite Graphs

For this kind of representation, our foundation must include:

Q@ A collection, S, |S| > 2 (e.g. &2)

@ The general theory of (2 dimensional) matrices on a collection S,
MO"XO"(S).
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(2.) implausible for a natural axiom.

Ned Wontner (ILLC) 29th April 2020 15 /29



Encoding Finite Graphs

For this kind of representation, our foundation must include:

Q@ A collection, S, |S| > 2 (e.g. &2)

@ The general theory of (2 dimensional) matrices on a collection S,
MO"XO"(S).

Problem
(2.) implausible for a natural axiom.

Problem

No clear way to ‘connect’ the matrix-representations of graphs (i.e.
coproducts/sums).

Link ‘3" of one copy of G to ‘4’ of another copy to make an 8 x 8 matrix?
More generally, we must define addition on arbitrary matrices in
MOxOn(S)  Unclear how to describe such an addition algebraically.
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Why algebraic interpretations don't work

Which basic algebraic entities and constructions are required for a model
of a standard set theory?
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Why algebraic interpretations don't work

Which basic algebraic entities and constructions are required for a model
of a standard set theory?

Algebraic categories obviously have products.
They can have direct sums(/colimits), e.g. in GRP, colimits are quotients

of the free product by suitable congruences.
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Why algebraic interpretations don't work

Which basic algebraic entities and constructions are required for a model
of a standard set theory?

Algebraic categories obviously have products.
They can have direct sums(/colimits), e.g. in GRP, colimits are quotients
of the free product by suitable congruences.

Problem

No internal way to take direct sums(/colimits) of algebraic categories.

Using congruence and quotients relies on structure beyond the relevant
algebraic theory.

Major restriction on expressiveness: set theory is closed under limits
(~products) and colimits (~sums and unions). This seems an unavoidable
problem of algebraic foundations.
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@ Topology
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A diversion into Positive Set Theory

a topological intuition: the set of subsets of any set is a topology on that
set
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¢, i.e. ¢ € Form™ implies {x : ¢(x)} is a set. (no Russell set).
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A diversion into Positive Set Theory

a topological intuition: the set of subsets of any set is a topology on that
set

@ Positive set theory (PST): naive comprehension for positive formulae
¢, i.e. ¢ € Form™ implies {x : ¢(x)} is a set. (no Russell set).

@ Some PSTs are okay for constructions, e.g. have ordinals ([3]:1.3)

@ in all known models, the sets are classes closed under a topology
(k-compact k-topological T, spaces homeomorphic to their own
hyperspace)

@ One PST, Topological Set Theory has axioms like

o If ACT is nonempty, then () A is T-closed.
o If a and b are T-closed, then aU b is T-closed.
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A diversion into Positive Set Theory

a topological intuition: the set of subsets of any set is a topology on that
set

@ Positive set theory (PST): naive comprehension for positive formulae
¢, i.e. ¢ € Form™ implies {x : ¢(x)} is a set. (no Russell set).
@ Some PSTs are okay for constructions, e.g. have ordinals ([3]:1.3)
@ in all known models, the sets are classes closed under a topology
(k-compact k-topological T, spaces homeomorphic to their own
hyperspace)
@ One PST, Topological Set Theory has axioms like
o If ACT is nonempty, then () A is T-closed.
o If a and b are T-closed, then aU b is T-closed.
but a strange family: no singletons, universal set, non-well-founded,
only positive separation!

@ very strong: GPK has consistency strength proper class ordinal
weakly compact [2]
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Cheating topologically

Suppose ¢ = TOP. Let M be a set-model of set theory T.} Then discrete
spaces M x M,2 € ¢, and there is a TOP-map

EmMxXM—=2
Encode €-relation as €, ({1}). Then (M x M, €} ({1}),Z) models T.

!Let T be no stronger than e.g. NBG with Choice
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Cheating topologically

Suppose ¢ = TOP. Let M be a set-model of set theory T.} Then discrete
spaces M x M,2 € ¢, and there is a TOP-map

EmMxXM—=2
Encode €-relation as €, ({1}). Then (M x M, €} ({1}),Z) models T.

Problem

€ Is non-constructive, showing only that there is a model for ZFC
‘somewhere in’ TOP. Relies on prior knowledge of TOP.

Instead, we stipulate some basic entities and constructions, and build a
category which contains a model of ZFC.

!Let T be no stronger than e.g. NBG with Choice
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Cheating less badly

@ C is closed under

@ sums
e quotients
e finite products

Quw+tlec

Q Vk € Card=¥, 3X € ¢, U C X open discrete subset with |X| =&
which witnesses tightness « exactly.

Theorem (Dow & Watson [1])
If 1., 2., and 3. hold, then c = TOP.
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Cheating less badly

@ C is closed under

@ sums
e quotients
e finite products

Quw+tlec

Q Vk € Card=¥, 3X € ¢, U C X open discrete subset with |X| =&
which witnesses tightness « exactly.

Theorem (Dow & Watson [1])
If 1., 2., and 3. hold, then ¢ = TOP.

This essentially requires an ambient (external) set theory, especially for
quotients.
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Candidate Topological Model: First Axioms

More constructively...

topological axiom set structure
0 space Emptyset
1 space singleton
0#1 non-degeneracy (Found?)
finite limits finite products
finite colimits finite unions
suitably full “correct” sums and products
Sierpiriski space open and closed sets
w w (Inf)
(countable) powers + discretisation large sets (up to J,)
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There is a 0 space in C, i.e. 30 € C, such that for any space x € C, there
is a unique function ! : 0 — x.

There is a 1-point space in C, i.e. unique function ! : x — 1.

0# 1.
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C has finite limits \

TOP has finite (co-)limits so this is reasonable. Note the binary product,

X<—X><Y—>Y
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C has finite limits l

TOP has finite (co-)limits so this is reasonable. Note the binary product,

X<—X><Y—>Y

C has finite colimits. \

Proposition

If ¢ has enough morphisms, 2 € ¢
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Sierpinski Space, Opens

The Sierpiriski space is in C \

.

If ¢ has a enough morphisms C can interpret open sets, and closed sets
internally.

Proposition

Ned Wontner (ILLC) 29th April 2020 24 /29



Things get strange: Countable Powers

Countable products would be useful, e.g. for 2¢.

Problem

Our logic is finitary, so no countable limits in the language.

Problem
How to express countable families?
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Things get strange: Countable Powers

Suppose X, are (somehow!) indexed by w. Then 3Z =[], ., Xn € C i.e.
for countably many maps f; : W — X;, there is a unique (f;),, : W — [[ Xi
such that all(!) diagrams of this shape commute:

Corollary (Cantor set)
Uiew 2(,') =2 cC
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topological axiom set structure
indiscretisation arbitrary subsets
discretisation big sets, compare cardinalities
topological separation Sep
hyperspaces [subobject classifier]
Gs ?
unit interval ?
Stone-Cech compactificiations ?
Bw ?
internal function space 2% (from 1, w, finite Iimits)2
TOP congruences are C congruences | quotienting (e.g. [0,1] = 2“/R)

%j.e. without countable products
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