Generalising the Closed Null Ideal

Tristan van der Vlugt (TU Wien) joint with Adam Marton, Jaroslav Šupina and Miroslav Repický (UPJŠ Košice)

STiHAC Seminar Hamburg, Amsterdam & Cambridge

October 31, 2025

We will be working with the Cantor space $^{\omega}2$, with the product topology and 2 having the discrete topology. Partial functions $s \colon \omega \rightharpoonup 2$ with finite $\mathrm{dom}(s)$ provide basic clopen sets

$$[s] = \{ f \in {}^{\omega}2 \mid s \subseteq f \}.$$

Give $2=\{0,1\}$ the coin-flip measure: $\mu(\{0\})=\mu(\{1\})=\frac{1}{2}$, then this extends to a product measure on basic clopen [s]:

$$\mu([s]) = \frac{1}{2^{|\text{dom}(s)|}}.$$

This extends to a Lebesgue measure on ${}^{\omega}2$. A subset $N\subseteq {}^{\omega}2$ is called (Lebesgue) null if there exists a measurable superset $N'\supseteq N$ with $\mu(N')=0$.

Let $\mathcal N$ denote the family of null sets of ${}^\omega 2$, then $\mathcal N$ is a σ -ideal, i.e., closed under subsets and countable unions.

Let \mathcal{E} be the σ -ideal consisting of countable unions of *closed* null sets, i.e., of sets that are both null and closed.

Let \mathcal{NWD} be the family of nowhere dense subsets of ${}^{\omega}2$; a set $N\subseteq {}^{\omega}2$ is nowhere dense if for any basic clopen [s] there is basic clopen $[t]\subseteq [s]$ with $N\cap [t]=\varnothing$. Let \mathcal{M} be the σ -ideal of meagre sets, i.e., of countable unions of nowhere dense sets.

Proposition

$$\mathcal{E} \subseteq \mathcal{N} \cap \mathcal{M}$$
.

Proof. Suppose E is closed and dense in [s], then $[s] \subseteq E$ because E is closed, hence $\mu(E) \ge \mu([s]) > 0$.

Let IP denote the set of interval partitions of ω . Given

$$I = \langle I_n \mid n \in \omega \rangle \in \mathrm{IP} \ \mathsf{and} \ \varphi \in \prod_{n \in \omega} \mathcal{P} \binom{I_n}{2}$$
, we write $[\varphi]_* = \{x \in {}^\omega 2 \mid \forall^\infty n \in \omega (x \restriction I_n \in \varphi(n))\}.$

Theorem Bartoszyński and Shelah 1992, Theorem 4.3 The following are equivalent for $X \subseteq {}^{\omega}2$.

- 1. $X \in \mathcal{E}$,
- 2. There is $I = \langle I_n \mid n \in \omega \rangle \in \mathrm{IP}$ and $\varphi \in \prod_{n \in \omega} \mathcal{P} \binom{I_n}{2}$ such that $X \subseteq [\varphi]_*$ and $\sum_{n \in \omega} \frac{|\varphi(n)|}{2^{|I_n|}}$ converges.

Remark

If $B=\langle B_n\mid n\in\omega\rangle$ is a partition of ω into finite sets, then we may replace I by B in the above characterisation.

Let κ be a regular uncountable cardinal and $\kappa = \kappa^{<\kappa}$.

The *higher context* is the result of replacing ω by κ :

We will work mainly with $^\kappa 2$, with the $<\kappa$ -box topology, i.e., partial functions $s:\kappa \rightharpoonup 2$ with $|\mathrm{dom}(s)|<\kappa$ provide basic clopen sets

$$[s] = \{ f \in {}^{\kappa}2 \mid s \subseteq f \}.$$

Instead of σ -ideals on ${}^{\omega}2$, we will work with $\leq \kappa$ -complete ideals on ${}^{\kappa}2$, where $\mathcal I$ is $\leq \kappa$ -complete if $\mathcal I$ is closed under unions of size κ .

Let \mathcal{NWD}_{κ} be the family of nowhere dense subsets of $^{\kappa}2$. Since κ is regular, \mathcal{NWD}_{κ} is $<\kappa$ -complete, but note that it is not $\leq \kappa$ -complete. For example

$$\{f \in {}^{\kappa}2 \mid \forall^{\infty}\alpha \in \kappa(f(\alpha) = 0)\}$$

is a dense set of cardinality $\kappa=2^{<\kappa}$, and thus the union of κ many singletons.

Let \mathcal{M}_{κ} be the least $\leq \kappa$ -complete ideal extending \mathcal{NWD}_{κ} , then the elements of \mathcal{M}_{κ} will be called κ -meagre sets.

The reals \mathbb{R} form a particularly nice field that allows for a particularly nice theory of infinite summation. This is used to define (Lebesgue) measure, because we can make sense of the property of σ -additivity.

This does *not* generalise nicely to higher Baire spaces, as there is no suitable generalisation of \mathbb{R} . This means we cannot define $\mathcal N$ by replacing ω with κ .

