Dominating and Eventually Different κ -reals

Tristan van der Vlugt Universität Hamburg

STiHaC Forschungsseminar Mathematische Logik December 8, 2023

Introduction

How do you separate cardinal characteristics?

Answer: (Usually) to force $\lambda = \mathfrak{x} < \mathfrak{y} = \kappa$, your strategies are:

- (1) Start with a model where $\mathfrak{x} = \mathfrak{y} = \lambda$ and add witnesses for $\mathfrak{y} = \kappa$ without disturbing witnesses for $\mathfrak{x} = \lambda$
- (2) Start with a model where $\mathfrak{x} = \mathfrak{y} = \kappa$ and add witnesses for $\mathfrak{x} = \lambda$ without disturbing witnesses for $\mathfrak{y} = \kappa$

For instance, we can force $\mathfrak{b} < \mathfrak{d} \, \cdots$

- \cdots by adding \aleph_2 -many *Cohen reals* over $\mathbf{V} \vDash \mathfrak{b} = \mathfrak{d} = \aleph_1$ ", or
- $\cdots \text{ by adding } \aleph_1 \text{-many } \textit{Cohen reals over } \mathbf{V} \vDash \texttt{``b} = \mathfrak{d} = \aleph_2 \textit{``}$

Question: Which forcing notions add which kinds of witnesses?

We will assume that κ is an inaccessible cardinal. The generalised Baire space ${}^{\kappa}\kappa$ is the set of functions $f : \kappa \to \kappa$, called κ -reals. Given functions $f, f' \in {}^{\kappa}\kappa$ and a relation $\lhd \subseteq \kappa \times \kappa$, we write

$$\begin{split} f \lhd f' & \Leftrightarrow & \forall \alpha \in \kappa(f(\alpha) \lhd f'(\alpha)), \\ f \lhd^* f' & \Leftrightarrow & \exists \alpha_0 \in \kappa \forall \alpha \ge \alpha_0(f(\alpha) \lhd f'(\alpha)), \\ f \lhd^\infty f' & \Leftrightarrow & \forall \alpha_0 \in \kappa \exists \alpha \ge \alpha_0(f(\alpha) \lhd f'(\alpha)). \\ & f \measuredangle f' \Leftrightarrow \neg (f \lhd f') \end{split}$$

$$f \not \preccurlyeq^{*} f' \Leftrightarrow \neg (f \vartriangleleft^{*} f')$$
$$f \not \preccurlyeq^{\infty} f' \Leftrightarrow \neg (f \vartriangleleft^{\infty} f')$$

Let $\mathbf{V} \subseteq \mathbf{W}$ be models of ZFC. We call a κ -real $f \in ({}^{\kappa}\kappa)^{\mathbf{W}}$...

- ... dominating over V if $g \leq^* f$ for all $g \in ({}^{\kappa}\kappa)^{\mathbf{V}}$.
- ... unbounded over V if $f \not\leq^* g$ for all $g \in ({}^{\kappa}\kappa)^{\mathbf{V}}$.
- ... eventually different over V if $f \not\Rightarrow^{\infty} g$ for all $g \in ({}^{\kappa}\kappa)^{V}$.
- ... unbounded non-dominating eventually different (unded) over V if f is eventually different and unbounded over V, but not dominating.

Let $\mathbf{V} \subseteq \mathbf{W}$ be models of ZFC with $b \in (\kappa \kappa)^{\mathbf{V}}$. We assume $b(\alpha)$ is an infinite cardinal for all $\alpha \in \kappa$. Define:

$$\prod b = \prod_{\alpha \in \kappa} b(\alpha) = \{ f \in {}^{\kappa}\kappa \mid f < b \} \,.$$

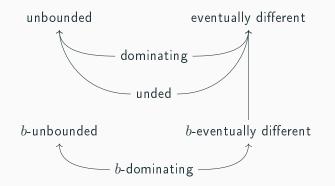
We call a bounded $\kappa\text{-real }f\in (\prod b)^{\mathbf{W}}$...

... b-dominating over V if $g \leq^* f$ for all $g \in (\prod b)^{\mathbf{V}}$.

... b-unbounded over V if $f \not\leq^* g$ for all $g \in (\prod b)^V$.

... b-eventually different over V if $f \not= \infty g$ for all $g \in (\prod b)^{V}$.

Some Simple Observations



An arrow $P \rightarrow Q$ means that the existence of a κ -real with property P over \mathbf{V} implies the existence of a κ -real with property Q over \mathbf{V} . Question 1: Is the diagram complete?

Question 2: Which forcing notions add which kinds of κ -reals?

