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Lebesgue Measure 1/30

We will be working with the Cantor space ω2, with the product
topology and 2 having the discrete topology. Partial functions
s : ω ⇀ 2 with finite dom(s) provide basic clopen sets

[s] = {f ∈ ω2 | s ⊆ f}.

Give 2 = {0, 1} the coin-flip measure: µ({0}) = µ({1}) = 1
2 ,

then this extends to a product measure on basic clopen [s]:

µ([s]) =
1

2|dom(s)| .

This extends to a Lebesgue measure on ω2. A subset N ⊆ ω2 is
called (Lebesgue) null if there exists a measurable superset
N ′ ⊇ N with µ(N ′) = 0.



Closed Null Sets & Meagre Sets 2/30

Let N denote the family of null sets of ω2, then N is a σ-ideal,
i.e., closed under subsets and countable unions.

Let E be the σ-ideal consisting of countable unions of closed
null sets, i.e., of sets that are both null and closed.

Let NWD be the family of nowhere dense subsets of ω2; a set
N ⊆ ω2 is nowhere dense if for any basic clopen [s] there is
basic clopen [t] ⊆ [s] with N ∩ [t] = ∅. Let M be the σ-ideal of
meagre sets, i.e., of countable unions of nowhere dense sets.

Proposition
E ⊆ N ∩M.

Proof. Suppose E is closed and dense in [s], then [s] ⊆ E

because E is closed, hence µ(E) ≥ µ([s]) > 0.



Characterisation with Slaloms 3/30

Let IP denote the set of interval partitions of ω. Given
I = ⟨In | n ∈ ω⟩ ∈ IP and φ ∈

∏
n∈ω P

(
In2

)
, we write

[φ]∗ = {x ∈ ω2 | ∀∞n ∈ ω(x ↾ In ∈ φ(n))}.

Theorem Bartoszyński and Shelah 1992, Theorem 4.3

The following are equivalent for X ⊆ ω2.

1. X ∈ E ,

2. There is I = ⟨In | n ∈ ω⟩ ∈ IP and φ ∈
∏

n∈ω P
(
In2

)
such

that X ⊆ [φ]∗ and
∑

n∈ω
|φ(n)|
2|In| converges.

Remark
If B = ⟨Bn | n ∈ ω⟩ is a partition of ω into finite sets, then we
may replace I by B in the above characterisation.



Higher Baire Spaces 4/30

Let κ be a regular uncountable cardinal and κ = κ<κ.

The higher context is the result of replacing ω by κ:
Classical ω ωω ω2 P(ω) finite countable ℵ1

Higher κ κκ κ2 P(κ) <κ ≤κ κ+

We will work mainly with κ2, with the <κ-box topology, i.e.,
partial functions s : κ ⇀ 2 with |dom(s)| < κ provide basic
clopen sets

[s] = {f ∈ κ2 | s ⊆ f}.

Instead of σ-ideals on ω2, we will work with ≤κ-complete
ideals on κ2, where I is ≤κ-complete if I is closed under
unions of size κ.



Higher Meagre Sets 5/30

Let NWDκ be the family of nowhere dense subsets of κ2.
Since κ is regular, NWDκ is <κ-complete, but note that it is
not ≤κ-complete. For example

{f ∈ κ2 | ∀∞α ∈ κ(f(α) = 0)}

is a dense set of cardinality κ = 2<κ, and thus the union of κ
many singletons.

Let Mκ be the least ≤κ-complete ideal extending NWDκ,
then the elements of Mκ will be called κ-meagre sets.



Higher Lebesgue Measure? 6/30

The reals R form a particularly nice field that allows for a
particularly nice theory of infinite summation. This is used to
define (Lebesgue) measure, because we can make sense of
the property of σ-additivity.

This does not generalise nicely to higher Baire spaces, as
there is no suitable generalisation of R. This means we cannot
define N by replacing ω with κ.



Avoiding Measures 7/30

Closed sets X ⊆ ω2 are sets of branches [T ] of trees T ⊆ <ω2.
For such T , note that µ([T ]) = 0 if and only if for each s ∈ T

there is ns ∈ ω with dom(s) < ns such that for at least half of
the extensions t ⊇ s with dom(t) = ns we have t /∈ T .

Define T ⊆ <κ2 to be halving if every s ∈ T has αs ∈ κ with
dom(s) < αs such that

|{t ∈ αs2 | s ⊆ t ∈ T}| ≤ |{t ∈ αs2 | s ⊆ t /∈ T}|.