Closed sets $X\subseteq {}^\omega 2$ are sets of branches [T] of trees $T\subseteq {}^{<\omega} 2$. For such T, note that $\mu([T])=0$ if and only if for each $s\in T$ there is $n_s\in \omega$ with $\mathrm{dom}(s)< n_s$ such that for at least half of the extensions $t\supseteq s$ with $\mathrm{dom}(t)=n_s$ we have $t\notin T$.

Define $T\subseteq {}^{<\kappa}2$ to be *halving* if every $s\in T$ has $\alpha_s\in \kappa$ with ${\rm dom}(s)<\alpha_s$ such that

$$|\{t \in {}^{\alpha_s}2 \mid s \subseteq t \in T\}| \le |\{t \in {}^{\alpha_s}2 \mid s \subseteq t \notin T\}|.$$

Let us define \mathcal{H}_{κ} to be the least $\leq \kappa$ -complete ideal containing [T] for every halving $T \subseteq {}^{<\kappa}2$.

Proposition

$$\mathcal{H}_{\kappa}=\mathcal{M}_{\kappa}$$
.

Proof. Easily $[T] \in \mathcal{NWD}_{\kappa}$ for every halving $T \subseteq {}^{<\kappa}2$. We show that reversely $\mathcal{NWD}_{\kappa} \subseteq \mathcal{H}_{\kappa}$.

Let $N\in\mathcal{NWD}_\kappa$, and without loss we may assume N is closed. Let $T\subseteq {}^{<\kappa}2$ be such that N=[T] and $s\in T$, then there is $t\in {}^{<\kappa}2$ with $s\subseteq t$ and $t\notin T$. We may assume without loss of generality that $\mathrm{dom}(t)\geq \mathrm{dom}(s)+\gamma$ for some infinite γ , then $\alpha_s=\mathrm{dom}(s)+\gamma\cdot 2$ suffices: there are $|{}^{\gamma}2|=2^{|\gamma|}$ extensions of t at height α_s , but also $|{}^{\gamma\cdot 2}2|=2^{|\gamma|}$ extensions of s. \square

Hence, in some sense \mathcal{M}_{κ} can be viewed as the higher closed null ideal.

Recall that $X \in \mathcal{E}$ iff $X \subseteq [\varphi]_*$ for some $\langle I_n \mid n \in \omega \rangle \in \mathrm{IP}$ and $\varphi \in \prod_{n \in \omega} \mathcal{P} \binom{I_n}{2}$ such that $\sum_{n \in \omega} \frac{|\varphi(n)|}{2^{|I_n|}}$ converges.

Let BP_κ be the set of partitions $\langle B_\alpha \mid \alpha \in \kappa \rangle$ of κ into sets of size $<\kappa$ such that $\liminf_{\alpha \in \kappa} |B_\alpha| = \kappa$. Let $\mathrm{IP}_\kappa \subseteq \mathrm{BP}_\kappa$ consist of those $\langle I_\alpha \mid \alpha \in \kappa \rangle \in \mathrm{BP}_\kappa$ such that I_α is an interval for each α .

If $B = \langle B_{\alpha} \mid \alpha \in \kappa \rangle \in \mathrm{BP}_{\kappa}$, then we define:

$$\Sigma_{\kappa}(B) = \left\{ \varphi \in \prod_{\alpha \in \kappa} \mathcal{P}(B_{\alpha} 2) \mid |\varphi(\alpha)| < 2^{|B_{\alpha}|} \right\},$$

$$\mathcal{E}_{\kappa}(B) = \left\{ X \subseteq {}^{\kappa} 2 \mid \exists \varphi \in \Sigma_{\kappa}(B) (X \subseteq [\varphi]_{*}) \right\},$$

$$\mathcal{E}_{\kappa}^{-} = \bigcup_{I \in \mathrm{IP}_{\kappa}} \mathcal{E}_{\kappa}(I), \qquad \mathcal{B}\mathcal{E}_{\kappa}^{-} = \bigcup_{B \in \mathrm{BP}_{\kappa}} \mathcal{E}_{\kappa}(B).$$

We let \mathcal{E}_{κ} and \mathcal{BE}_{κ} be the least $\leq \kappa$ -complete ideals such that $\mathcal{E}_{\kappa}^{-} \subseteq \mathcal{E}_{\kappa}$ and $\mathcal{BE}_{\kappa}^{-} \subseteq \mathcal{BE}_{\kappa}$.

Theorem Marton, Šupina, Repický, and vdV. 2025+ $\mathcal{E}_{\kappa}^- \subseteq \mathcal{B}\mathcal{E}_{\kappa}^-$ and $\mathcal{E}_{\kappa} \subseteq \mathcal{B}\mathcal{E}_{\kappa}$.

