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Lebesgue Measure 1/30

We will be working with the Cantor space “2, with the product
topology and 2 having the discrete topology. Partial functions
s: w — 2 with finite dom(s) provide basic clopen sets

[s]={fe“2]sC f}.

Give 2 = {0, 1} the coin-flip measure: n({0}) = u({1}) = 3,
then this extends to a product measure on basic clopen [s]:

1
/‘([SD = 9ldom(s)| *
This extends to a Lebesgue measure on “2. A subset N C “2 is
called (Lebesgue) null if there exists a measurable superset
N’ D N with u(N') = 0.



Closed Null Sets & Meagre Sets 2/30

Let V denote the family of null sets of “2, then A is a o-ideal,
i.e., closed under subsets and countable unions.

Let £ be the o-ideal consisting of countable unions of closed
null sets, i.e., of sets that are both null and closed.

Let NWD be the family of nowhere dense subsets of “2; a set
N C “2is nowhere dense if for any basic clopen [s] there is
basic clopen [t] C [s] with N N [t] = @. Let M be the o-ideal of
meagre sets, i.e., of countable unions of nowhere dense sets.

Proposition

ECNAM.

Proof. Suppose FE is closed and dense in [s], then [s] C E
because E is closed, hence p(E) > u([s]) > 0. O



Characterisation with Slaloms 3/30

Let IP denote the set of interval partitions of w. Given
I=(I,|new)elIPand ¢ €[], P("2), we write
[l = {x €¥2|V*®n € w(x | I, € p(n))}.

Theorem Bartoszynski and Shelah 1992, Theorem 4.3

The following are equivalent for X C «2.

1. X €€,
2. Thereis I = (I, | n € w) e IP and ¢ € [[,.c,, P(2) such
that X C [¢], and Znew 2”” ")l converges.
Remark

If B= (B, | n € w) is a partition of w into finite sets, then we
may replace I by B in the above characterisation.



Higher Baire Spaces 4130

Let x be a regular uncountable cardinal and k = k=<".

The higher context is the result of replacing w by «:
Classical | w “w “2 P(w) finite countable ¥,
Higher | k "rk "2 P(k) <k <K kT
We will work mainly with %2, with the <x-box topology, i.e.,
partial functions s : kK — 2 with |dom(s)| < x provide basic
clopen sets

[s]={fe"2]sCf}

Instead of o-ideals on “2, we will work with <x-complete
ideals on *2, where 7 is <x-complete if Z is closed under
unions of size .



Higher Meagre Sets 5/30

Let NWD,, be the family of nowhere dense subsets of #2.
Since « is regular, NWD,, is <kx-complete, but note that it is
not <x-complete. For example

{f €"2|V®a e k(f(a) = 0)}

is a dense set of cardinality x = 2<%, and thus the union of
many singletons.

Let M, be the least <xk-complete ideal extending N\WD,,,
then the elements of M, will be called x-meagre sets.



Higher Lebesgue Measure? 6/30

The reals R form a particularly nice field that allows for a
particularly nice theory of infinite summation. This is used to
define (Lebesgue) measure, because we can make sense of
the property of o-additivity.

This does not generalise nicely to higher Baire spaces, as
there is no suitable generalisation of R. This means we cannot
define NV by replacing w with k.



Avoiding Measures 7130

Closed sets X C “2 are sets of branches [T'] of trees T C <%2.
For such T, note that x([T]) = 0 if and only if for each s € T’
there is n; € w with dom(s) < n, such that for at least half of
the extensions ¢ O s with dom(¢) = ns; we have ¢t ¢ T.

Define T' C <#2 to be halving if every s € T has a; € x with
dom(s) < a, such that

{te2|sCteT} <|{te™2|sCtgT}|

Let us define H, to be the least <x-complete ideal containing
[T] for every halving T' C <F2.



Avoiding Measures: The Naive Way 8/30

Proposition

Hi = M.

Proof. Easily [T] € NWD, for every halving T' C <%2. We
show that reversely N\WD,. C H,..

