Descriptive Set Theory with Absolutely No Choice Whatsoever

Lucas Wansner (UHH), Ned Wontner (ILLC, UvA)

25th February 2021 STiHAC-Forschungsseminar Mathematische Logik, UHH

1 Borel Sets, Borel Codes, and Codeable Borels

2 Analytic Sets

3 Restricted Choice Principles

Lucas Wansner, Ned Wontner

DST w/o AC

< 1 k

Definition (Borel sets)

The *Borel algebra* is defined as the smallest σ -algebra containing all open sets. We denote it by \mathcal{B} and call its elements *Borel sets*.

< 4[™] >

Definition (Borel sets)

The *Borel algebra* is defined as the smallest σ -algebra containing all open sets. We denote it by \mathcal{B} and call its elements *Borel sets*.

Definition (Borel Hierarchy)

•
$$\Sigma_1^0 := \{ O \subseteq \omega^\omega : O \text{ is open} \},\$$

• $\Pi_{\xi}^0 := \{ A \subseteq \omega^\omega : \omega^\omega \setminus A \in \Sigma_{\xi}^0 \},\$
• $\Sigma_{\xi+1}^0 := \{ \bigcup_{n \in \omega} A_n : A_n \in \Pi_{\xi}^0 \},\$
• $\Sigma_{\lambda}^0 := \{ \bigcup_{n \in \omega} A_n : A_n \in \Pi_{\xi_n}^0 \text{ and } \xi_n < \lambda \},\text{ for } \lambda \text{ a limit, and}\$
• $\Delta_{\xi}^0 := \Sigma_{\xi}^0 \cap \Pi_{\xi}^0.$

Definition (Borel sets)

The *Borel algebra* is defined as the smallest σ -algebra containing all open sets. We denote it by \mathcal{B} and call its elements *Borel sets*.

Definition (Borel Hierarchy)

•
$$\Sigma_1^0 := \{ O \subseteq \omega^\omega : O \text{ is open} \},\$$

• $\Pi_{\xi}^0 := \{ A \subseteq \omega^\omega : \omega^\omega \setminus A \in \Sigma_{\xi}^0 \},\$
• $\Sigma_{\xi+1}^0 := \{ \bigcup_{n \in \omega} A_n : A_n \in \Pi_{\xi}^0 \},\$
• $\Sigma_{\lambda}^0 := \{ \bigcup_{n \in \omega} A_n : A_n \in \Pi_{\xi_n}^0 \text{ and } \xi_n < \lambda \},\text{ for } \lambda \text{ a limit, and}\$
• $\Delta_{\xi}^0 := \Sigma_{\xi}^0 \cap \Pi_{\xi}^0.$

A set B is Borel if and only if there is a ξ such that $B \in \Sigma^0_{\xi} \cup \Pi^0_{\xi}$.

< □ > < 同 > < 三 > <

• A tree is a non-empty subset $T\subseteq \omega^{<\omega}$ which is closed under initial segments.

▲ □ ▶ ▲ □ ▶ ▲

- A tree is a non-empty subset $T\subseteq \omega^{<\omega}$ which is closed under initial segments.
- Let $s, t \in T$. We say s is a successor of t in T if there is a $k \in \omega$ such that $s = t \frown k$ and denote the set of all successors of t in T by $\operatorname{Succ}_T(t)$.

- A tree is a non-empty subset $T\subseteq \omega^{<\omega}$ which is closed under initial segments.
- Let $s, t \in T$. We say s is a successor of t in T if there is a $k \in \omega$ such that $s = t \frown k$ and denote the set of all successors of t in T by $\operatorname{Succ}_T(t)$.
- Let $s, t \in \omega^{<\omega}$. We define $s \leq t$ if there is a $k \in \omega$ such that $s \upharpoonright k = t$.

Trees

Definition (well-founded tree)

- A tree is a non-empty subset $T\subseteq \omega^{<\omega}$ which is closed under initial segments.
- Let $s, t \in T$. We say s is a successor of t in T if there is a $k \in \omega$ such that $s = t \frown k$ and denote the set of all successors of t in T by $\operatorname{Succ}_T(t)$.
- Let $s, t \in \omega^{<\omega}$. We define $s \leq t$ if there is a $k \in \omega$ such that $s \upharpoonright k = t$.
- A tree T well-founded if $(T, \leq \cap T^2)$ is well-founded.