Proof. Clearly $\mathrm{IP}_\kappa\subseteq\mathrm{BP}_\kappa$ implies the inclusions \subseteq . Define

$$X = \{ x \in {}^{\kappa}2 \mid \forall \alpha \in \kappa(x(2 \cdot \alpha + 1) = 0) \},$$

then we claim that $X \in \mathcal{BE}_\kappa \setminus \mathcal{E}_\kappa$. Let $B \in \mathrm{BP}_\kappa$ be such that each B_α contains exactly one *even* ordinal $\xi_\alpha = 2 \cdot \xi_\alpha'$, and let $\varphi(\alpha) = \left\{s \in {}^{B_\alpha}2 \mid \forall \xi \in B_\alpha \setminus \{\xi_\alpha\}(s(\xi) = 0)\}\right\}$, then $X \subseteq [\varphi]_*$. Let $I^\zeta \in \mathrm{IP}_\kappa$ and $\varphi^\zeta \in \Sigma_\kappa(I^\zeta)$ for each $\zeta \in \kappa$. For each $\alpha \in \kappa$ choose β_α , ζ_α such that $I_\alpha := I_{\beta_\alpha}^{\zeta_\alpha}$ is infinite, $I_\alpha \cap I_{\alpha'} = \varnothing$ when $\alpha \neq \alpha'$, and $|\{\alpha \in \kappa \mid \zeta = \zeta_\alpha\}| = \kappa$. Since I_α is an infinite interval, $|X \upharpoonright I_\alpha| = 2^{|I_\alpha|}$, thus let $s_\alpha \in (X \upharpoonright I_\alpha) \setminus \varphi^{\zeta_\alpha}(\beta_\alpha)$. So, if $x \in X$ with $\bigcup_{\alpha \in \kappa} s_\alpha \subseteq x$, then $x \notin [\varphi^\zeta]_*$ for any $\zeta \in \kappa$.

For $x \in {}^{\kappa}2$ and $B = \langle B_{\alpha} \mid \alpha \in \kappa \rangle \in \mathrm{BP}_{\kappa}$, let us write

$$\langle x, B \rangle = \{ y \in {}^{\kappa}2 \mid \forall \alpha \in \kappa \quad (y \upharpoonright B_{\alpha} \neq x \upharpoonright B_{\alpha}) \}$$
$$\langle x, B \rangle_{*} = \{ y \in {}^{\kappa}2 \mid \forall^{\infty}\alpha \in \kappa \quad (y \upharpoonright B_{\alpha} \neq x \upharpoonright B_{\alpha}) \}$$

 $\text{Define }\mathcal{CM}_{\kappa}=\{X\subseteq {}^{\kappa}2\mid \exists x\in {}^{\kappa}2\exists I\in \mathrm{IP}_{\kappa}(X\subseteq \langle x,I\rangle_{*})\}.$

Theorem Blass, Hyttinen, and Zhang, § 4

 \mathcal{CM}_{κ} is a $\leq \kappa$ -complete ideal, $\mathcal{CM}_{\kappa} \subseteq \mathcal{M}_{\kappa}$, and equality holds if and only if κ is a regular strong limit cardinal.

Proposition

If $B \in \mathrm{BP}_{\kappa}$, then there is $I \in \mathrm{IP}_{\kappa}$ and a sequence $\langle A_{\alpha} \mid \alpha \in \kappa \rangle$ of subsets of κ such that $I_{\alpha} = \bigcup_{\xi \in A_{\alpha}} B_{\xi}$.

Corollary

$$\mathcal{CM}_{\kappa} = \{ X \subseteq {}^{\kappa}2 \mid \exists x \in {}^{\kappa}2\exists B \in \mathrm{BP}_{\kappa}(X \subseteq \langle x, B \rangle_*) \}.$$

Theorem Marton, Šupina, Repický, and vdV. 2025+ $\mathcal{BE}_{\kappa} \subseteq \mathcal{CM}_{\kappa}$.

Proof. Let $Y \in \mathcal{BE}_{\kappa}^-$, and let $B \in \mathrm{BP}_{\kappa}$ and $\varphi \in \Sigma_{\kappa}(B)$ be such that $Y \subseteq [\varphi]_*$. For each $\alpha \in \kappa$, let $x_{\alpha} \in {}^{B_{\alpha}}2 \setminus \varphi(\alpha)$ and define $x = \bigcup_{\alpha \in \kappa} x_{\alpha}$. If $y \in Y$, then $y \upharpoonright B_{\alpha} \in \varphi(\alpha)$ for almost all α , hence $y \upharpoonright B_{\alpha} \neq x \upharpoonright B_{\alpha}$ for almost all α , thus $y \in \langle x, B \rangle_*$. Therefore $Y \in \mathcal{CM}_{\kappa}$.

Overview

$$\begin{array}{l} \mathcal{E}_{\kappa} \; \subsetneq \mathcal{B}\mathcal{E}_{\kappa} \subseteq \mathcal{C}\mathcal{M}_{\kappa} \subseteq \mathcal{M}_{\kappa} \\ \cup \mathsf{I} \qquad \cup \mathsf{I} \\ \mathcal{E}_{\kappa}^{-} \subsetneq \mathcal{B}\mathcal{E}_{\kappa}^{-} \end{array}$$

Let $I\in \mathrm{IP}_\kappa$ be such that $|I_\alpha|\geq 2$ for all $\alpha\in\kappa$ and let $x\in\kappa^2$. If $S_\alpha={}^{I_\alpha}2\setminus\{x\restriction I_\alpha\}$, then $\langle x,I\rangle\subseteq\kappa^2$ with the subspace topology and $\prod_{\alpha\in\kappa}S_\alpha$ with the product topology are homeomorphic. Define $\mathcal{M}_\kappa^{\langle x,I\rangle}$ as the ideal of κ -meagre subsets of $\langle x,I\rangle$, then $\mathcal{M}_\kappa^{\langle x,I\rangle}$ is proper, i.e., $\langle x,I\rangle$ is not the union of κ many nowhere dense subsets of $\langle x,I\rangle$.