Let N € NWD,, and without loss we may assume N is closed.
Let T' C <%2 be such that N = [T] and s € T, then there is

t € <F2 with s Ctand ¢ ¢ T. We may assume without loss of
generality that dom(¢) > dom(s) + ~ for some infinite +, then
o, = dom(s) + v - 2 suffices: there are |72| = 21! extensions of
t at height a,, but also |22| = 27| extensions of s. O

Hence, in some sense M, can be viewed as the higher closed
null ideal.



Generalising the Classical Definition 9/30

Recall that X € € iff X C [¢]. for some (I, | n € w) € IP and
¢ € [Thew P(™2) such that 3, ., 209l converges.

Let BP, be the set of partitions (B, | a € k) of « into sets of
size <k such that 1ig1€i£f |Bo| = k. Let IP,, C BP, consist of
those (I, | « € k) € BP such that I, is an interval for each «.

If B= (B, | « € k) € BP,, then we define:
Zn(B) = {9 € [laex P(32) | Ip(e)] < 2171},
Ex(B) ={X S "2 Jp € Tu(B)(X < [¢]4)},
& =Urep, &), BE, = Upegp, €x(B)-

We let &, and BE,. be the least <x-complete ideals such that
&, C& and BE,, C BE,.



Comparing &, and B¢, 10/30

Theorem Marton, Supina, Repicky, and vdV. 2025+

E. CBE, and &, C BE,.

Proof. Clearly IP,. C BP,. implies the inclusions C. Define
X={ze™2|Vaeckr(xz2 -a+1)=0)},

then we claim that X € BE, \ &. Let B € BP,, be such that

each B, contains exactly one even ordinal {, = 2- ¢/, and let

pla) = {s € P2 | V€ € Ba \ {&}(5(€) = 0)}, then X C [g]..

Let I¢ € IP,, and ¢¢ € %, (I¢) for each ¢ € . Foreach a € &

choose 3,, ¢, such that I, := Iéz is infinite, I, N I, = @ when

a#d,and {a € k| ( = (,}| = k. Since I, is an infinite

interval, |X | I,| = 2/, thus let s, € (X | I,) \ ©%(Ba). So, if

z € X with J,e,, o C z, then z ¢ [¢], forany ¢ € k. O



A Combinatorial Way of Looking at Higher Meagre 1/30

Forz € "2 and B = (B, | a € k) € BPy, let us write
(z,B) ={ye"2| Vaer (ylBa#z]Ba)}
(,B). ={y€"2| ¥®acx (y|Ba#z | Ba)}

Define CM,, = {X C "2 |3z € *23I € IP.(X C (z,I).)}.

Theorem

CM, is a <k-complete ideal, CM, C M,, and equality holds
if and only if  is a regular strong limit cardinal.

Proposition

If B € BP,, then thereis I € IP, and a sequence (4, | « € k)
of subsets of x such that I, = g4, Be.

Corollary
CM, ={X C*2 |3z € %23dB € BP,(X C (x,B)«)}.



Comparing All Ideals 12/30

Theorem Marton, Supina, Repicky, and vdV. 2025+

BE, C CM,.

Proof. LetY € BE,., and let B € BP, and ¢ € ¥,(B) be such
that Y C [¢].. For each a € &, let 2, € B22\ ¢(a) and define

r = Uyen Za- Ify € Y, then y | B, € p(a) for almost all o,
hencey | B, # = | B, for almost all ¢, thus y € (x, B)..
Therefore Y € CM,. O

Overview

& G BELCCM, C My
U Ul

£ C BE;



Comparing BE. and C M, 13/30

Let I € IP,, be such that |I,| > 2 forall « € xk and let x € "2. If
Sy =122\ {z | I,}, then (z,I) C 2 with the subspace
topology and [],,.,. S. with the product topology are
homeomorphic. Define M as the ideal of k-meagre
subsets of (z, I), then M0

union of x many nowhere dense subsets of (x, I).

is proper, i.e., (z,I) is not the

Theorem Marton, Supina, Repicky, and vdV. 2025+

BE,, C CM,.