We will look at forcing notions that preserve ${}^{<\kappa}\kappa$ (that is, are $<\kappa$ -distributive), preserve cardinals, and add a new κ -real:

- κ -Cohen forcing \mathbb{C}_{κ}
- κ -Hechler forcing \mathbb{D}_{κ}
- Bounded κ -Hechler forcing \mathbb{D}^b_κ
- κ -Eventually Different forcing \mathbb{E}_{κ}
- κ -Laver forcing guided by a filter $\mathbb{L}^{\mathcal{U}}_{\kappa}$
- κ -Miller forcing guided by an filter $\operatorname{Mi}_{\kappa}^{\mathcal{U}}$
- Bounded κ -Miller forcing (κ -Miller Lite forcing) \mathbb{ML}^b_κ

A forcing notion \mathbb{P} is $<\kappa$ -closed if for every descending sequence of conditions of length $<\kappa$ has a lower bound in \mathbb{P} .

 $\mathcal{G}(\mathbb{P},p)$ denotes a game of length κ , where at stage $\alpha \in \kappa$, White chooses a condition p_{α} stronger than all previous Black moves and Black subsequently chooses $p'_{\alpha} \leq p_{\alpha}$. White wins $\mathcal{G}(\mathbb{P},p)$ if White can make moves at every stage $\alpha \in \kappa$. A forcing \mathbb{P} is **strategically** $<\kappa$ -closed if White has a winning strategy for $\mathcal{G}(\mathbb{P},p)$ for all $p \in \mathbb{P}$.

A forcing \mathbb{P} is $<\kappa$ -distributive if for any sequence $\langle D_{\alpha} \mid \alpha \in \lambda \rangle$ with $\lambda < \kappa$ and each $D_{\alpha} \subseteq \mathbb{P}$ open dense, also $\bigcap_{\alpha \in \lambda} D_{\alpha}$ is dense. We have the following implications:

 $< \kappa$ -closed \Rightarrow strategically $< \kappa$ -closed \Rightarrow $< \kappa$ -distributive

- A $< \kappa$ -distributive forcing notion $\mathbb P$ preserves all cardinals $\leq \kappa$.
- A forcing \mathbb{P} is $<\mu$ -c.c. if all antichains are of size $<\mu$. If \mathbb{P} is $<\mu$ -c.c., it preserves all cardinals $\geq \mu$.

We say $A \subseteq \mathbb{P}$ is $<\lambda$ -linked if every $B \in [A]^{<\lambda}$ has a lower bound (in \mathbb{P}). We call $\mathbb{P}(\mu, \lambda)$ -centred if \mathbb{P} is a μ -union of $<\lambda$ -linked sets.

We say $A \subseteq \mathbb{P}$ has calibre λ if for every $B \in [A]^{\lambda}$ there exists $q \in \mathbb{P}$ such that $|\{p \in B \mid q \leq p\}| = \lambda$. We say \mathbb{P} is (μ, λ) -calibre if it is a μ -union of λ -calibre sets.

If \mathbb{P} is (μ, λ) -centred or (μ, λ) -calibre for any $3 \leq \lambda \leq \mu$, then \mathbb{P} is $<\mu^+$ -c.c., and thus \mathbb{P} preserves cardinals $\geq \mu^+$.

The κ -Cohen forcing \mathbb{C}_{κ} has conditions $s \in {}^{<\kappa}\kappa$. The ordering is defined by $t \leq s$ iff $s \subseteq t$. \mathbb{C}_{κ} is $<\kappa$ -closed and (trivially) $<\kappa^+$ -c.c.. \mathbb{C}_{κ} adds a κ -Cohen real $\bigcup G \in {}^{\kappa}\kappa$, where G is a \mathbb{C}_{κ} -generic filter.

A κ -Cohen real is unbounded over \mathbf{V} .

Consider $f_b \in \prod b$, where $f = \bigcup G$ is a κ -Cohen real and $f_b(\alpha)$ is such that there exists $\beta \in \kappa$ with $f(\alpha) = b(\alpha) \cdot \beta + f_b(\alpha)$. Then f_b is *b*-unbounded.

But does $\mathbf{V}^{\mathbb{C}_{\kappa}}$ contain any other kind of κ -real?

Lemma Similar to [Bartoszyński and Judah, 1995, Lemma 3.1.2] for ${}^{\omega}\omega$ \mathbb{C}_{κ} does not add any eventually different κ -reals.