Theorem Marton, Šupina, Repický, and vdV. 2025+ $\mathcal{BE}_{\kappa} \subsetneq \mathcal{CM}_{\kappa}$.

Proof. Let $x \in {}^{\kappa}2$ and $I \in \operatorname{IP}_{\kappa}$ with $|I_{\alpha}| \geq 2$ for all $\alpha \in \kappa$, then $\langle x,I \rangle \in \mathcal{CM}_{\kappa} \setminus \mathcal{M}_{\kappa}^{\langle x,I \rangle}$. To conclude the proof we claim that if $A \in \mathcal{BE}_{\kappa}^-$, then $A \cap \langle x,I \rangle \in \mathcal{M}_{\kappa}^{\langle x,I \rangle}$, and thus $A' \cap \langle x,I \rangle \in \mathcal{M}_{\kappa}^{\langle x,I \rangle}$ for all $A' \in \mathcal{BE}_{\kappa}$, so $\langle x,I \rangle \notin \mathcal{BE}_{\kappa}$. \cdots

 $\begin{array}{ll} \cdots & \text{Let } B \in \mathrm{BP}_\kappa \text{ and } \varphi \in \Sigma_\kappa(B) \text{ be such that } A \subseteq [\varphi]_*. \text{ Define} \\ [\varphi]_\beta = \{y \in {}^\kappa 2 \mid \forall \alpha \geq \beta (y \upharpoonright B_\alpha \in \varphi(\alpha))\} \text{, then } [\varphi]_* = \bigcup_{\beta \in \kappa} [\varphi]_\beta. \\ \textbf{Claim. } [\varphi]_\beta \text{ is nowhere dense in } \langle x, I \rangle. \end{array}$

Fix some $s\in {}^{<\kappa}2$ such that $\mathrm{dom}(s)=\bigcup_{\alpha\in\delta}I_{\alpha}$ for some $\delta\in\kappa$ and $[s]\cap\langle x,I\rangle\neq\varnothing$. Let $\gamma\geq\beta$ and $\delta'>\delta$ be such that B_{γ} is infinite and $B_{\gamma}\subseteq\bigcup_{\alpha\in[\delta,\,\delta')}I_{\alpha}$.

Let $S=\{\alpha\in[\delta,\,\delta')\mid I_\alpha\subseteq B_\gamma\}$, and for each $\alpha\in[\delta,\,\delta')$ pick $\xi_\alpha\in I_\alpha$ arbitrary, with $\xi_\alpha\notin B_\gamma$ if $\alpha\notin S$. Now note that $|B_\gamma\setminus\{\xi_\alpha\mid\alpha\in[\delta,\,\delta')\}|=|B_\gamma|$, so there is $t\in{}^{B_\gamma}2\setminus\varphi(\gamma)$ such that $t(\xi_\alpha)\neq x(\xi_\alpha)$ for all $\alpha\in[\delta,\,\delta')$. We may now extend $s\cup t$ to some s' with $\mathrm{dom}(s')=\bigcup_{\alpha\in\delta'}I_\alpha$ where $s'(\xi_\alpha)\neq x(\xi_\alpha)$ for all $\alpha\in[\delta,\,\delta')$. Then $[s']\cap\langle x,I\rangle\neq\varnothing$ and $[s']\cap[\varphi]_\beta=\varnothing$.

Conclusion 15/30

We may conclude:

Theorem

 $\mathcal{E}_{\kappa} \subsetneq \mathcal{B}\mathcal{E}_{\kappa} \subsetneq \mathcal{C}\mathcal{M}_{\kappa} = \mathcal{M}_{\kappa}$ if $\kappa = \kappa^{<\kappa}$ is strongly inaccessible. $\mathcal{E}_{\kappa} \subsetneq \mathcal{B}\mathcal{E}_{\kappa} \subsetneq \mathcal{C}\mathcal{M}_{\kappa} \subsetneq \mathcal{M}_{\kappa}$ if $\kappa = \kappa^{<\kappa}$ is weakly inaccessible.

Since we require $\liminf_{\alpha \in \kappa} |B_{\alpha}| = \kappa$ in the definition of BP_{κ} , and thus of \mathcal{BE}_{κ} , our definition trivialises when $\kappa = \lambda^+ = 2^{\lambda}$ for some λ .