Proof. Let x € "2 and I € IP, with |I,| > 2 for all a € &, then
(x,I) € CM, \ M To conclude the proof we claim that if
A€ BE;, then An (z,I) € MY, and thus

ANz, I) € M forall A’ € BE,,, so (z,1) ¢ BE,..



Comparing BE. and C M, 14/30

Let B € BP, and ¢ € ¥,(B) be such that A C [¢].. Define
[pls ={y € "2|Va > B(y | Ba € p(a))}, then [p]. = Uge,l¢]s-
Claim. [¢] is nowhere dense in (z, I).

Fix some s € <2 such that dom(s) = |J,cs5 Lo fOr some 6 € s
and [s] N (z,I) # @. Lety > B and ¢’ > § be such that B, is
infinite and B, C U,¢(5,67) Lo-

Let S = {a €[4, ¢') | In € B4}, and for each a € [6, ¢') pick

o € 1, arbitrary, with &, ¢ B, if a ¢ S. Now note that

|By\ {&a | @ € [8, 8")}| = |B,], so thereis t € B2\ ¢(v) such
that t(&,) # z(&,) forall « € [, §'). We may now extend s U ¢
to some s’ with dom(s") = |J,cs 1o Where s'(&,) # x(&,) for all
a €[4, d"). Then [s']| N (z,I) # @ and [s'] N [p]s = @. O



Conclusion 15/30

We may conclude:

Theorem

& € BE, CCM, =M, if Kk = k=" is strongly inaccessible.
E. € BE, CCM, C M, if k = r<"is weakly inaccessible.
Since we require liminf,¢, | Bo| =  in the definition of BP,,
and thus of BE,., our definition trivialises when x = \* = 24
for some .



Ideals & Domination 16/30

For a o-ideal Z C P(+2), we define

cov(Z) =min{|C| | C CZand |JC =2},

non(Z) = min{|N| | N C“2and N ¢ 7},

add(Z) = min{|A| | ACZand |JA ¢ I},

cof(Z) =min{|F| | F CZandVI € Z3J € F(I C J)}.

For f,g € “w, let f <* gif f(n) < g(n) for almost all n € w.

A family D C “w is dominating if every f € “w has some g € D
with f <* ¢g. Afamily B C “w is unbounded if no g € “w exists
such that f <* gforall f € B.

The dominating and unbounding numbers  and b are the
least size of dominating and unbounded families, respectively.



More Cardinal Characteristics: Splitting & Reaping 17/30

For infinite X,Y C w, we say X splits or reaps Y if both Y N X
and Y \ X are infinite. A family S C P(w) is splitting if every
infinite Y C w is split by some X € S. Afamily R C P(w) of
infinite sets is unreaped if no X C w splitsall Y € R.

The splitting and reaping numbers s and ¢ are the least size of
splitting and unreaped families, respectively.



Even More Cardinal Characteristics: Evasion & Prediction 18/30

Let 7: “Yw — w, f € “w and let D C w be infinite, then we say
that 7 predicts f on D if 7(f | n) = f(n) for almost all n € D.
We call (7, D) a predictor.

A predicting family is a collection P of predictors such that
each f € “w is predicted by some predictor in P. An evading
family is a family £ C “w such that no predictor predicts every
fekE.

The evasion and prediction numbers ¢ and v are the least size
of evading and predicting families, respectively.



Extended Cichon Diagram 19/30

cof (€)
Il
cof (M) —— cof(N) — 9o
non(M) /T 0 -

] %
cov(N) ; cov (&) 7 T

e
N; — add(N) — add(M)

ad(lll(é')



Consistency Results 20/30

cof(€)

non(M) / /\T o -

R, — add(WN add(M Laver (1976)
1 — add(N) — ac ﬁ ) we-length CSI of Laver forcing

add(&) over CH



Consistency Results

R; — add(N) — ¢

— 71 .7

20/30

cof(€)
Il
cof (M) — cof (N) — 9%o

——— non(&)

e
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7/....-..‘ /
cov(M)

Mathias

non(N)