Proof. Since $2^{<\kappa} = \kappa$, we can enumerate \mathbb{C}_{κ} as $\{p_{\alpha} \mid \alpha \in \kappa\}$. Suppose \dot{f} is a name for an eventually different κ -real over \mathbf{V} . Define $g(\alpha) = \min \left\{ \xi \in \kappa \mid p_{\alpha} \not\Vdash ``\dot{f}(\alpha) \neq \xi" \right\}$. Now suppose that $p \in \mathbb{C}_{\kappa}$ and $p \Vdash ``\dot{f} \not\models \infty g"$, then there is some α_0 and $p' \leq p$ such that $p' \Vdash ``\dot{f}(\alpha) \neq g(\alpha)"$ for all $\alpha \geq \alpha_0$. But then there is $\alpha \geq \alpha_0$ such that $p_{\alpha} \leq p'$ and

 $p_{\alpha} \not\Vdash ``\dot{f}(\alpha) \neq g(\alpha)"$, contradiction.

unboundec	ed eventually different							
dominating								
b-unbounde		 b-eventually different ☆						
	b-dominating							
	\mathbb{C}_{κ}	$\left \mathbb{D}_{\kappa} \right \mathbb{D}^{b}_{\kappa} \left \mathbb{E}_{\kappa} \right \mathbb{L}^{\mathcal{U}}_{\kappa} \left \mathbb{M} \mathrm{i}^{\mathcal{U}}_{\kappa} \right \mathbb{M} \mathbb{L}^{b}_{\kappa}$						
unbounded	1							
eventually different	×							
dominating	×							
unded	×							
<i>b</i> -unbounded	1							
b-eventually different	×							
<i>b</i> -dominating	×							

The κ -Hechler forcing \mathbb{D}_{κ} has conditions (s, f) where $s \in {}^{<\kappa}\kappa$ and $f \in {}^{\kappa}\kappa$. The ordering is defined by $(t,g) \leq (s,f)$ iff $s \subseteq t$ and $f(\alpha) \leq g(\alpha)$ for $\alpha \in \kappa \setminus \operatorname{dom}(t)$ and $f(\alpha) \leq t(\alpha)$ for $\alpha \in \operatorname{dom}(t) \setminus \operatorname{dom}(s)$.

 \mathbb{D}_{κ} is $<\kappa$ -closed and (κ, κ) -centred (since the subsets $D_s = \{(t, f) \in \mathbb{D}_{\kappa} \mid t = s\}$ for $s \in {}^{<\kappa}\kappa$ are $<\kappa$ -linked).

 \mathbb{D}_{κ} adds a κ -Hechler real $\bigcup \{s \mid (s, \cdot) \in G\}$, where G is \mathbb{D}_{κ} -generic. A κ -Hechler real f is dominating over \mathbf{V} , since $(s,g) \Vdash "g \leq * \dot{f}"$. Moreover, \mathbb{D}_{κ} adds a κ -Cohen real, and hence a b-unbounded κ -real over \mathbf{V} .

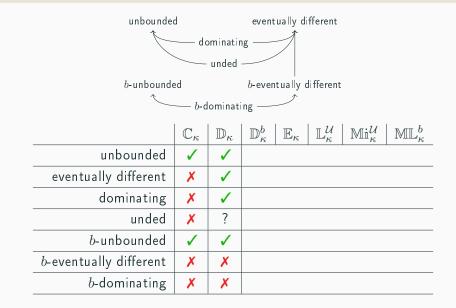
Centredness & b-Eventually Different κ -Reals

Lemma Similar to [Bartoszyński and Judah, 1995, Lemma 6.5.30] for ${}^{\omega}\omega$ If \mathbb{P} is (κ, κ) -centred, it does not add *b*-eventually different κ -reals.

Proof. Let $\mathbb{P} = \bigcup_{\gamma \in \kappa} P_{\gamma}$ such that each P_{γ} is $<\kappa$ -linked, and let $\Vdash_{\mathbb{P}}$ " $\dot{f} \in \prod b$ ".

Define $g_{\gamma}(\alpha) = \min \left\{ \xi \in b(\alpha) \mid \forall p \in P_{\gamma}(p \not\Vdash ``\dot{f}(\alpha) \neq \xi)" \right\}$, then $g_{\gamma}(\alpha) \in b(\alpha)$ (If not, for each $\beta \in b(\alpha)$ find $p_{\beta} \in P_{\gamma}$ with $p_{\beta} \Vdash ``\dot{f}(\alpha) \neq \beta"$, then $\{p_{\beta} \mid \beta \in b(\alpha)\}$ has no common extension.)

Suppose $h = {}^{\infty} g_{\gamma}$ for all $\gamma \in \kappa$. If $\alpha_0 \in \kappa$ and $p \in P_{\gamma}$, then we can find $\alpha \ge \alpha_0$ such that $h(\alpha) = g_{\gamma}(\alpha)$. But, we know that $p \not\Vdash ``\dot{f}(\alpha) \ne g_{\gamma}(\alpha)"$. Therefore $p' \Vdash ``\dot{f}(\alpha) = h(\alpha)"$ for some $p' \le p$. Since α_0 and p were arbitrary, we see that $\Vdash_{\mathbb{P}} ``\dot{f} = {}^{\infty} h"$. Thus \dot{f} does not name a *b*-eventually different κ -real. \Box



Let $b \in {}^{\kappa}\kappa$ be increasing and $\operatorname{cf}(b(\alpha)) > \bigcup_{\xi < \alpha} b(\xi)$ for limit α .