Let us define Hκ to be the least ≤κ-complete ideal containing
[T ] for every halving T ⊆ <κ2.



Avoiding Measures: The Naive Way 8/30

Proposition
Hκ = Mκ.

Proof. Easily [T ] ∈ NWDκ for every halving T ⊆ <κ2. We
show that reversely NWDκ ⊆ Hκ.

Let N ∈ NWDκ, and without loss we may assume N is closed.
Let T ⊆ <κ2 be such that N = [T ] and s ∈ T , then there is
t ∈ <κ2 with s ⊆ t and t /∈ T . We may assume without loss of
generality that dom(t) ≥ dom(s) + γ for some infinite γ, then
αs = dom(s) + γ · 2 suffices: there are |γ2| = 2|γ| extensions of
t at height αs, but also

∣∣γ·22∣∣ = 2|γ| extensions of s.

Hence, in some sense Mκ can be viewed as the higher closed
null ideal.



Generalising the Classical Definition 9/30

Recall that X ∈ E iff X ⊆ [φ]∗ for some ⟨In | n ∈ ω⟩ ∈ IP and
φ ∈

∏
n∈ω P

(
In2

)
such that

∑
n∈ω

|φ(n)|
2|In| converges.

Let BPκ be the set of partitions ⟨Bα | α ∈ κ⟩ of κ into sets of
size <κ such that lim inf

α∈κ
|Bα| = κ. Let IPκ ⊆ BPκ consist of

those ⟨Iα | α ∈ κ⟩ ∈ BPκ such that Iα is an interval for each α.

If B = ⟨Bα | α ∈ κ⟩ ∈ BPκ, then we define:

Σκ(B) =
{
φ ∈

∏
α∈κ P

(
Bα2

) ∣∣∣ |φ(α)| < 2|Bα|
}
,

Eκ(B) = {X ⊆ κ2 | ∃φ ∈ Σκ(B)(X ⊆ [φ]∗)},

E−
κ =

⋃
I∈IPκ

Eκ(I), BE−
κ =

⋃
B∈BPκ

Eκ(B).

We let Eκ and BEκ be the least ≤κ-complete ideals such that
E−
κ ⊆ Eκ and BE−

κ ⊆ BEκ.



Comparing Eκ and BEκ 10/30

Theorem Marton, Šupina, Repický, and vdV. 2025+

E−
κ ⊊ BE−

κ and Eκ ⊊ BEκ.

Proof. Clearly IPκ ⊆ BPκ implies the inclusions ⊆. Define

X = {x ∈ κ2 | ∀α ∈ κ(x(2 · α+ 1) = 0)},

then we claim that X ∈ BEκ \ Eκ. Let B ∈ BPκ be such that
each Bα contains exactly one even ordinal ξα = 2 · ξ′α, and let
φ(α) =

{
s ∈ Bα2

∣∣ ∀ξ ∈ Bα \ {ξα}(s(ξ) = 0)
}

, then X ⊆ [φ]∗.

Let Iζ ∈ IPκ and φζ ∈ Σκ(I
ζ) for each ζ ∈ κ. For each α ∈ κ

choose βα, ζα such that Iα := Iζαβα
is infinite, Iα ∩ Iα′ = ∅ when

α ̸= α′, and |{α ∈ κ | ζ = ζα}| = κ. Since Iα is an infinite
interval, |X ↾ Iα| = 2|Iα|, thus let sα ∈ (X ↾ Iα) \ φζα(βα). So, if
x ∈ X with

⋃
α∈κ sα ⊆ x, then x /∈ [φζ ]∗ for any ζ ∈ κ.



A Combinatorial Way of Looking at Higher Meagre 11/30

For x ∈ κ2 and B = ⟨Bα | α ∈ κ⟩ ∈ BPκ, let us write

⟨x,B⟩ = {y ∈ κ2 | ∀α ∈ κ (y ↾ Bα ̸= x ↾ Bα)}

⟨x,B⟩∗ = {y ∈ κ2 | ∀∞α ∈ κ (y ↾ Bα ̸= x ↾ Bα)}

Define CMκ = {X ⊆ κ2 | ∃x ∈ κ2∃I ∈ IPκ(X ⊆ ⟨x, I⟩∗)}.

Theorem Blass, Hyttinen, and Zhang, § 4

CMκ is a ≤κ-complete ideal, CMκ ⊆ Mκ, and equality holds
if and only if κ is a regular strong limit cardinal.