(1977)

wo-length CSI of Mathias forcing

over CH
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Consistency Results
cof(€)
Il
K cof (M) —— cof (M) — 9o
ﬂ“ / / T 4
,+* non(M) / v
cov(N) R E— .E
5.5 44> non(&) —LA
o T
Blass and Shelah (1987)

K1 = add(V) — add(M) ws-length CSI of Blass-Shelah

add(€) forcing over CH



Consistency Results 20/30

cof(€)
Il
cof (M) — cof (N) — 9%o
non(M) /T 7

"

non(N)

¢ ‘ é cov(M)

R, — add(A) —» add(M) Bartoszynski and Shelah (199;)
I : wo-length FSI of random forcing
add(€) : overCH



Consistency Results 20/30

cov(N)

/

S

e ‘ cov(M)

Ry — a<1d(/\/<'*> add(M) Bartoszynski and Shelah (1992)
I wi-length FSI of random forcing

add(€) over MA + 2%0 = R,



Consistency Results 20/30

cof (&)
J
cof (M) — cof (N) — 9%o
— /1 7
_ |~
cov(N) : cov(€) 7 t
S / : non(N)
¢ E/ T cov(M)
or ]
Ry — add(N) —b add(M) lhoda and Shelah (1988), Brendle (1995)

: I wsz-length FSI of Hechler forcing
: add(€) over CH



Consistency Results 20/30

cof (£) =
Il 0
cof (M) == cof(N) — 9Ro
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non(M) / T Y

=/
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S /—> non(&) —A non(N)
. e / T cov(M)
Ry — add(N) — add(M) lhoda and Shelah (1988), Brendle (1995)

I wi-length FSI of Hechler forcing
add(€) over MA 4 280 = R,
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Ihoda and Shelah (1988), Brend!le (1995)

I wa-length FSI of bounded prediction

add(&) forcing over CH



Consistency Results 20/30

cof(€)
Il

cof (M) — cof (V) — 9o
e

non(M) = / T 0

o L o) § P

/

S

non(N)

y ¢ ‘ cov(M)

. T add(M lhoda and Shelah (1988), Brendle (1995)
1 — add(NV) — a ﬁ ) wi-length FSI of bounded prediction

add(&) forcing over MA + 280 = X,



Consistency Results 20/30

cof(€)

cov(N)

/

S

E cov(M)

s

R add(N add(M : Cardona (2024)
1 — add(N) — ac ﬁ ) ws-length FSI of eventually

add(&) different forcing over CH
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cof(€)
Il
cof (M) —— cof (M) — 9o

1 S

|

cov (&)

non(M) é /

E cov(M)

N add(WNV add(M : Cardona (2024)
LA \(\ ) = u-length iteration of random

add(&) : forcing over CH
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non(M) — /\T v -

//Zf/// .......

b
/ A non(N)

5 +———— non(&) ‘
e T cov(M)
/ | )
Xy — add(N) — add(M) Goto and Mejia (2025+)

I wz-length CSI of PTy,, forcing
add(&) over CH



Consistency Results 20/30

non(M) — /\T v -

//Zf/// ............... .

b
/ A non(N)

5 +———— non(&) ‘
e T cov(M)
/ | o ,
R; — add(N) — add(M) Mejia and Ramos-Garcia (2025+)

I wz-length CSI of PTy,, forcing
add(&) over CH



Higher Cardinal Characteristics 21/30

Define v, by, 4, tx, ¢ and v, by simple replacement of w by «.
To be precise:

« In the definitions of o, and b,,, we have f <* g for
f,g € rif f(a) < g(a) for almost all « € k.

« In the definitions of s,. and t,., we use subsets X,Y C « of
size k,and X splits YV if [Y N X| = |V \ X| = k.

+ In the definitions of ¢, and v, the predictor (, D)
consists of 7 : <*x — k and D C x with |D| = &, and
f € "k is predicted by 7w on D if f(a) = 7(f | «) holds for
almost all « € D.



Some Peculiarities About Splitting Families 22/30

Theorem

5. < b, andif 3, < k, thend,, <r,.
Theorem

kt < s, if and only if x is weakly compact.

k1" < s, implies the existence of an inner model in which « is
measurable with Mitchell order o(x) = k™.