The *b*- κ -Hechler forcing \mathbb{D}_{κ}^{b} has conditions (s, f) where $s \in \prod_{<\kappa} b$ and $f \in \prod b$. The ordering is defined by $(t, g) \leq (s, f)$ iff $s \subseteq t$ and $f(\alpha) \leq g(\alpha)$ for $\alpha \in \kappa \setminus \operatorname{dom}(t)$ and $f(\alpha) \leq t(\alpha)$ for $\alpha \in \operatorname{dom}(t) \setminus \operatorname{dom}(s)$.

 \mathbb{D}^b_κ is strategically $<\!\kappa\text{-closed}$ and has a $(\kappa,\lambda)\text{-centred}$ dense subset for each $\lambda<\kappa.$

 \mathbb{D}^b_{κ} adds a b- κ -Hechler real $\bigcup \{s \mid (s, \cdot) \in G\}$ to $\prod b$, where G is \mathbb{D}^b_{κ} -generic. A b- κ -Hechler real is b-dominating over \mathbf{V} , hence \mathbb{D}^b_{κ} is not (κ, κ) -centred. Moreover, \mathbb{D}^b_{κ} adds a κ -Cohen real and hence an unbounded κ -real as well.

Lemma Brendle, private communication

If $\mathbb P$ is (κ,κ) -calibre, then it does not add a dominating κ -real.

Proof. Let $\mathbb{P} = \bigcup_{\gamma \in \kappa} P_{\gamma}$ with all P_{γ} of calibre κ and $\Vdash_{\mathbb{P}}$ " $\dot{f} \in {}^{\kappa}\kappa$ ". We define $g_{\gamma}(\alpha) = \min \left\{ \xi \in \kappa \mid \forall p \in P_{\gamma}(p \not\Vdash `\dot{f}(\alpha) > \xi") \right\}$, then $g_{\gamma}(\alpha) \in \kappa$. (If not, then for each $\beta \in \kappa$ there is some $p_{\beta} \in P_{\gamma}$ with $p_{\beta} \Vdash `\dot{f}(\alpha) > \beta$ ". Since P_{γ} has calibre κ , there is some $q \in \mathbb{P}$ with $q \leq p_{\beta}$ for κ -many $\beta \in \kappa$, contradiction.)

Find $h \in {}^{\kappa}\kappa$ with $g_{\gamma} <^{*}h$ for all $\gamma \in \kappa$ and let α_{γ} be such that $g_{\gamma}(\alpha) < h(\alpha)$ for all $\alpha \ge \alpha_{\gamma}$. For each $p \in P_{\gamma}$ and $\alpha \ge \alpha_{\gamma}$ we have $p \not\Vdash ``\dot{f}(\alpha) > g_{\gamma}(\alpha)$ ". Hence there exists $p' \le p$ such that $p' \Vdash ``\dot{f}(\alpha) \le g_{\gamma}(\alpha) < h(\alpha)$ ". Therefore $\Vdash_{\mathbb{P}} ``h \not\leq "\dot{f}$ " and \dot{f} does not name a dominating κ -real.

Lemma Brendle, private communication

If κ is weakly compact, \mathbb{D}^b_{κ} has (κ, κ) -calibre.

Proof. For any $s \in \prod_{<\kappa} b$ and $\{f_{\alpha} \mid \alpha \in \kappa\} \subseteq \prod b$, we find some $f \in \prod b$ and $A \in [\kappa]^{\kappa}$ such that $f(\xi) \ge f_{\alpha}(\xi)$ for all $\xi \in \kappa \setminus \operatorname{dom}(s)$ and $\alpha \in A$. Then $(s, f) \le (s, f_{\alpha})$ for all $\alpha \in A$, hence $\mathbb{D}_{\kappa}^{b} = \bigcup_{s \in \prod_{<\kappa} b} \{s\} \times \prod b$ has (κ, κ) -calibre.

W.l.o.g. $f_{\alpha} \neq f_{\beta}$ and $s \subseteq f_{\alpha}$ for all $\alpha < \beta \in \kappa$. Let $g \in \prod b$ be such that $s \subseteq g$ and $f_{\alpha} \leq^* g$ for all $\alpha \in \kappa$.

