Let I be a proper σ-ideal and let Q be a forcing notion. We say

- Q is a forcing notion for P_I if for every $R \in P_I$ and every ω-generic filter G, there is a $C \in P_I$ such that $C \subseteq G$ and $\forall X \subseteq G \; X \in P_I$.

- Q is an extension for P_I for every forcing model $M \models \text{ZFC}^+$ and $N = \mathbb{V}[G]$, x is P_I-generic over V.

Let $\mathbb{L}(G_{\omega_1})$ be a forcing notion satisfying the conditions above.

Start with \mathbb{L} and we perform an iteration of $\mathbb{L}(G_{\omega_1})$. The resulting model $\mathbb{L}(G_{\omega_1})[G]$ will satisfy the desired properties.
Let I be a \mathcal{P}_1-ideal s.t. Negari's Theorem holds and let Q be a quasi-continuous \mathcal{P}_1-ideal.

Start with I and put \mathcal{P}_1-ideals Q with Q with countable support.

Let Q be a \mathcal{P}_1-generic filter over $\mathcal{L}_\mathcal{P}_1$. Now let

$$\forall B \in \mathcal{P}_1^\omega \exists C \subseteq B \exists x \in x \text{ is not } I\text{-quasi-generic over } \mathcal{L}_\mathcal{P}_1.$$
Example

\[\forall \mathcal{T} \exists \mathcal{F} \forall x \exists y \]

1. \[\forall \mathcal{T} \exists \mathcal{F} : T \text{ forced tree, } \mathcal{M}(T) \models \mathcal{F} \]

Claim: \[\mathcal{F} \] is an answer for \[\forall \mathcal{F} \]

Proof: \[\bigcup \mathcal{N} \in \mathcal{N}(\mathcal{F}) \]

Let \[\mathcal{N}_x = \{ \mathcal{T} \in \mathcal{F} : T \text{ forced tree, } \mathcal{M}(T) \models \mathcal{F} \} \]. For every \[\frac{1}{2} \leq \varepsilon < 1 \], \[\mathcal{N} \] and \[\mathcal{N}_x \] are forcing equivalent (Trends in connections between answers and games).

Let \(\mathcal{F}_x \) be on \(\mathcal{N}_x \)-generic \(\mathcal{T} \) and \(\mathcal{P}_x := \bigcup \mathcal{N}_x \). Then \(\mathcal{P}_x \) is a closed set with \(\mu(\mathcal{P}_x) = \varepsilon \). Let \(\mathcal{N} \) be a \(\mathcal{N}(\mathcal{F}) \)-generic \(\mathcal{T} \) coded in \(\mathcal{N}_x \) and let \(\mathcal{T} \in \mathcal{N}_x \). Then there is \(\exists \mathcal{T}_0 \in \mathcal{N}_x \) \(\mathcal{T} \in \mathcal{N}_x \) and \(\exists \mathcal{F}_0 \in \mathcal{N}_x \) such that \(\mathcal{T} \in \mathcal{N}_x \) is closed.

\[\Rightarrow \mathcal{P}_x \cap \mathcal{N} = \emptyset \]

\[\Rightarrow \forall \mathcal{N} \in \mathcal{N}_x \quad \mathcal{N} \cap \mathcal{P}_x = \emptyset \]

\[\Rightarrow \forall \mathcal{N} \in \mathcal{N}_x \quad \mathcal{N} \cup \mathcal{P}_x = \mathcal{C} \quad \forall \mathcal{N} \in \mathcal{N}_x \]

\[\Rightarrow \forall \mathcal{N} \in \mathcal{N}_x \quad \mathcal{N} \cup \mathcal{P}_x = \mathcal{C} \quad \forall \mathcal{N} \in \mathcal{N}_x \]

Let \(\mathcal{B} \in \mathcal{P}_x \) \(\mathcal{N} \) is \(\mathcal{B} \)-good for \(\mathcal{F} \) \(\Rightarrow \mathcal{B} \setminus () \leq \mathcal{B} \)
2) \(\Omega \times \Omega \) is an arrow for \(C \)

\[U \Omega := \{ (\alpha, D) : \alpha \in \Omega_{\omega_0}, \text{D is open dense in } 2^\omega \} \]

\[\{ x \in \omega_1 : \exists \omega \leq x \} \]