- A tree is a non-empty subset $T\subseteq \omega^{<\omega}$ which is closed under initial segments.
- Let $s, t \in T$. We say s is a successor of t in T if there is a $k \in \omega$ such that $s = t \frown k$ and denote the set of all successors of t in T by $\operatorname{Succ}_T(t)$.
- Let $s, t \in \omega^{<\omega}$. We define $s \leq t$ if there is a $k \in \omega$ such that $s \upharpoonright k = t$.
- A tree T well-founded if $(T, \leq \cap T^2)$ is well-founded.

Remark

Let $\pi: \omega \to \omega^{<\omega}$ be a bijection and let T be a tree. We define $c \in 2^{\omega}$ by c(k) = 1 if and only if $\pi(k) \in T$. Then c is a code for T. We shall often identify a tree with its code.

イロト イヨト イヨト イヨト

Definition (Borel code)

We fix a bijection $\pi: \omega \to \omega^{<\omega}$. A *Borel code* is a real $c \in 2^{\omega}$ which codes a well-founded tree T_c . We define recursively for every note t of T_c :

$$B_t := \begin{cases} \emptyset & \text{if } \operatorname{Succ}_{T_c}(t) = \emptyset \wedge t = \emptyset, \\ [\pi(k)] & \text{if } \operatorname{Succ}_{T_c}(t) = \emptyset \wedge t(\operatorname{lh}(t) - 1) = k, \\ \omega^{\omega} \setminus B_s & \text{if } \operatorname{Succ}_{T_c}(t) = \{s\}, \\ \bigcup_{s \in \operatorname{Succ}_{T_c}(t)} B_s & \text{otherwise.} \end{cases}$$

We set $B_c := B_{\emptyset}$.

Definition (Borel code)

We fix a bijection $\pi: \omega \to \omega^{<\omega}$. A *Borel code* is a real $c \in 2^{\omega}$ which codes a well-founded tree T_c . We define recursively for every note t of T_c :

$$B_t := \begin{cases} \emptyset & \text{if } \operatorname{Succ}_{T_c}(t) = \emptyset \wedge t = \emptyset, \\ [\pi(k)] & \text{if } \operatorname{Succ}_{T_c}(t) = \emptyset \wedge t(\operatorname{lh}(t) - 1) = k, \\ \omega^{\omega} \setminus B_s & \text{if } \operatorname{Succ}_{T_c}(t) = \{s\}, \\ \bigcup_{s \in \operatorname{Succ}_{T_c}(t)} B_s & \text{otherwise.} \end{cases}$$

We set $B_c := B_{\emptyset}$.

Definition (codable Borel set)

A set B is codable Borel if there is a Borel code c such that $B_c = B$. We denote the set of all codable Borel sets by \mathcal{B}^* .

Theorem $(AC_{\omega}(\omega^{\omega}))$

A set of reals is Borel if and only if it is codable Borel.

- < f⊒ > <

Theorem $(AC_{\omega}(\omega^{\omega}))$

A set of reals is Borel if and only if it is codable Borel.

Proof.

It is clear that every codable Borel set is Borel. We prove that every set $B\in \Sigma^0_\xi\cup \Pi^0_\xi$ is codable Borel by induction:

Theorem $(AC_{\omega}(\omega^{\omega}))$

A set of reals is Borel if and only if it is codable Borel.

Proof.

It is clear that every codable Borel set is Borel. We prove that every set $B\in \Sigma^0_{\mathcal{E}}\cup \Pi^0_{\mathcal{E}}$ is codable Borel by induction:

• $B \in \Sigma_1^0$: Let $T := \{\emptyset\} \cup \{\langle k \rangle : \pi(k) \subseteq B\}$. Then T is a Borel code for B.

Theorem $(AC_{\omega}(\omega^{\omega}))$

A set of reals is Borel if and only if it is codable Borel.

Proof.

It is clear that every codable Borel set is Borel. We prove that every set $B\in \Sigma^0_{\mathcal{E}}\cup \Pi^0_{\mathcal{E}}$ is codable Borel by induction:

- $B \in \Sigma_1^0$: Let $T := \{\emptyset\} \cup \{\langle k \rangle : \pi(k) \subseteq B\}$. Then T is a Borel code for B.
- $B \in \Pi^0_{\xi}$: Let T be a Borel code for $\omega^{\omega} \setminus B$. Then $T' := \{\langle 0 \rangle^{\frown} t : t \in T\}$ is a Borel code for B.