The Localisation Number 23/30

Let ¢ € [[,c.[x]1*l and f € %k, then we say ¢ localises f if
f(a) € p(a) for almost all a € «.

Afamily L C [],,.[x]!* is called localising if every f € “r is
localised by some ¢ € L, and let us call a family U C “x
unlocalisable if no ¢ € ], [x]'*! localises all f € U.

The localisation and unlocalisation numbers d,.(€*) and
b.(€*) are the least size of localising and unlocalisable
families, respectively.

Theorem Bartoszyiski 1987
cof(N) =0o(e*) and add(N') = b(e*).



Extended Cichon Diagram (Without \V and &) 24/30

cof( M) —— D(E*) — 9o
/
non(M) / 0 -

R, — b(€*) —— add(M)



Higher Extended Cichon Diagram 24/30

Assumptions e ~
k= k<" is regular non (M) 0
(@) >3,

(b) « is inaccessible
(c) » is weakly compact

(@ [ cov(M,)
: /



Overview of the Classical Relations 25/30

Classically we have the following results for non(€):
* non(€) < non(M),
+ add(M) < non(€&),
« ¢ <non(¢f),
* 5 <non(f),
and the following results for add(&):
add(M) = add(£),
« add(€) <c ( )y
+ add(€) < b,
+ b(e*) < add(€).

\_/

The question is which of these generalise.



Work in Progress for the Higher Relations 26/30

So far, we have:

v non(&;) < non(BE,) < non(M,),

? add(M,) < non(&y),

v ¢, < non(BE,), ? ¢, < non(&),
v/ s, < non(BEy), ? s, <non(&),

and:
?? add(M,) = add(&,) (due to Lebesgue measure),
? add(&x) < cov(M,),
? add(&) < b., Vadd(ED) <b.,  ? . < cof(ED),

? b(e*) < add(&).

In conclusion, many questions remain.



The Splitting Number 27/30

Theorem Marton, Supina, Repicky, and vdV. 2025+

5, < non(BEy).

Proof. If AC *2and A ¢ BE,, then {z7'(1) |z c A} isa
splitting family.

Let Y € [x]" and without loss we assume |« \ Y| = &, then we
define B € BP, such that |[B,NY| = 2*land |[B, \ Y| = |a|.
Define ¢ € ¥, (B) by

p(a) = {s€P*2|s | (B,NY)is constant}

Since A ¢ BE,, there is x € A with z ¢ [¢].. Hence, for
cofinally many « € x we see that = | (B, NY) is not constant.
It follows that [{z(§) =i | { € Y}| = « for both i € 2, thus
x71(1) splits Y. O



Unbounding and Club Unbounding 28/30

For f,g € "k, define f <! g if there is a club set C' C & such
that f(a) < g(a) for all a € C. We define b as the least size
of a <“l-unbounded family.

Theorem Cummings and Shelah 1995, Theorem 6

6! = b,.

We may dually describe 2¢' as the least size of a
<°l-dominating family. There is the following long-standing
open question:

Theorem Cummings and Shelah 1995

Iso! = 9,2

Theorem Cummings and Shelah 1995, Theorem 8

If > 1, then o =d,.



Unbounding and Additivity of Higher Closed Null 29/30

Theorem

add(&;) < bgl.

Proof. Given an increasingb € ", let I’ = (I} | a € k) € 1P,
be defined by min(1%) = 4% and &%, = i% + 2/(®). Choose

¢” € £, (I°) such that for any s: [i%, i% +~) = 2and y < b( )
there exists ¢, € ¢”(a) with s C t,. We claim that if B C "«
<“-unbounded, then X = {J,5[¢"]« ¢ &7

Consider [¢], for ¢ € 3¥,.(J) and define f: a +— ot(J,). Let
b e B besuchthat b <! f and let o € S iff f(a) < b(«) and
b = min(J,), then S is stationary. For each « € S we choose

Sa € T2 \ ¥(a), then t,, € 122N ¢P(a). Thus, thereis z € X
with 2 | I? = t;_ forall o € S, and consequently = ¢ [¢].. O

Sa

i
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