Proposition
If B ∈ BPκ, then there is I ∈ IPκ and a sequence ⟨Aα | α ∈ κ⟩
of subsets of κ such that Iα =

⋃
ξ∈Aα

Bξ .

Corollary
CMκ = {X ⊆ κ2 | ∃x ∈ κ2∃B ∈ BPκ(X ⊆ ⟨x,B⟩∗)}.
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Theorem Marton, Šupina, Repický, and vdV. 2025+

BEκ ⊆ CMκ.

Proof. Let Y ∈ BE−
κ , and let B ∈ BPκ and φ ∈ Σκ(B) be such

that Y ⊆ [φ]∗. For each α ∈ κ, let xα ∈ Bα2 \ φ(α) and define
x =

⋃
α∈κ xα. If y ∈ Y , then y ↾ Bα ∈ φ(α) for almost all α,

hence y ↾ Bα ̸= x ↾ Bα for almost all α, thus y ∈ ⟨x,B⟩∗.
Therefore Y ∈ CMκ.

Overview
Eκ ⊊ BEκ ⊆ CMκ ⊆ Mκ

⊆ ⊆

E−
κ ⊊ BE−

κ



Comparing BE−
κ and CMκ 13/30

Let I ∈ IPκ be such that |Iα| ≥ 2 for all α ∈ κ and let x ∈ κ2. If
Sα = Iα2 \ {x ↾ Iα}, then ⟨x, I⟩ ⊆ κ2 with the subspace
topology and

∏
α∈κ Sα with the product topology are

homeomorphic. Define M⟨x,I⟩
κ as the ideal of κ-meagre

subsets of ⟨x, I⟩, then M⟨x,I⟩
κ is proper, i.e., ⟨x, I⟩ is not the

union of κ many nowhere dense subsets of ⟨x, I⟩.

Theorem Marton, Šupina, Repický, and vdV. 2025+

BEκ ⊊ CMκ.

Proof. Let x ∈ κ2 and I ∈ IPκ with |Iα| ≥ 2 for all α ∈ κ, then
⟨x, I⟩ ∈ CMκ \M⟨x,I⟩

κ . To conclude the proof we claim that if
A ∈ BE−

κ , then A ∩ ⟨x, I⟩ ∈ M⟨x,I⟩
κ , and thus

A′ ∩ ⟨x, I⟩ ∈ M⟨x,I⟩
κ for all A′ ∈ BEκ, so ⟨x, I⟩ /∈ BEκ. · · ·



Comparing BE−
κ and CMκ 14/30

· · · Let B ∈ BPκ and φ ∈ Σκ(B) be such that A ⊆ [φ]∗. Define
[φ]β = {y ∈ κ2 | ∀α ≥ β(y ↾ Bα ∈ φ(α))}, then [φ]∗ =

⋃
β∈κ[φ]β .

Claim. [φ]β is nowhere dense in ⟨x, I⟩.

Fix some s ∈ <κ2 such that dom(s) =
⋃

α∈δ Iα for some δ ∈ κ

and [s] ∩ ⟨x, I⟩ ̸= ∅. Let γ ≥ β and δ′ > δ be such that Bγ is
infinite and Bγ ⊆

⋃
α∈[δ, δ′) Iα.

Let S = {α ∈ [δ, δ′) | Iα ⊆ Bγ}, and for each α ∈ [δ, δ′) pick
ξα ∈ Iα arbitrary, with ξα /∈ Bγ if α /∈ S. Now note that
|Bγ \ {ξα | α ∈ [δ, δ′)}| = |Bγ |, so there is t ∈ Bγ2 \ φ(γ) such
that t(ξα) ̸= x(ξα) for all α ∈ [δ, δ′). We may now extend s ∪ t
to some s′ with dom(s′) =

⋃
α∈δ′ Iα where s′(ξα) ̸= x(ξα) for all

α ∈ [δ, δ′). Then [s′] ∩ ⟨x, I⟩ ̸= ∅ and [s′] ∩ [φ]β = ∅.
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We may conclude:

Theorem
Eκ ⊊ BEκ ⊊ CMκ = Mκ if κ = κ<κ is strongly inaccessible.
Eκ ⊊ BEκ ⊊ CMκ ⊊ Mκ if κ = κ<κ is weakly inaccessible.

Since we require lim infα∈κ |Bα| = κ in the definition of BPκ,
and thus of BEκ, our definition trivialises when κ = λ+ = 2λ

for some λ.