Theorem $(AC_{\omega}(\omega^{\omega}))$

A set of reals is Borel if and only if it is codable Borel.

Proof.

It is clear that every codable Borel set is Borel. We prove that every set $B\in \Sigma^0_{\mathcal{E}}\cup \Pi^0_{\mathcal{E}}$ is codable Borel by induction:

- $B \in \Sigma_1^0$: Let $T := \{\emptyset\} \cup \{\langle k \rangle : \pi(k) \subseteq B\}$. Then T is a Borel code for B.
- $B \in \Pi^0_{\xi}$: Let T be a Borel code for $\omega^{\omega} \setminus B$. Then $T' := \{\langle 0 \rangle^{\frown} t : t \in T\}$ is a Borel code for B.
- $B \in \Sigma_{\xi+1}^0$: Then there are $B_k \in \Pi_{\xi}^0$ such that $B = \bigcup_{k \in \omega} B_k$. **Choose** Borel codes T_k for B_k . Without loss of generality, $T_k \neq \{\emptyset\}$. Then $T := \{\langle k \rangle^{\frown} t : t \in T_k\}$ is a Borel code for B.

Theorem $(AC_{\omega}(\omega^{\omega}))$

A set of reals is Borel if and only if it is codable Borel.

Proof.

It is clear that every codable Borel set is Borel. We prove that every set $B\in \Sigma^0_{\mathcal{E}}\cup \Pi^0_{\mathcal{E}}$ is codable Borel by induction:

- $B \in \Sigma_1^0$: Let $T := \{\emptyset\} \cup \{\langle k \rangle : \pi(k) \subseteq B\}$. Then T is a Borel code for B.
- $B \in \Pi^0_{\xi}$: Let T be a Borel code for $\omega^{\omega} \setminus B$. Then $T' := \{\langle 0 \rangle^{\frown} t : t \in T\}$ is a Borel code for B.
- $B \in \Sigma_{\xi+1}^0$: Then there are $B_k \in \Pi_{\xi}^0$ such that $B = \bigcup_{k \in \omega} B_k$. **Choose** Borel codes T_k for B_k . Without loss of generality, $T_k \neq \{\emptyset\}$. Then $T := \{\langle k \rangle^{\frown} t : t \in T_k\}$ is a Borel code for B.
- $B \in \mathbf{\Sigma}_{\lambda}^{0}$: Analogous to $B \in \mathbf{\Sigma}_{\xi+1}^{0}$.

Theorem (Feferman-Lévy)

There is a model of ZF in which the reals are a countable union of countable sets and ω_1 is singular.

Theorem (Feferman-Lévy)

There is a model of ZF in which the reals are a countable union of countable sets and ω_1 is singular.

Proof idea

We start with L and take a symmetric submodel using a forcing notion which Lévy collapses all ω_n to ω .

Theorem (Feferman-Lévy)

There is a model of ZF in which the reals are a countable union of countable sets and ω_1 is singular.

Proof idea

We start with L and take a symmetric submodel using a forcing notion which Lévy collapses all ω_n to ω .

Remark

In the Feferman-Lévy model every set of reals is Δ_4^0 . In particular, every set of reals is Borel.

▲ □ ▶ ▲ □ ▶ ▲ □

Theorem

 $\mathsf{ZF} \not\vdash \mathcal{B} = \mathcal{B}^*.$

(日)

Theorem

 $\mathsf{ZF} \not\vdash \mathcal{B} = \mathcal{B}^*.$

Proof.

Each codeable Borel set is a coded by a real number, so there is a surjection $f: \omega^{\omega} \twoheadrightarrow \mathcal{B}^*$. Meanwhile there are ZF models, e.g. the Feferman-Lévy model, where $\mathcal{P}(\omega^{\omega}) = \mathcal{B}$, so by Cantor's Theorem, $\mathcal{B} \neq \mathcal{B}^*$ in this models.

Theorem

 $\mathsf{ZF} \not\vdash \mathcal{B} = \mathcal{B}^*.$

Proof.

Each codeable Borel set is a coded by a real number, so there is a surjection $f: \omega^{\omega} \twoheadrightarrow \mathcal{B}^*$. Meanwhile there are ZF models, e.g. the Feferman-Lévy model, where $\mathcal{P}(\omega^{\omega}) = \mathcal{B}$, so by Cantor's Theorem, $\mathcal{B} \neq \mathcal{B}^*$ in this models.