Define $T = \{ t \in \prod_{<\kappa} b \mid \exists \alpha \exists \beta (\alpha \neq \beta \land t \subseteq f_{\alpha} \cap f_{\beta}) \}.$

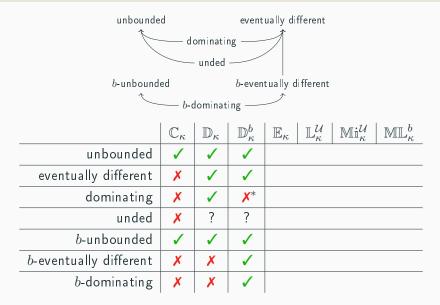
T is a κ -tree and has a cofinal branch $g' \in [T]$. For any $\alpha_0, \gamma \in \kappa$ there exists $\alpha \geq \alpha_0$ such that $\gamma \subseteq \operatorname{dom}(f_\alpha \cap g')$. \cdots $\begin{array}{l} \cdots \quad \text{We construct } f \in \prod b \text{ by recursion. Let } \gamma_0 = \gamma_0^* = \operatorname{dom}(s) \\ \text{and } \alpha_0 \text{ be arbitrary and } f \upharpoonright \gamma_0 = s. \text{ Given } \gamma_\eta, \ \alpha_\eta \text{ and } f \upharpoonright \gamma_\eta \text{ for all } \\ \eta < \xi, \ \text{let } \gamma_\xi^* = \sup_{\eta < \xi} \gamma_\eta. \text{ We choose some } \alpha_\xi > \alpha_\eta \text{ for all } \eta < \xi \\ \text{such that } \gamma_\xi^* + 1 \subseteq \operatorname{dom}(f_{\alpha_\xi} \cap g') \text{ and we let } \gamma_\xi > \gamma_\xi^* \text{ be such that } \\ f_{\alpha_\xi}(\beta) \leq g(\beta) \text{ for all } \beta \geq \gamma_\xi. \end{array}$

Let $f \upharpoonright [\gamma_{\xi}^*, \gamma_{\xi}) : \beta \mapsto \max \{ f_{\alpha_{\xi}}(\beta), g(\beta), g'(\beta) \}$, then $f_{\alpha_{\xi}} \leq f$.

Let $\xi \in \kappa$ and consider the following four cases:

If $\beta \in \operatorname{dom}(s)$, then $f_{\alpha_{\xi}}(\beta) = s(\beta) = f(\beta)$. If $\beta \in [\operatorname{dom}(s), \gamma_{\xi}^{*}) = \sup_{\eta < \xi} \gamma_{\eta}$, then $f_{\alpha_{\xi}}(\beta) = g'(\beta) \le f(\beta)$. If $\beta \in [\gamma_{\xi}^{*}, \gamma_{\xi})$, then $f_{\alpha_{\xi}}(\beta) \le f(\beta)$ by definition. If $\beta \in [\gamma_{\xi}, \kappa)$, then $f_{\alpha_{\xi}}(\beta) \le g(\beta) \le f(\beta)$.

Therefore $f \ge f_{\alpha_{\xi}}$. We define $A = \{\alpha_{\xi} \mid \xi \in \kappa\}$, then $|A| = \kappa$ and $(s, f) \le (s, f_{\alpha})$ for all $\alpha \in A$.



(*) κ is weakly compact

The κ -Eventually Different forcing \mathbb{E}_{κ} has conditions (s, F)where $s \in {}^{<\kappa}\kappa$ and $F \in [{}^{\kappa}\kappa]{}^{<\kappa}$. The ordering is defined by $(t, G) \leq (s, F)$ iff $s \subseteq t$ and $F \subseteq G$ and for $\alpha \in \operatorname{dom}(t) \setminus \operatorname{dom}(s)$ we have $t(\alpha) \notin \{f(\alpha) \mid f \in F\}$.

 \mathbb{E}_{κ} is $<\kappa$ -closed and (κ, κ) -centred, and thus does not add a *b*-eventually different κ -real.

 \mathbb{E}_{κ} adds a κ -Eventually Different real $\bigcup \{s \mid (s, \cdot) \in G\}$, where G is \mathbb{E}_{κ} -generic. A κ -Eventually Different real f is unded over \mathbf{V} . Moreover, \mathbb{E}_{κ} adds a κ -Cohen real, and thus a b-unbounded κ -real over \mathbf{V} . A topological space X is $<\kappa$ -compact if for every family of open sets C such that $X = \bigcup C$ there exists some $C' \in [C]^{<\kappa}$ such that $\bigcup C' = X$.

For a family $\langle X_i \mid i \in I \rangle$ of spaces, we define the $<\kappa$ -box topology on the product $X = \prod_{i \in I} X_i$ as the topology generated by basic opens $[s] = \{f \in X \mid s \subseteq f\}$ for $s \in \prod_{i \in I'} X_i$ with $I' \in [I]^{<\kappa}$.

For strongly compact κ we can generalise Tychonoff's theorem: the product of $<\kappa$ -compact spaces with the $<\kappa$ -box topology is $<\kappa$ -compact.