For a σ -ideal $\mathcal{I} \subseteq \mathcal{P}(^{\omega}2)$, we define

$$\begin{split} \operatorname{cov}(\mathcal{I}) &= \min\{|C| \mid C \subseteq \mathcal{I} \text{ and } \bigcup C = {}^\omega 2\}, \\ \operatorname{non}(\mathcal{I}) &= \min\{|N| \mid N \subseteq {}^\omega 2 \text{ and } N \notin \mathcal{I}\}, \\ \operatorname{add}(\mathcal{I}) &= \min\{|A| \mid A \subseteq \mathcal{I} \text{ and } \bigcup A \notin \mathcal{I}\}, \\ \operatorname{cof}(\mathcal{I}) &= \min\{|F| \mid F \subseteq \mathcal{I} \text{ and } \forall I \in \mathcal{I} \exists J \in F(I \subseteq J)\}. \end{split}$$

For $f,g\in {}^\omega\omega$, let $f\le {}^*g$ if $f(n)\le g(n)$ for almost all $n\in\omega$. A family $D\subseteq {}^\omega\omega$ is dominating if every $f\in {}^\omega\omega$ has some $g\in D$ with $f\le {}^*g$. A family $B\subseteq {}^\omega\omega$ is unbounded if no $g\in {}^\omega\omega$ exists such that $f\le {}^*g$ for all $f\in B$.

The dominating and unbounding numbers $\mathfrak d$ and $\mathfrak b$ are the least size of dominating and unbounded families, respectively.

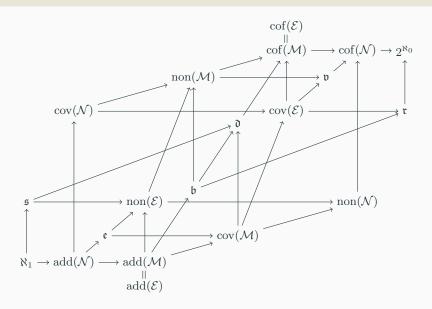
For infinite $X,Y\subseteq \omega$, we say X splits or reaps Y if both $Y\cap X$ and $Y\setminus X$ are infinite. A family $S\subseteq \mathcal{P}(\omega)$ is splitting if every infinite $Y\subseteq \omega$ is split by some $X\in S$. A family $R\subseteq \mathcal{P}(\omega)$ of infinite sets is $\mathit{unreaped}$ if no $X\subseteq \omega$ splits all $Y\in R$.

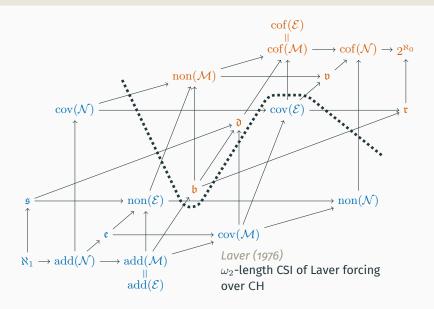
The splitting and reaping numbers $\mathfrak s$ and $\mathfrak r$ are the least size of splitting and unreaped families, respectively.

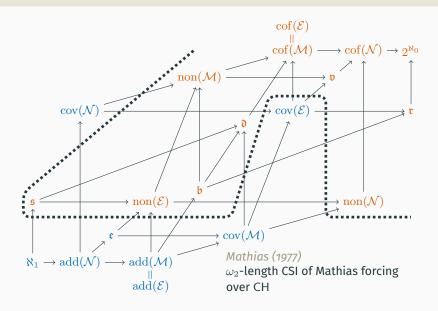
Let $\pi\colon {}^{<\omega}\omega \to \omega$, $f\in {}^\omega\omega$ and let $D\subseteq \omega$ be infinite, then we say that π predicts f on D if $\pi(f\restriction n)=f(n)$ for almost all $n\in D$. We call (π,D) a *predictor*.

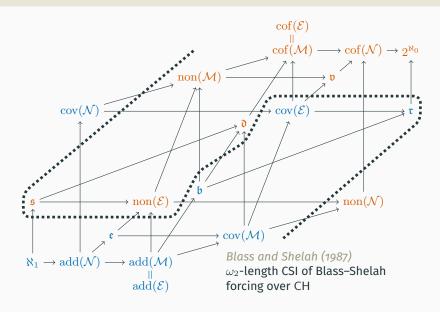
A predicting family is a collection P of predictors such that each $f \in {}^\omega \omega$ is predicted by some predictor in P. An evading family is a family $E \subseteq {}^\omega \omega$ such that no predictor predicts every $f \in E$.

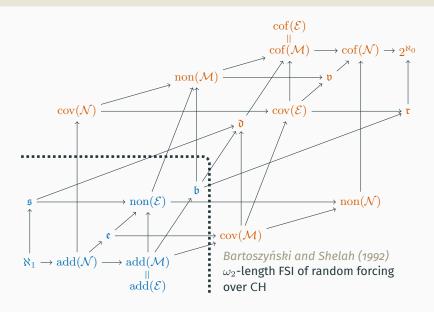
The evasion and prediction numbers e and v are the least size of evading and predicting families, respectively.