Proposition

Every Σ_2^0 and every Π_2^0 set of reals is codable Borel.

Let ξ be an ordinal.

• The Borel hierarchy is increasing, i.e. $\Sigma^0_{\xi} \cup \Pi^0_{\xi} \subseteq \Delta^0_{\xi+1}$.

Image: A matrix and a matrix

Let ξ be an ordinal.

- The Borel hierarchy is increasing, i.e. $\Sigma^0_{\xi} \cup \Pi^0_{\xi} \subseteq \Delta^0_{\xi+1}$.
- Σ^0_{ξ} , Π^0_{ξ} , and Δ^0_{ξ} are closed under continuous preimages.

< A > <

Let ξ be an ordinal.

- The Borel hierarchy is increasing, i.e. $\Sigma^0_{\xi} \cup \Pi^0_{\xi} \subseteq \Delta^0_{\xi+1}$.
- Σ^0_{ξ} , Π^0_{ξ} , and Δ^0_{ξ} are closed under continuous preimages.

Proposition

 $\mathsf{ZF}
ot\models\Sigma_2^0$ is not closed under countable unions.

Let ξ be an ordinal.

- The Borel hierarchy is increasing, i.e. $\Sigma^0_{\xi} \cup \Pi^0_{\xi} \subseteq \Delta^0_{\xi+1}$.
- Σ^0_{ξ} , Π^0_{ξ} , and Δ^0_{ξ} are closed under continuous preimages.

Proposition

 $\mathsf{ZF}
ot\models\Sigma_2^0$ is not closed under countable unions.

Proof.

We suppose for a contradiction, that Σ_2^0 is closed under countable unions. Then in Feferman-Lévy model every set of reals is Σ_2^0 and so every set of reals is codable Borel. But this is a contradiction.

We call the least ordinal ξ such that $\Sigma_{\xi}^{0} = \Pi_{\xi}^{0}$ the length of the Borel hierarchy.

We call the least ordinal ξ such that $\Sigma_{\xi}^0 = \Pi_{\xi}^0$ the length of the Borel hierarchy.

Theorem $(AC_{\omega}(\omega^{\omega}))$

The length of the Borel hierarchy is ω_1 .

We call the least ordinal ξ such that $\Sigma_{\xi}^0 = \Pi_{\xi}^0$ the length of the Borel hierarchy.

Theorem $(AC_{\omega}(\omega^{\omega}))$

The length of the Borel hierarchy is ω_1 .

Remark

• The theorem is not provable in ZF, e.g. in the Feferman-Lévy model the length is 4.

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

We call the least ordinal ξ such that $\Sigma_{\xi}^0 = \Pi_{\xi}^0$ the length of the Borel hierarchy.

Theorem $(AC_{\omega}(\omega^{\omega}))$

The length of the Borel hierarchy is ω_1 .

Remark

- The theorem is not provable in ZF, e.g. in the Feferman-Lévy model the length is 4.
- It is provable in ZF that $\Sigma^0_3 \neq \Pi^0_3$. Therefore, 4 is the least possible length.

э

イロト イヨト イヨト

We call the least ordinal ξ such that $\Sigma_{\xi}^0 = \Pi_{\xi}^0$ the length of the Borel hierarchy.

Theorem $(AC_{\omega}(\omega^{\omega}))$

The length of the Borel hierarchy is ω_1 .

Remark

- The theorem is not provable in ZF, e.g. in the Feferman-Lévy model the length is 4.
- It is provable in ZF that $\Sigma^0_3 \neq \Pi^0_3$. Therefore, 4 is the least possible length.
- Every codable Borel set is $\Delta^0_{\omega_1}$.

< □ > < □ > < □ > < □ > < □ > < □ >

э

The standard proof of the theorem only uses the fact that ω_1 is regular. We can use it to prove a weakening of the theorem in ZF.

The standard proof of the theorem only uses the fact that ω_1 is regular. We can use it to prove a weakening of the theorem in ZF.

Theorem

Let λ be a limit ordinal with $cof(\lambda) > \omega$. Then

1
$$\Sigma^0_{\lambda} = igcup_{\xi < \lambda} \Sigma^0_{\xi}$$
 and

2 the length of the Borel hierarchy is less or equal to λ .

The standard proof of the theorem only uses the fact that ω_1 is regular. We can use it to prove a weakening of the theorem in ZF.