Ideals & Domination 16/30

For a σ-ideal I ⊆ P(ω2), we define

cov(I) = min{|C| | C ⊆ I and
⋃
C = ω2},

non(I) = min{|N | | N ⊆ ω2 and N /∈ I},

add(I) = min{|A| | A ⊆ I and
⋃
A /∈ I},

cof(I) = min{|F | | F ⊆ I and ∀I ∈ I∃J ∈ F (I ⊆ J)}.

For f, g ∈ ωω, let f ≤∗ g if f(n) ≤ g(n) for almost all n ∈ ω.
A family D ⊆ ωω is dominating if every f ∈ ωω has some g ∈ D

with f ≤∗ g. A family B ⊆ ωω is unbounded if no g ∈ ωω exists
such that f ≤∗ g for all f ∈ B.

The dominating and unbounding numbers d and b are the
least size of dominating and unbounded families, respectively.
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For infinite X,Y ⊆ ω, we say X splits or reaps Y if both Y ∩X
and Y \X are infinite. A family S ⊆ P(ω) is splitting if every
infinite Y ⊆ ω is split by some X ∈ S. A family R ⊆ P(ω) of
infinite sets is unreaped if no X ⊆ ω splits all Y ∈ R.

The splitting and reaping numbers s and r are the least size of
splitting and unreaped families, respectively.



Even More Cardinal Characteristics: Evasion & Prediction 18/30

Let π : <ωω → ω, f ∈ ωω and let D ⊆ ω be infinite, then we say
that π predicts f on D if π(f ↾ n) = f(n) for almost all n ∈ D.
We call (π,D) a predictor.

A predicting family is a collection P of predictors such that
each f ∈ ωω is predicted by some predictor in P . An evading
family is a family E ⊆ ωω such that no predictor predicts every
f ∈ E.

The evasion and prediction numbers e and v are the least size
of evading and predicting families, respectively.
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Laver (1976)
ω2-length CSI of Laver forcing
over CH
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Mathias (1977)
ω2-length CSI of Mathias forcing
over CH
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Blass and Shelah (1987)
ω2-length CSI of Blass–Shelah
forcing over CH
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Bartoszyński and Shelah (1992)
ω2-length FSI of random forcing
over CH
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Bartoszyński and Shelah (1992)
ω1-length FSI of random forcing
over MA+ 2ℵ0 = ℵ2
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Ihoda and Shelah (1988), Brendle (1995)
ω2-length FSI of Hechler forcing
over CH
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Ihoda and Shelah (1988), Brendle (1995)
ω2-length FSI of bounded prediction
forcing over CH
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Ihoda and Shelah (1988), Brendle (1995)
ω1-length FSI of bounded prediction
forcing over MA+ 2ℵ0 = ℵ2
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Cardona (2024)
ω2-length FSI of eventually
different forcing over CH
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µ λ

Cardona (2024)
λµ-length iteration of random
forcing over CH
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Goto and Mejía (2025+)
ω2-length CSI of PTf,g forcing
over CH
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Mejía and Ramos-García (2025+)
ω2-length CSI of PTf,g forcing
over CH
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Define dκ, bκ, sκ, rκ, eκ and vκ by simple replacement of ω by κ.
To be precise:

• In the definitions of dκ and bκ, we have f ≤∗ g for
f, g ∈ κκ if f(α) ≤ g(α) for almost all α ∈ κ.

• In the definitions of sκ and rκ, we use subsets X,Y ⊆ κ of
size κ, and X splits Y if |Y ∩X| = |Y \X| = κ.

• In the definitions of eκ and vκ, the predictor (π,D)

consists of π : <κκ→ κ and D ⊆ κ with |D| = κ, and
f ∈ κκ is predicted by π on D if f(α) = π(f ↾ α) holds for
almost all α ∈ D.



Some Peculiarities About Splitting Families 22/30

Theorem Raghavan and Shelah 2017

sκ ≤ bκ, and if ℶω < κ, then dκ ≤ rκ.

Theorem Zapletal 1997, Ben-Neria and Gitik 2015

κ+ ≤ sκ if and only if κ is weakly compact.
κ+n ≤ sκ implies the existence of an inner model in which κ is
measurable with Mitchell order o(κ) = κ+n.



The Localisation Number 23/30

Let φ ∈
∏

α∈κ[κ]
|α| and f ∈ κκ, then we say φ localises f if

f(α) ∈ φ(α) for almost all α ∈ κ.