Theorem Theorem 5.1 of Buhagiar and Džamonja [2021] κ is weakly compact iff for every family $\{X_i \mid i \in I\}$ with $|I| \leq \kappa$ and each X_i a $<\kappa$ -compact space with $w(X_i) \leq \kappa$, the $<\kappa$ -box product of $\{X_i \mid i \in I\}$ is $<\kappa$ -compact. **Claim** Cf. [Miller, 1981, Lemma 5.1] for the ${}^{\omega}\omega$ analogue Assume κ is weakly compact. Let \dot{x} be a \mathbb{E}_{κ} -name for a set in \mathbf{V} , let $s \in {}^{<\kappa}\kappa$ and $\lambda \in \kappa$, then there exists a set \mathcal{X} with $|\mathcal{X}| < \kappa$ such that for all $F \in [{}^{\kappa}\kappa]^{\lambda}$ there is $p \leq (s, F)$ such that $p \Vdash$ " $\dot{x} \in \mathcal{X}$ ".

Proof. Give κ the cobounded topology, then it is $<\kappa$ -compact and $w(\kappa) = \kappa$. Give $\kappa\kappa$ and $^{\lambda \times \kappa}\kappa$ with $\lambda < \kappa$ the $<\kappa$ -box topology, then these are $<\kappa$ -compact by the weak Tychonoff theorem.

We conflate $F \in {}^{\lambda}({}^{\kappa}\kappa)$ with $\operatorname{ran}(F) \in [{}^{\kappa}\kappa]{}^{\lambda}$. For $X \subseteq \mathbf{V}$ define:

$$\mathcal{F}_X = \{ F \in {}^{\lambda}({}^{\kappa}\kappa) \mid \exists p \in \mathbb{E}_{\kappa} (p \le (s, F) \text{ and } p \Vdash "\dot{x} \in X") \}$$

Every $F \in {}^{\lambda}({}^{\kappa}\kappa)$ has a $y \in \mathbf{V}$ with $F \in \mathcal{F}_{\{y\}}$ and each \mathcal{F}_X is open. Hence ${}^{\lambda}({}^{\kappa}\kappa) = \bigcup_{y \in \mathcal{Y}} \mathcal{F}_{\{y\}}$ and this has a subcover $\mathcal{X} \in [\mathcal{Y}]^{<\kappa}$. Note that $\mathcal{F}_{X \cup X'} \supseteq \mathcal{F}_X \cup \mathcal{F}_{X'}$, hence $F_{\mathcal{X}} = {}^{\lambda}({}^{\kappa}\kappa)$.

Lemma Cf. [Miller, 1981, §5] for the $^{\omega}\omega$ analogue

If κ is weakly compact, then \mathbb{E}_{κ} does not add dominating reals.

Proof. Let $\langle (s_{\eta}, \lambda_{\eta}) | \eta \in \kappa \rangle$ list all (s, λ) with $s \in {}^{<\kappa}\kappa$ and $\lambda < \kappa$ such that each $(s, \lambda) = (s_{\eta}, \lambda_{\eta})$ for κ many $\eta \in \kappa$.

Let $\Vdash_{\mathbb{E}}$ " $\dot{f} \in {}^{\kappa}\kappa$ ". Given $\eta \in \kappa$, by the claim, there exists $X_{\eta} \in [\kappa]^{<\kappa}$ such that for all $F \in [{}^{\kappa}\kappa]^{\lambda_{\eta}}$ there exists $p \leq (s_{\eta}, F)$ such that $p \Vdash$ " $\dot{f}(\eta) \in X_{\eta}$ ". We let $g : \eta \mapsto \sup(X_{\eta}) + 1$.

Let $(s, F) \in \mathbb{E}_{\kappa}$ and $\eta_0 \in \kappa$, then there exists $\eta \geq \eta_0$ such that $(s_{\eta}, \lambda_{\eta}) = (s, |F|)$. By the claim there exists $p \leq (s, F)$ such that $p \Vdash "\dot{f}(\eta) \in X_{\eta}"$ and thus $p \Vdash "\dot{f}(\eta) < g(\eta)"$. Since (s, F) and η_0 are arbitrary, we see that $\Vdash_{\mathbb{E}} "g \not\leq^{\mathscr{K}} \dot{f}"$, thus \dot{f} does not name a dominating κ -real.

unbounde	unded eventually different							
dominating								
<i>b</i> -unbounded <i>b</i>				<i>b</i> -eventually different				
b-dominating								
	\mathbb{C}_{κ}	\mathbb{D}_{κ}	\mathbb{D}^b_κ	\mathbb{E}_{κ}	$\mathbb{L}^{\mathcal{U}}_{\kappa}$	$\mathbb{M}\mathfrak{i}_\kappa^\mathcal{U}$	\mathbb{ML}^b_κ	
unbounded	1	1	1	1			·	
eventually different	×	1	1	1				
dominating	×	1	X *	X *				
unded	×	?	?	1				
<i>b</i> -unbounded	1	1	1	1				
b-eventually different	×	×	 Image: A start of the start of	×				
<i>b</i> -dominating	×	×	1	×				

(*) κ is weakly compact

Let \mathcal{U} be a filter on κ . The κ -Laver forcing $\mathbb{L}^{\mathcal{U}}_{\kappa}$ guided by \mathcal{U} has as conditions trees $T \subseteq {}^{<\kappa}\kappa$ where:

(i) T has a stem s_T ∈ T, i.e. s_T is the smallest splitting node.
(ii) For each t ∈ T with t ⊇ s_T, the set of succesors of t are in U.
(iii) If t ∈ ^{<κ}κ has limit height and t ↾ ξ ∈ T for all ξ ∈ dom(t), then t ∈ T.