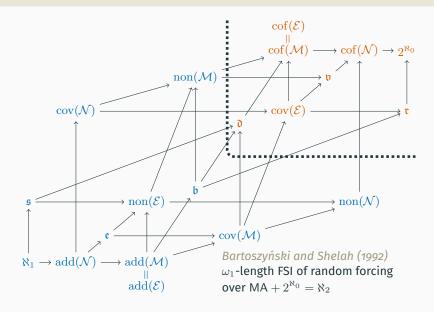


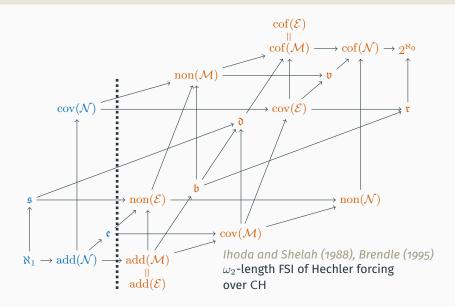


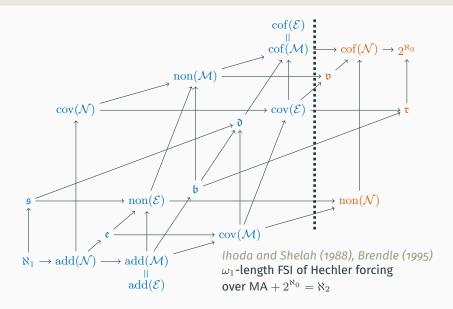


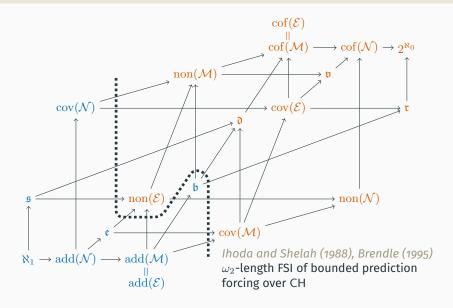


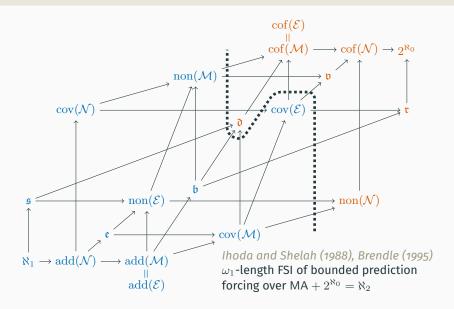


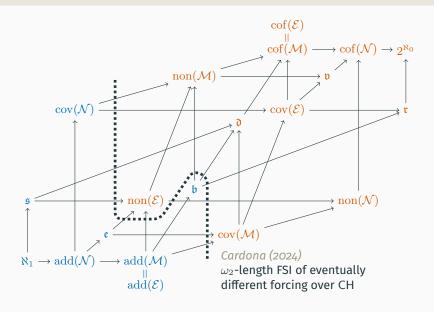


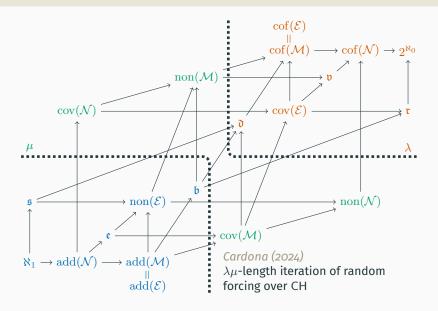


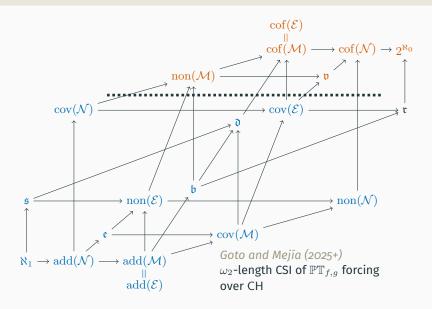


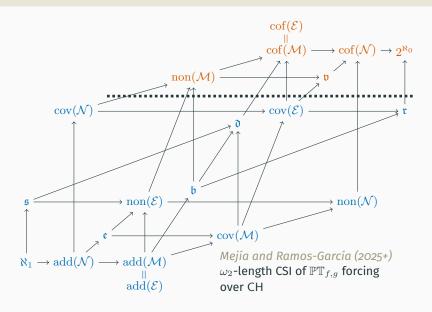












Define \mathfrak{d}_{κ} , \mathfrak{b}_{κ} , \mathfrak{s}_{κ} , \mathfrak{e}_{κ} and \mathfrak{v}_{κ} by simple replacement of ω by κ . To be precise:

- In the definitions of \mathfrak{d}_{κ} and \mathfrak{b}_{κ} , we have $f\leq^{*}g$ for $f,g\in{}^{\kappa}\kappa$ if $f(\alpha)\leq g(\alpha)$ for almost all $\alpha\in\kappa$.
- In the definitions of \mathfrak{s}_{κ} and \mathfrak{r}_{κ} , we use subsets $X,Y\subseteq \kappa$ of size κ , and X splits Y if $|Y\cap X|=|Y\setminus X|=\kappa$.
- In the definitions of \mathfrak{e}_{κ} and \mathfrak{v}_{κ} , the predictor (π,D) consists of $\pi: {}^{<\kappa}\kappa \to \kappa$ and $D \subseteq \kappa$ with $|D| = \kappa$, and $f \in {}^{\kappa}\kappa$ is predicted by π on D if $f(\alpha) = \pi(f \upharpoonright \alpha)$ holds for almost all $\alpha \in D$.

Theorem Raghavan and Shelah 2017

 $\mathfrak{s}_{\kappa} \leq \mathfrak{b}_{\kappa}$, and if $\beth_{\omega} < \kappa$, then $\mathfrak{d}_{\kappa} \leq \mathfrak{r}_{\kappa}$.