Theorem

Let λ be a limit ordinal with $\operatorname{cof}(\lambda) > \omega$. Then

1
$$\Sigma^0_\lambda = igcup_{\xi < \lambda} \Sigma^0_\xi$$
 and

2) the length of the Borel hierarchy is less or equal to λ .

Proof.

• By definition, $\bigcup_{\xi < \lambda} \Sigma_{\xi}^{0} \subseteq \Sigma_{\lambda}^{0}$. Let $B \in \Sigma_{\lambda}^{0}$. Then there are $\xi_{n} < \lambda$ and $B_{n} \in \Pi_{\xi_{n}}^{0}$ such that $B = \bigcup_{n} B_{n}$. Let $\xi := \lim_{n} \xi_{n}$. Since $\operatorname{cof}(\lambda) > \omega, \xi < \lambda$. Then $B_{n} \in \Pi_{\xi}^{0}$ and so $B \in \Sigma_{\xi+1}^{0}$. Since λ is a limit, $\xi + 1 < \lambda$.

Length of the Borel Hierarchy

The standard proof of the theorem only uses the fact that ω_1 is regular. We can use it to prove a weakening of the theorem in ZF.

Theorem

Let λ be a limit ordinal with $cof(\lambda) > \omega$. Then

$${f 0}~~ {f \Sigma}^0_\lambda = igcup_{\xi < \lambda} {f \Sigma}^0_\xi$$
 and

2 the length of the Borel hierarchy is less or equal to λ .

Proof.

② It is enough to show that Δ_{λ}^{0} is a σ -algebra. By definition, it is closed under complements. We only have to check that it is closed under countable unions. Let $B_n \in \Delta_{\lambda}^{0}$, let $\xi_n < \lambda$ be minimal such that $B_n \in \Pi_{\xi_n}^{0}$, and let $\xi := \lim_{n \to \infty} \xi_n$. Since $cof(\lambda) > \omega$, $\xi < \lambda$. Then $B := \bigcup_n B_n \in \Sigma_{\xi+1}^{0}$ and so $B \in \Delta_{\xi+2}^{0}$. Since λ is a limit, $\xi + 2 < \lambda$ and so $B \in \Delta_{\lambda}^{0}$.

Theorem (Miller)

There is a model of ZF such that the length of the Borel hierarchy is ω_2 .

Theorem (Miller)

There is a model of ZF such that the length of the Borel hierarchy is ω_2 .

Theorem (Miller)

For every limit ordinal α such that $\omega \leq \alpha < \omega_2^V$, there is a model of ZF such that the length of the Borel hierarchy is α .

Theorem (Miller)

There is a model of ZF such that the length of the Borel hierarchy is ω_2 .

Theorem (Miller)

For every limit ordinal α such that $\omega \leq \alpha < \omega_2^V$, there is a model of ZF such that the length of the Borel hierarchy is α .

Theorem (Miller)

Suppose V is a countable transitive model of ZF in which every ω_{α} has countable cofinality. Then for every ordinal λ in V, there model of ZF with the same ω_{α} 's as V and the length of the Borel hierarchy is greater λ .

< □ > < □ > < □ > < □ > < □ > < □ >

D Borel Sets, Borel Codes, and Codeable Borels

3 Restricted Choice Principles

Lucas Wansner, Ned Wontner

- DST w/o AC

Image: A matrix

Analytic Sets

Definition (Analytic set)

A set of reals is *analytic* if either it is empty or it is a continuous image of $\omega^\omega.$

Image: A matrix and a matrix

Analytic Sets

Definition (Analytic set)

A set of reals is *analytic* if either it is empty or it is a continuous image of ω^{ω} .

Proposition

Let A be a set of reals. The following are equivalent:

- A is analytic,
- ${f Q}$ A is the continuous image of a codable Borel set, and
- \bigcirc A is the projection of a codable Borel set.

Analytic Sets

Definition (Analytic set)

A set of reals is *analytic* if either it is empty or it is a continuous image of ω^{ω} .

Proposition

Let A be a set of reals. The following are equivalent:

- A is analytic,
- ${f Q}$ A is the continuous image of a codable Borel set, and
- \bigcirc A is the projection of a codable Borel set.

Remark

Every codable Borel set is analytic. But ZF does not prove that every Borel set is analytic. Otherwise, in the Feferman-Lévy we would get a surjection from the reals on its own power set.