We order $\mathbb{L}^{\mathcal{U}}_{\kappa}$ by $S \leq T$ iff $S \subseteq T$.

 $\mathbb{L}^{\mathcal{U}}_{\kappa}$ is $<\kappa$ -closed if \mathcal{U} is $<\kappa$ -complete. $\mathbb{L}^{\mathcal{U}}_{\kappa}$ adds a dominating κ -real, but also a κ -Cohen real.

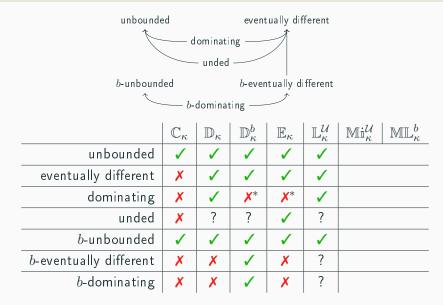
Question

Does a dominating κ -real imply the existence of a κ -Cohen real?

Khomskii, Koelbing, Laguzzi, and Wohofsky [2022] showed that if $\mathbb{P} \subseteq \mathbb{L}_{\kappa}$ is a nontrivial subforcing and $(T)_s \in \mathbb{P}$ for all $T \in \mathbb{P}$ and $s \in T$, then \mathbb{P} adds a κ -Cohen real.

Stronger yet, any $<\kappa$ -distributive tree forcing for which $f(\dot{x})$ is a dominating κ -real, with \dot{x} the generic κ -real and f a continuous function in the ground model, will add a κ -Cohen real.

The above question in general is still open.



(*) κ is weakly compact

Let \mathcal{U} be a filter on κ . The κ -Miller forcing $\mathbb{M}i^{\mathcal{U}}_{\kappa}$ guided by \mathcal{U} has as conditions trees $T \subseteq {}^{<\kappa}\kappa$ where:

(i) For each $s \in T$ there exists $t \supseteq s$ that is splitting.

(ii) If $t \in T$ is splitting, the set of successors of t are in \mathcal{U} .

(iii) If $t \in {}^{<\kappa}\kappa$ has limit height and the set of $\xi \in \text{dom}(t)$ such that $t \upharpoonright \xi$ is splitting in T is cofinal in dom(t), then $t \in T$ and the set of successors of t is in \mathcal{U} .

We order $\operatorname{Mi}_{\kappa}^{\mathcal{U}}$ by $S \leq T$ iff $S \subseteq T$.

 $\mathbb{M}i_{\kappa}^{\mathcal{U}}$ is $<\kappa$ -closed if \mathcal{U} is $<\kappa$ -complete and adds an unbounded κ -real.

A forcing \mathbb{P} has the (b, h)- κ -Laver property if $\Vdash_{\mathbb{P}}$ " $\dot{f} \in \prod b$ " implies that there exists a function φ with dom $(\varphi) = \kappa$ such that $|\varphi(\alpha)| \leq h(\alpha)$ and $\Vdash_{\mathbb{P}}$ " $\dot{f}(\alpha) \in \varphi(\alpha)$ " for each $\alpha \in \kappa$. Let pow : $\alpha \mapsto 2^{|\alpha|}$.

Theorem Proposition 81 in Brendle et al. [2018] If \mathcal{U} is a $<\kappa$ -complete ultrafilter, then $\mathfrak{Mi}_{\kappa}^{\mathcal{U}}$ has the (b, pow) - κ -Laver property for every $b \in {}^{\kappa}\kappa$.

If $pow(\alpha) < cf(b(\alpha))$ for each $\alpha \in \kappa$, then $Mi_{\kappa}^{\mathcal{U}}$ does not add a *b*-unbounded κ -real.

unbounde	ed eventually different						
dominating							
<i>b</i> -unbounded <i>b</i> -eventually different							
\frown b-dominating \rightarrow							
	\mathbb{C}_{κ}	\mathbb{D}_{κ}	\mathbb{D}^b_{κ}	\mathbb{E}_{κ}	$\mathbb{L}^{\mathcal{U}}_{\kappa}$	$\mathbb{M}\mathfrak{i}_\kappa^\mathcal{U}$	\mathbb{ML}^b_{κ}
unbounded	 Image: A second s	1	1	1	 Image: A second s	√	
eventually different	×	1	1	1	1	?	
dominating	×	1	X *	X *	1	?	
unded	×	?	?	1	?	?	
<i>b</i> -unbounded	1	1	1	1	1	X **	
b-eventually different	×	X	1	×	?	?	
<i>b</i> -dominating	×	×	1	×	?	×	