Theorem Zapletal 1997, Ben-Neria and Gitik 2015

 $\kappa^+ \leq \mathfrak{s}_{\kappa}$ if and only if κ is weakly compact.

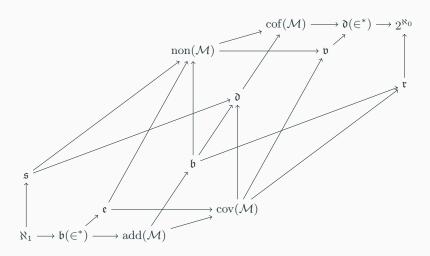
 $\kappa^{+n} \leq \mathfrak{s}_{\kappa}$ implies the existence of an inner model in which κ is measurable with Mitchell order $o(\kappa) = \kappa^{+n}$.

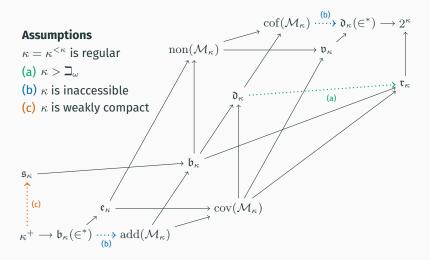
Let $\varphi \in \prod_{\alpha \in \kappa} [\kappa]^{|\alpha|}$ and $f \in {}^{\kappa}\kappa$, then we say φ localises f if $f(\alpha) \in \varphi(\alpha)$ for almost all $\alpha \in \kappa$.

A family $L\subseteq \prod_{\alpha\in\kappa}[\kappa]^{|\alpha|}$ is called *localising* if every $f\in {}^\kappa\kappa$ is localised by some $\varphi\in L$, and let us call a family $U\subseteq {}^\kappa\kappa$ unlocalisable if no $\varphi\in\prod_{\alpha\in\kappa}[\kappa]^{|\alpha|}$ localises all $f\in U$.

The localisation and unlocalisation numbers $\mathfrak{d}_{\kappa}(\in^*)$ and $\mathfrak{b}_{\kappa}(\in^*)$ are the least size of localising and unlocalisable families, respectively.

Theorem Bartoszyński 1987 $cof(\mathcal{N}) = \mathfrak{d}(\in^*)$ and $add(\mathcal{N}) = \mathfrak{b}(\in^*)$.





Classically we have the following results for $non(\mathcal{E})$:

- $\operatorname{non}(\mathcal{E}) \leq \operatorname{non}(\mathcal{M})$,
- $add(\mathcal{M}) \leq non(\mathcal{E})$,
- $\mathfrak{e} \leq \operatorname{non}(\mathcal{E})$,
- $\mathfrak{s} \leq \operatorname{non}(\mathcal{E})$,

and the following results for $add(\mathcal{E})$:

- $add(\mathcal{M}) = add(\mathcal{E})$,
- $add(\mathcal{E}) \leq cov(\mathcal{M})$,
- $add(\mathcal{E}) \leq \mathfrak{b}$,
- $\mathfrak{b}(\in^*) \leq \operatorname{add}(\mathcal{E})$.

The question is which of these generalise.

So far, we have:

```
✓ \operatorname{non}(\mathcal{E}_{\kappa}) \leq \operatorname{non}(\mathcal{BE}_{\kappa}) \leq \operatorname{non}(\mathcal{M}_{\kappa}),
```

?
$$\operatorname{add}(\mathcal{M}_{\kappa}) \leq \operatorname{non}(\mathcal{E}_{\kappa})$$
,

$$\checkmark \mathfrak{e}_{\kappa} \leq \operatorname{non}(\mathcal{BE}_{\kappa}),$$
 ? $\mathfrak{e}_{\kappa} \leq \operatorname{non}(\mathcal{E}_{\kappa}),$

$$\checkmark \mathfrak{s}_{\kappa} \leq \operatorname{non}(\mathcal{BE}_{\kappa}), \qquad ? \mathfrak{s}_{\kappa} \leq \operatorname{non}(\mathcal{E}_{\kappa}),$$

and:

$$?? \operatorname{add}(\mathcal{M}_{\kappa}) = \operatorname{add}(\mathcal{E}_{\kappa})$$
 (due to Lebesgue measure),

?
$$\operatorname{add}(\mathcal{E}_{\kappa}) \leq \operatorname{cov}(\mathcal{M}_{\kappa})$$
,

?
$$\operatorname{add}(\mathcal{E}_{\kappa}) \leq \mathfrak{b}_{\kappa}$$
, $\checkmark \operatorname{add}(\mathcal{E}_{\kappa}^{-}) \leq \mathfrak{b}_{\kappa}$, ? $\mathfrak{d}_{\kappa} \leq \operatorname{cof}(\mathcal{E}_{\kappa}^{-})$,

?
$$\mathfrak{b}_{\kappa}(\in^*) \leq \operatorname{add}(\mathcal{E}_{\kappa})$$
.

In conclusion, many questions remain.

Theorem Marton, Šupina, Repický, and vdV. 2025+ $\mathfrak{s}_{\kappa} \leq \operatorname{non}(\mathcal{BE}_{\kappa})$.