Definition (Projective Hierarchy)

•
$$\Sigma_1^1 := \{A \subseteq \omega^\omega : A \text{ is analytic}\},\$$

•
$$\Pi^1_n := \{ A \subseteq \omega^\omega : \omega^\omega \setminus A \in \Sigma^1_n \},$$

• $\Sigma_{n+1}^1 := \{A \subseteq \omega^{\omega} : A \text{ is the projection of an } A' \in \Pi_n^1\}$, and • $\Delta_n^1 := \Sigma_n^1 \cap \Pi_n^1$.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Definition (Projective Hierarchy)

•
$$\Sigma_1^1 := \{A \subseteq \omega^\omega : A \text{ is analytic}\},$$

•
$$\Pi^1_n := \{ A \subseteq \omega^\omega : \omega^\omega \setminus A \in \Sigma^1_n \},$$

•
$$\Sigma_{n+1}^1 := \{A \subseteq \omega^{\omega} : A \text{ is the projection of an } A' \in \Pi_n^1\}$$
, and
• $\Delta_n^1 := \Sigma_n^1 \cap \Pi_n^1$.

Facts

• The projective Hierarchy is increasing, i.e. $\Sigma_n^1 \cup \Pi_n^1 \subseteq \Delta_{n+1}^1$.

< 4 P < 4

э

Definition (Projective Hierarchy)

•
$$\Sigma_1^1 := \{ A \subseteq \omega^\omega : A \text{ is analytic} \},$$

•
$$\Pi^1_n := \{ A \subseteq \omega^\omega : \omega^\omega \setminus A \in \Sigma^1_n \}$$

•
$$\Sigma_{n+1}^1 := \{A \subseteq \omega^{\omega} : A \text{ is the projection of an } A' \in \Pi_n^1\}$$
, and
• $\Delta_n^1 := \Sigma_n^1 \cap \Pi_n^1$.

Facts

- The projective Hierarchy is increasing, i.e. $\Sigma_n^1 \cup \Pi_n^1 \subseteq \Delta_{n+1}^1$.
- Σ_n^1 , Π_n^1 , and Δ_n^1 are closed under continuous preimages.

Definition (Projective Hierarchy)

•
$$\Sigma_1^1 := \{ A \subseteq \omega^\omega : A \text{ is analytic} \},$$

•
$$\Pi^1_n := \{ A \subseteq \omega^\omega : \omega^\omega \setminus A \in \Sigma^1_n \},$$

•
$$\Sigma_{n+1}^1 := \{A \subseteq \omega^{\omega} : A \text{ is the projection of an } A' \in \Pi_n^1\}$$
, and
• $\Delta_n^1 := \Sigma_n^1 \cap \Pi_n^1$.

Facts

- The projective Hierarchy is increasing, i.e. $\Sigma^1_n \cup \Pi^1_n \subseteq \Delta^1_{n+1}$.
- $\mathbf{\Sigma}_n^1$, $\mathbf{\Pi}_n^1$, and $\mathbf{\Delta}_n^1$ are closed under continuous preimages.
- Σ_n^1 is closed under projections.

Definition (Projective Hierarchy)

•
$$\Sigma_1^1 := \{A \subseteq \omega^\omega : A \text{ is analytic}\},\$$

•
$$\Pi^1_n := \{ A \subseteq \omega^\omega : \omega^\omega \setminus A \in \Sigma^1_n \},$$

•
$$\Sigma_{n+1}^1 := \{A \subseteq \omega^{\omega} : A \text{ is the projection of an } A' \in \Pi_n^1\}$$
, and
• $\Delta_n^1 := \Sigma_n^1 \cap \Pi_n^1$.

Facts

- The projective Hierarchy is increasing, i.e. $\Sigma^1_n \cup \Pi^1_n \subseteq \Delta^1_{n+1}$.
- Σ^1_n , Π^1_n , and Δ^1_n are closed under continuous preimages.
- Σ_n^1 is closed under projections.
- $\Sigma_n^1 \neq \Pi_n^1$ for every $n \in \omega$.

Theorem (Suslin,
$$AC_{\omega}(\omega^{\omega})$$
)

 $\mathcal{B} = \mathbf{\Delta}_1^1.$

3

メロト メロト メヨトメ

æ

Theorem (Suslin, $AC_{\omega}(\omega^{\omega})$)

 $\mathcal{B} = \mathbf{\Delta}_1^1.$

Lemma (Lusin, $AC_{\omega}(\omega^{\omega})$)

For every disjoint analytic sets A, A' there is a Borel set B such that $A \subseteq B$ and A' is disjoint from B.