(*) κ is weakly compact (**) κ is measurable

The κ -Miller Lite forcing \mathbb{ML}^b_{κ} guided by a function b has as conditions trees $T \subseteq \prod_{<\kappa} b$ where:

- (i) For each $s \in T$ there exists $t \supseteq s$ that is splitting.
- (ii) If $t \in T$ is splitting, the set of successors is equal to $b(\operatorname{dom}(t))$.
- (iii) If $t \in {}^{<\kappa}\kappa$ has limit height and the set of $\xi \in \text{dom}(t)$ such that $t \upharpoonright \xi$ is splitting in T is cofinal in dom(t), then $t \in T$ and the set of successors of t is equal to b(dom(t))

We order \mathbb{ML}^b_{κ} by $S \leq T$ iff $S \subseteq T$.

Theorem Lemma 1.3 in vdV. [2023] \mathbb{ML}^{b}_{κ} is $<\kappa$ -closed.

 \mathbb{ML}^b_{κ} adds a *b*-unbounded κ -real.

A forcing \mathbb{P} has the *h*- κ -**Sacks property** if $\Vdash_{\mathbb{P}}$ " $\dot{f} \in {}^{\kappa}\kappa$ " implies that there exists a function φ with dom(φ) = κ such that $|\varphi(\alpha)| \leq h(\alpha)$ and $\Vdash_{\mathbb{P}}$ " $\dot{f}(\alpha) \in \varphi(\alpha)$ " for each $\alpha \in \kappa$.

If \mathbb{P} has the h- κ -Sacks property, then \mathbb{P} does not add an unbounded κ -real. Also, \mathbb{P} then has the (b, h)- κ -Laver property for all $b \in {}^{\kappa}\kappa$.

Theorem Theorem 1.8 in vdV. [2023] \mathbb{ML}^{b}_{κ} has the *h*- κ -Sacks property for $h : \alpha \mapsto b(\alpha)^{|\alpha|}$. \mathbb{ML}^{b}_{κ} does not add an unbounded κ -real. If $h(\alpha) < cf(b^{*}(\alpha))$ for each $\alpha \in \kappa$, then \mathbb{ML}^{b}_{κ} does not add a *b**-unbounded κ -real.

unbounded eventually different							
dominating							
unded							
<i>b</i> -unbounded <i>b</i> -eventually different							
\frown b-dominating \frown							
	\mathbb{C}_{κ}	\mathbb{D}_{κ}	\mathbb{D}^b_{κ}	\mathbb{E}_{κ}	$\mathbb{L}^{\mathcal{U}}_{\kappa}$	$\mathbb{M}\mathfrak{i}_\kappa^\mathcal{U}$	\mathbb{ML}^b_{κ}
unbounded	~	1	1	1	1	~	×
eventually different	×	1	1	1	1	?	?
dominating	×	1	X *	X *	1	?	×
unded	X	?	?	1	?	?	×
<i>b</i> -unbounded	1	1	1	1	1	X **	 ✓
b-eventually different	×	×	1	×	?	?	?
<i>b</i> -dominating	×	×	1	×	?	×	?

(*) κ is weakly compact (**) κ is measurable

Iteration: preservation of not adding witnesses.

- Tomek Bartoszyński and Haim Judah. Set Theory: On the Structure of the Real Line. A.K. Peters, Wellesley, MA, 1995.
- Jörg Brendle, Andrew Brooke-Taylor, Sy-David Friedman, and Diana Carolina Montoya. Cichoń's diagram for uncountable cardinals. Israel Journal of Mathematics, 225(2):959-1010, 2018.
- David Buhagiar and Mirna Džamonja. Square compactness and the filter extension property. Fundamenta Mathematicae, 252(3):325-342, 2021.
- Thomas Jech. Set Theory: Third Millennium Edition. Springer Monographs in Mathematics, 2003.
- Yurii Khomskii, Marlene Koelbing, Giorgio Laguzzi, and Wolfgang Wohofsky. Laver trees in the generalized Baire space. Israel Journal of Mathematics, 255(2):599-620, December 2022.
- Arnold W. Miller. Some properties of measure and category. Transactions of the American Mathematical Society, 266(1):93-114, 1981.
- Saharon Shelah. On $CON(0_{\lambda} > cov_{\lambda}(meagre))$. Transactions of the American Mathematical Society, 373(8):5351–5369, May 2020.
- Tristan van der Vlugt. Separating many localisation cardinals on the generalised Baire space. The Journal of Symbolic Logic, First View, page 1-20, 2023.