Proof. If $A \subseteq {}^{\kappa}2$ and $A \notin \mathcal{BE}_{\kappa}$, then $\{x^{-1}(1) \mid x \in A\}$ is a splitting family.

Let $Y\in [\kappa]^\kappa$ and without loss we assume $|\kappa\setminus Y|=\kappa$, then we define $B\in \mathrm{BP}_\kappa$ such that $|B_\alpha\cap Y|=2^{|\alpha|}$ and $|B_\alpha\setminus Y|=|\alpha|$. Define $\varphi\in \Sigma_\kappa(B)$ by

$$\varphi(\alpha) = \left\{ s \in {}^{B_{\alpha}}2 \mid s \upharpoonright (B_{\alpha} \cap Y) \text{ is constant} \right\}$$

Since $A \notin \mathcal{BE}_{\kappa}$, there is $x \in A$ with $x \notin [\varphi]_*$. Hence, for cofinally many $\alpha \in \kappa$ we see that $x \upharpoonright (B_{\alpha} \cap Y)$ is not constant. It follows that $|\{x(\xi) = i \mid \xi \in Y\}| = \kappa$ for both $i \in 2$, thus $x^{-1}(1)$ splits Y.

For $f,g\in {}^{\kappa}\kappa$, define $f\leq^{\mathrm{cl}}g$ if there is a club set $C\subseteq \kappa$ such that $f(\alpha)\leq g(\alpha)$ for all $\alpha\in C$. We define $\mathfrak{b}_{\kappa}^{\mathrm{cl}}$ as the least size of a \leq^{cl} -unbounded family.

Theorem Cummings and Shelah 1995, Theorem 6 $\mathfrak{b}_{\kappa}^{\mathrm{cl}} = \mathfrak{b}_{\kappa}.$

We may dually describe $\mathfrak{d}_\kappa^{\rm cl}$ as the least size of a \le cl-dominating family. There is the following long-standing open question:

Theorem Cummings and Shelah 1995 Is $\mathfrak{d}_{\kappa}^{\text{cl}} = \mathfrak{d}_{\kappa}$?

Theorem Cummings and Shelah 1995, Theorem 8 If $\kappa>\beth_\omega$, then $\mathfrak{d}_\kappa^{\rm cl}=\mathfrak{d}_\kappa$.

Theorem Marton, Šupina, Repický, and vdV. 2025+ $\operatorname{add}(\mathcal{E}_{\kappa}^{-}) \leq \mathfrak{b}_{\kappa}^{\operatorname{cl}}$.

Proof. Given an increasing $b \in {}^{\kappa}\kappa$, let $I^b = \left\langle I^b_{\alpha} \mid \alpha \in \kappa \right\rangle \in \operatorname{IP}_{\kappa}$ be defined by $\min(I^b_{\alpha}) = i^b_{\alpha}$ and $i^b_{\alpha+1} = i^b_{\alpha} + 2^{|b(\alpha)|}$. Choose $\varphi^b \in \Sigma_{\kappa}(I^b)$ such that for any $s \colon \left[i^b_{\alpha}, i^b_{\alpha} + \gamma\right) \to 2$ and $\gamma \leq b(\alpha)$ there exists $t_s \in \varphi^b(\alpha)$ with $s \subseteq t_s$. We claim that if $B \subseteq {}^{\kappa}\kappa$ is \leq^{cl} -unbounded, then $X = \bigcup_{b \in B} \left[\varphi^b\right]_* \notin \mathcal{E}^-_{\kappa}$.

Consider $[\psi]_*$ for $\psi \in \Sigma_\kappa(J)$ and define $f \colon \alpha \mapsto \operatorname{ot}(J_\alpha)$. Let $b \in B$ be such that $b \not \geq^{\mathscr{A}} f$ and let $\alpha \in S$ iff $f(\alpha) \leq b(\alpha)$ and $i_\alpha^b = \min(J_\alpha)$, then S is stationary. For each $\alpha \in S$ we choose $s_\alpha \in {}^{J_\alpha}2 \setminus \psi(\alpha)$, then $t_{s_\alpha} \in {}^{I_\alpha^b}2 \cap \varphi^b(\alpha)$. Thus, there is $x \in X$ with $x \upharpoonright I_\alpha^b = t_{\tilde{s}_\alpha}$ for all $\alpha \in S$, and consequently $x \notin [\psi]_*$.

• Tomek Bartoszyński and Saharon Shelah (1992).

Closed measure zero sets.

In: Annals of Pure and Applied Logic 58.2, pp. 93-110. DOI: 10 . 1016 / 0168 - 0072 (92) 90001-g.

• Andreas Blass, Tapani Hyttinen, and Yi Zhang.

Mad families and their neighbors.

Preprint. URL: https://dept.math.lsa.umich.edu/~ablass/madfam.pdf.

• Miguel Cardona (2024).

The cardinal characteristics of the ideal generated by the F_{σ} measure zero subsets of the reals.

In: RIMS Kokyuroku 2290, 2. URL: https://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/2290.html.

Adam Marton, Jaroslav Šupina, Miroslav Repický, and Tristan van der Vlugt.
 The closed null ideal for higher Baire spaces.

In preparation.