A (10) < A (10) < A (10)</p>

Theorem (Suslin,
$$AC_{\omega}(\omega^{\omega})$$
)

 $\mathcal{B} = \mathbf{\Delta}_1^1.$

Lemma

For every disjoint analytic sets A, A' there is a **codable Borel** set B such that $A \subseteq B$ and A' is disjoint from B.

< 1 k

Theorem (Suslin,
$$AC_{\omega}(\omega^{\omega})$$
)

 $\mathcal{B} = \mathbf{\Delta}_1^1.$

Lemma

For every disjoint analytic sets A, A' there is a **codable Borel** set B such that $A \subseteq B$ and A' is disjoint from B.

Corollary

 $\mathcal{B}^* = \mathbf{\Delta}_1^1 \subseteq \mathcal{B}.$

▲ □ ▶ ▲ 三 ▶ ▲ 三

э

Theorem (Suslin,
$$AC_{\omega}(\omega^{\omega})$$
)

 $\mathcal{B} = \mathbf{\Delta}_1^1.$

Lemma

For every disjoint analytic sets A, A' there is a **codable Borel** set B such that $A \subseteq B$ and A' is disjoint from B.

Corollary

 $\mathcal{B}^* = \mathbf{\Delta}_1^1 \subseteq \mathcal{B}.$

Remark

ZF does not prove that Δ_1^1 is a σ -algebra.

< □ > < 同 > < 回 > < Ξ > < Ξ

The following are equivalent:

- **2** Δ_1^1 is a σ -algebra,
- ${\small \textcircled{0}} \hspace{0.1 cm} \mathcal{B} \subseteq {\color{black} \Delta_1^1} \text{, and} \hspace{0.1 cm}$

< A >

э

The following are equivalent:

- $\ \, {\cal B}={\cal B}^*,$
- **2** Δ_1^1 is a σ -algebra,
- ${\small \textcircled{0}} \hspace{0.1 cm} \mathcal{B} \subseteq {\color{black} \Delta_1^1} \text{, and} \hspace{0.1 cm}$

Theorem (Ikegami-Schlicht)

 $AC_{\omega}(\mathbf{\Pi}_{1}^{1}) \rightarrow \mathcal{B} = \mathcal{B}^{*} \rightarrow AC_{\omega}(\mathcal{B}) \Rightarrow \omega_{1}$ is regular.

3

<日

<</p>

D Borel Sets, Borel Codes, and Codeable Borels

2 Analytic Sets

3 Restricted Choice Principles

Lucas Wansner, Ned Wontner

- DST w/o AC

- ∢ /⊐ >

Definition

Let Γ be a pointclass. We denote the statement "for every sequence $\langle A_k : k \in \omega \rangle$ of non-empty sets in Γ , there is a sequence $\langle a_k : k \in \omega \rangle$ of real numbers such that $a_k \in A_k$ for every $k \in \omega$ " by $AC_{\omega}(\Gamma)$.

Definition

Let Γ be a pointclass. We denote the statement "for every sequence $\langle A_k : k \in \omega \rangle$ of non-empty sets in Γ , there is a sequence $\langle a_k : k \in \omega \rangle$ of real numbers such that $a_k \in A_k$ for every $k \in \omega$ " by $AC_{\omega}(\Gamma)$.

Proposition

 $\mathsf{ZF} \vdash AC_{\omega}(\mathbf{\Sigma}_1^0) + AC_{\omega}(\mathbf{\Pi}_1^0).$

Definition

Let Γ be a pointclass. We denote the statement "for every sequence $\langle A_k : k \in \omega \rangle$ of non-empty sets in Γ , there is a sequence $\langle a_k : k \in \omega \rangle$ of real numbers such that $a_k \in A_k$ for every $k \in \omega$ " by $AC_{\omega}(\Gamma)$.

Proposition

 $\mathsf{ZF} \vdash AC_{\omega}(\boldsymbol{\Sigma}^0_1) + AC_{\omega}(\boldsymbol{\Pi}^0_1).$

Remark

ZF also proves $AC_{\omega}(\mathbf{\Delta}_2^0)$, but ZF does not prove $AC_{\omega}(\mathbf{\Sigma}_2^0)$ or $AC_{\omega}(\mathbf{\Pi}_2^0)$.