A family L ⊆
∏

α∈κ[κ]
|α| is called localising if every f ∈ κκ is

localised by some φ ∈ L, and let us call a family U ⊆ κκ

unlocalisable if no φ ∈
∏

α∈κ[κ]
|α| localises all f ∈ U .

The localisation and unlocalisation numbers dκ(∈∗) and
bκ(∈∗) are the least size of localising and unlocalisable
families, respectively.

Theorem Bartoszyński 1987

cof(N ) = d(∈∗) and add(N ) = b(∈∗).



Extended Cichoń Diagram (Without N and E) 24/30
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Classically we have the following results for non(E):

• non(E) ≤ non(M),
• add(M) ≤ non(E),
• e ≤ non(E),
• s ≤ non(E),

and the following results for add(E):

• add(M) = add(E),
• add(E) ≤ cov(M),
• add(E) ≤ b,
• b(∈∗) ≤ add(E).

The question is which of these generalise.



Work in Progress for the Higher Relations 26/30

So far, we have:

✓ non(Eκ) ≤ non(BEκ) ≤ non(Mκ),
? add(Mκ) ≤ non(Eκ),
✓ eκ ≤ non(BEκ), ? eκ ≤ non(Eκ),
✓ sκ ≤ non(BEκ), ? sκ ≤ non(Eκ),

and:

?? add(Mκ) = add(Eκ) (due to Lebesgue measure),
? add(Eκ) ≤ cov(Mκ),
? add(Eκ) ≤ bκ, ✓ add(E−

κ ) ≤ bκ, ? dκ ≤ cof(E−
κ ),

? bκ(∈∗) ≤ add(Eκ).

In conclusion, many questions remain.



The Splitting Number 27/30

Theorem Marton, Šupina, Repický, and vdV. 2025+

sκ ≤ non(BEκ).

Proof. If A ⊆ κ2 and A /∈ BEκ, then
{
x−1(1)

∣∣ x ∈ A
}

is a
splitting family.

Let Y ∈ [κ]κ and without loss we assume |κ \ Y | = κ, then we
define B ∈ BPκ such that |Bα ∩ Y | = 2|α| and |Bα \ Y | = |α|.
Define φ ∈ Σκ(B) by

φ(α) =
{
s ∈ Bα2

∣∣ s ↾ (Bα ∩ Y ) is constant
}

Since A /∈ BEκ, there is x ∈ A with x /∈ [φ]∗. Hence, for
cofinally many α ∈ κ we see that x ↾ (Bα ∩ Y ) is not constant.
It follows that |{x(ξ) = i | ξ ∈ Y }| = κ for both i ∈ 2, thus
x−1(1) splits Y .
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For f, g ∈ κκ, define f ≤cl g if there is a club set C ⊆ κ such
that f(α) ≤ g(α) for all α ∈ C. We define bclκ as the least size
of a ≤cl-unbounded family.

Theorem Cummings and Shelah 1995, Theorem 6

bclκ = bκ.

We may dually describe dclκ as the least size of a
≤cl-dominating family. There is the following long-standing
open question:

Theorem Cummings and Shelah 1995

Is dclκ = dκ?

Theorem Cummings and Shelah 1995, Theorem 8

If κ > ℶω, then dclκ = dκ.
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Theorem Marton, Šupina, Repický, and vdV. 2025+

add(E−
κ ) ≤ bclκ .

Proof. Given an increasing b ∈ κκ, let Ib =
〈
Ibα

∣∣ α ∈ κ
〉
∈ IPκ

be defined by min
(
Ibα
)
= ibα and ibα+1 = ibα + 2|b(α)|. Choose

φb ∈ Σκ

(
Ib
)

such that for any s :
[
ibα, i

b
α + γ

)
→ 2 and γ ≤ b(α)

there exists ts ∈ φb(α) with s ⊆ ts. We claim that if B ⊆ κκ is
≤cl-unbounded, then X =

⋃
b∈B

[
φb

]
∗ /∈ E−

κ .

Consider [ψ]∗ for ψ ∈ Σκ(J) and define f : α 7→ ot(Jα). Let
b ∈ B be such that b��≤cl f and let α ∈ S iff f(α) ≤ b(α) and
ibα = min(Jα), then S is stationary. For each α ∈ S we choose
sα ∈ Jα2 \ ψ(α), then tsα ∈ Ibα2 ∩ φb(α). Thus, there is x ∈ X

with x ↾ Ibα = ts̃α for all α ∈ S, and consequently x /∈ [ψ]∗.
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