Claim: \(U \Omega \) is an arrow for \(C \)

Proof: Let \(\zeta \) be a \(\Omega \)-generic filter and let \(X = (\alpha, D) \). Then \(x \in (\zeta_{\omega_1}) \)

We consider \(\bigcap_{\omega \in \omega_1} O_{\omega} X(\omega) = \emptyset \)

Claim: \(E \) is convex and for every \(x \in U \Omega \), \(R_x \cap E = \emptyset \)

Proof (1st): \(U \Omega \), \(O_{\omega} X(\omega) \) is open dense for every \(\omega \in \omega_1 \)

Proof: Let \(s \in \omega_0 \) and \(D^s := \{ (\alpha, D) : \exists k \geq s, 3t+s \notin (\alpha) \} \)

Proof: Let \(g \in \omega_0 \) and \(D^g := \{ (\alpha, D) : \exists k \geq g, 3t+s \notin (\alpha) \} \)

Proof: Let \((\alpha, D) \in U \Omega \), since \(D \) is open dense, there is \(s, t \geq s \) s.t. \(\varnothing_s \leq D \).

Let \((\alpha', D') \in U \Omega \). Since \(D' \) is open dense, there is \(s, t \geq s \) s.t. \(\varnothing'_s \leq D' \).

Claim: \(D \cap D' \neq \emptyset \).

Proof: \((\alpha, D) \in U \Omega \) and \((\alpha', D') \in U \Omega \).

\(\forall s \in \omega_0 \exists t \geq s \varnothing \in U \Omega \).

\(\forall s \in \omega_0 \exists t \geq s \varnothing \in U \Omega \).
$\Rightarrow E$ is connected.

Let N be non-empty and closed in U. Then $D_u = \{(u, D) : D \cap N = \emptyset \}$ is closed.

Hence, there is a $(v, D) \in D_u$ s.t. $U \cap E = \emptyset$. Then for any $x \in D \cap U \cap E$,

$D_x(k) \subseteq D$, hence $D_x(k) \cap N = \emptyset$ and so E is disjoint from N.

\[R := \{ P \subseteq 2^{\omega} : P \text{ is pruned tree and } \mu([\mathcal{P}]) = \frac{1}{2} \} \]

Let $\pi : 2^{\omega} \to 2^{\omega}$ be the canonical bijection:

\[\pi(P)(n) := \begin{cases} 1 & \pi^{-1}(n) \in P \\ 0 & \text{otherwise} \end{cases} \]

$\forall P \in \mathcal{C}^\omega$, we can show that $\pi \in \mathcal{R}$ is Grt. \overline{E}

Let $A := \{ T : \pi \in \mathcal{K} \text{ region } \mathcal{R} \}$

Every region is closed. But not every closed is a region.

Every region is not E.
A \in R \text{ is } \varepsilon\text{-regular if } \forall T \in A \exists \varepsilon T \in A \text{ s.t. } (S) \setminus A = (S) \setminus (A \cup \varepsilon T)

Note: The \varepsilon\text{-regular sets form a \sigma-algebra containing all Borel sets in } R.

A \in R \text{ is } \varepsilon\text{-regular iff its } \mathcal{I}_\varepsilon\text{-regular}

\begin{align*}
\forall x \in \mathbb{R}, \exists \omega \in \mathbb{N} \setminus \{0\}, \forall \varepsilon \in (0, 1), \exists \delta \in (0, 1) \quad &\varepsilon \in B_{1/2} \\
\forall (\sigma, D) \in \mathcal{L} \quad &\langle \sigma, D \rangle := \{ x | \sigma x \in A \text{ and } \text{diam}(\sigma x) \leq D \} \\
\langle \sigma, D \rangle \leq \langle \sigma, \varepsilon \rangle \quad &\text{iff } \langle \sigma, D \rangle \leq \langle \sigma, \varepsilon \rangle
\end{align*}