・ 何 ト ・ ヨ ト ・ ヨ ト

Definition (Kanovei)

Let Γ be a pointclass. We denote the statement "for every set $A \subseteq \omega \times \omega^{\omega}$ with $A \in \Gamma$ and domain ω there is a sequence $\langle a_k : k \in \omega \rangle$ such that $(k, a_k) \in A$ for every $k \in \omega$ " by $AC^U_{\omega}(\Gamma)$.

Definition (Kanovei)

Let Γ be a pointclass. We denote the statement "for every set $A \subseteq \omega \times \omega^{\omega}$ with $A \in \Gamma$ and domain ω there is a sequence $\langle a_k : k \in \omega \rangle$ such that $(k, a_k) \in A$ for every $k \in \omega$ " by $AC^U_{\omega}(\Gamma)$.

Theorem (Kanovei)

$$AC^U_{\omega}(\mathbf{\Pi}^1_n) \Leftrightarrow AC^U_{\omega}(\mathbf{\Sigma}^1_{n+1}).$$

$$2 \mathsf{F} \vdash AC^U_\omega(\mathbf{\Pi}^1_1)$$

Let Γ be a pointclass that is closed under continuous preimages. Then $AC_{\omega}(\Gamma)$ implies $AC_{\omega}^{U}(\Gamma)$.

Let Γ be a pointclass that is closed under continuous preimages. Then $AC_{\omega}(\Gamma)$ implies $AC_{\omega}^{U}(\Gamma)$.

Proof.

Let $A \subseteq \omega \times \omega^{\omega}$ be in Γ with domain ω . Since Γ is closed under continuous preimages, every $A_k := \{a : \langle k \rangle \widehat{} a \in A\}$ is in Γ . By $AC_{\omega}(\Gamma)$, there is sequence $\langle a_k : k \in \omega \rangle$ such that $a_k \in A_k$ for every $k \in \omega$. Then $(k, a_k) \in A$ for every $k \in \omega$.

Let Γ be a pointclass that is closed under continuous preimages, countable unions, and products with closed sets. Then $AC_{\omega}(\Gamma)$ and $AC_{\omega}^{U}(\Gamma)$ are equivalent.

Let Γ be a pointclass that is closed under continuous preimages, countable unions, and products with closed sets. Then $AC_{\omega}(\Gamma)$ and $AC_{\omega}^{U}(\Gamma)$ are equivalent.

Proof.

We only have to show that $AC_{\omega}^{K}(\Gamma)$ implies $AC_{\omega}(\Gamma)$. Let $\langle A_{k} : k \in \omega \rangle$ be a sequence of non-empty sets in Γ . Then $A := \bigcup_{k \in \omega} \{k\} \times A_{k}$ is in Γ . By $AC_{\omega}^{U}(\Gamma)$, there is a sequence $\langle a_{k} : k \in \omega \rangle$ such that $(k, a_{k}) \in A$ for every $k \in \omega$. Then $a_{k} \in A_{k}$ for every $k \in \omega$.

Lemma

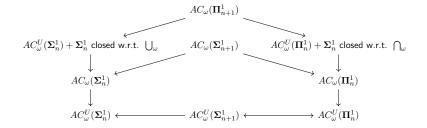
 $AC_{\omega}(\mathbf{\Pi}^1_{n+1})$ implies $\mathbf{\Sigma}^1_n$ is closed under countable unions and intersections.

(日) (四) (日) (日) (日)

2

Lemma

 $AC_{\omega}(\mathbf{\Pi}_{n+1}^1)$ implies $\mathbf{\Sigma}_n^1$ is closed under countable unions and intersections.



э

- 4 回 ト 4 ヨ ト 4 ヨ ト

Thank You!

3

æ

- [1] FREMLIN D. H. *Measure theory*, volume 5. Torres Fremlin, 2000.
- [2] IKEGAMI D. AND SCHLICHT P. Forcing and generic absolutness without choice. preprint, 2021.
- [3] JECH, T. J. Set theory, the third millennium edition, revised and expanded., Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003.
- [4] JECH T. J. The axiom of choice, North-Holland Publishing Co., Amsterdam, 1973.
- [5] KANOVEI V. On descriptive forms of the countable axiom of choice Investigations on nonclassical logics and set theory, Work Collect, 3–136, 1979.
- [6] MILLER A. W. Long borel hierarchies., Mathematical Logic Quarterly, 54(3):307–322, 2008.

< □ > < □ > < □ > < □ > < □ > < □ >