Set Theories in Parallel Universes

Souray Tarafder

St. Xavier's College, Kolkata

August 1, 2025

Department of Mathematics University of Hamburg Germany

• Construction of Boolean-valued models of ZFC.

- Construction of Boolean-valued models of ZFC.
- Generalized algebra-valued models.

- Construction of Boolean-valued models of ZFC.
- Generalized algebra-valued models.
- Non-classical algebra-valued models of a fragment of ZF and full ZF.

- Construction of Boolean-valued models of ZFC.
- Generalized algebra-valued models.
- Non-classical algebra-valued models of a fragment of ZF and full ZF.
- Foundation of mathematics in a class of non-classical algebra-valued models.

- Construction of Boolean-valued models of ZFC.
- Generalized algebra-valued models.
- Non-classical algebra-valued models of a fragment of ZF and full ZF.
- Foundation of mathematics in a class of non-classical algebra-valued models.
- A new interpretation function.

- Construction of Boolean-valued models of ZFC.
- Generalized algebra-valued models.
- Non-classical algebra-valued models of a fragment of ZF and full ZF.
- Foundation of mathematics in a class of non-classical algebra-valued models.
- A new interpretation function.
- Independence set theoretic results in some non-classical set theories.

In the following steps, it will be discussed briefly that how a Boolean valued model is constructed and in which sense it becomes a model of ${\rm ZFC}$. The whole construction will take place over a standard model ${\bf V}$ of ${\rm ZFC}$.

In the following steps, it will be discussed briefly that how a Boolean valued model is constructed and in which sense it becomes a model of ${\rm ZFC}$. The whole construction will take place over a standard model ${\bf V}$ of ${\rm ZFC}$.

1 Let us take a complete Boolean algebra, $\mathbb{B} = \langle B, \wedge, \vee, \Rightarrow, *, 0, 1 \rangle$.

In the following steps, it will be discussed briefly that how a Boolean valued model is constructed and in which sense it becomes a model of ${\rm ZFC}$. The whole construction will take place over a standard model ${\bf V}$ of ${\rm ZFC}$.

- **1** Let us take a complete Boolean algebra, $\mathbb{B} = \langle B, \wedge, \vee, \Rightarrow, *, 0, 1 \rangle$.
- 2 For any ordinal α we define,

$$\mathbf{V}_{\alpha}^{(\mathbb{B})} = \{x : \operatorname{Func}(x) \wedge \operatorname{ran}(x) \subseteq B \wedge \exists \xi < \alpha(\operatorname{dom}(x) \subseteq \mathbf{V}_{\xi}^{(\mathbb{B})})\}$$

In the following steps, it will be discussed briefly that how a Boolean valued model is constructed and in which sense it becomes a model of ${\rm ZFC}$. The whole construction will take place over a standard model ${\bf V}$ of ${\rm ZFC}$.

- **1** Let us take a complete Boolean algebra, $\mathbb{B} = \langle B, \wedge, \vee, \Rightarrow, *, 0, 1 \rangle$.
- 2 For any ordinal α we define,

$$\mathbf{V}_{\alpha}^{(\mathbb{B})} = \{x : \operatorname{Func}(x) \wedge \operatorname{ran}(x) \subseteq B \wedge \exists \xi < \alpha(\operatorname{dom}(x) \subseteq \mathbf{V}_{\xi}^{(\mathbb{B})})\}$$

Using the above we get a Boolean valued model as,

$$\mathbf{V}^{(\mathbb{B})} = \{x : \exists \alpha (x \in \mathbf{V}_{\alpha}^{(\mathbb{B})})\}$$

- **§** Extend the language of classical ZFC by adding a name corresponding to each element of $\mathbf{V}^{(\mathbb{B})}$, in it.
- **③** Associate every formula of the extended language with a value of B by the map $\llbracket . \rrbracket$. First we give the algebraic expressions which associate the two basic well-formed formulas with values of B. For any u, v in $\mathbf{V}^{(\mathbb{B})}$,

$$\llbracket u \in v \rrbracket = \bigvee_{x \in \text{dom}(v)} (v(x) \land \llbracket x = u \rrbracket)$$

$$\llbracket u = v \rrbracket = \bigwedge_{x \in \text{dom}(u)} (u(x) \Rightarrow \llbracket x \in v \rrbracket) \land \bigwedge_{y \in \text{dom}(v)} (v(y) \Rightarrow \llbracket y \in u \rrbracket)$$

1 Then for any sentences σ and au of the new language we define,

$$\begin{bmatrix} \sigma \wedge \tau \end{bmatrix} = \llbracket \sigma \rrbracket \wedge \llbracket \tau \rrbracket \\
 \llbracket \sigma \vee \tau \rrbracket = \llbracket \sigma \rrbracket \vee \llbracket \tau \rrbracket \\
 \llbracket \sigma \to \tau \rrbracket = \llbracket \sigma \rrbracket \Rightarrow \llbracket \tau \rrbracket \\
 \llbracket \neg \sigma \rrbracket = \llbracket \sigma \rrbracket^* \\
 \llbracket \forall x \varphi(x) \rrbracket = \bigwedge_{x \in \mathbf{V}^{(\mathbb{B})}} \llbracket \varphi(x) \rrbracket \\
 \llbracket \exists x \varphi(x) \rrbracket = \bigvee_{x \in \mathbf{V}^{(\mathbb{B})}} \llbracket \varphi(x) \rrbracket$$

② A sentence σ will be called *valid* in $\mathbf{V}^{(\mathbb{B})}$ or $\mathbf{V}^{(\mathbb{B})}$ will be called a model of a sentence σ if $\llbracket \sigma \rrbracket = 1$. It will be denoted as $\mathbf{V}^{(\mathbb{B})} \models \sigma$.

Then we have the following celebrated result:

Theorem

For any complete Boolean algebra \mathbb{B} , $\mathbf{V}^{(\mathbb{B})} \models \mathrm{ZFC}$, i.e., all the classical logic axioms and ZFC axioms are valid in $\mathbf{V}^{(\mathbb{B})}$.

Heyting-Valued Model

If the complete Boolean algebras are replaced by complete Heyting algebras $\mathbb H$ in the previous construction, then we get the following theorem.

Theorem

 $\mathbf{V}^{(\mathbb{H})} \models \mathrm{IZF}$, where IZF stands for the intuitionistic Zermelo-Fraenkel set theory: Zermelo-Fraenkel set theoretic axioms over the intuitionistic logic.

Let us consider an algebra $\mathbb{A}=\langle A,\wedge,\vee,\Rightarrow,^*,1,0\rangle$, where $\langle A,\wedge,\vee,1,0\rangle$ is a complete distributive lattice.

Let us consider an algebra $\mathbb{A}=\langle A,\wedge,\vee,\Rightarrow,^*,1,0\rangle$, where $\langle A,\wedge,\vee,1,0\rangle$ is a complete distributive lattice. A subset D of A is said to be a designated set if it is a filter:

- 0 $1 \in D$ but $0 \notin D$,
- ② if $a \in D$ and $a \le b$, then $b \in D$,
- **3** for any two elements $a, b \in D$, $a \land b \in D$.

Let us consider an algebra $\mathbb{A}=\langle A,\wedge,\vee,\Rightarrow,^*,1,0\rangle$, where $\langle A,\wedge,\vee,1,0\rangle$ is a complete distributive lattice. A subset D of A is said to be a designated set if it is a filter:

- 0 $1 \in D$ but $0 \notin D$,
- ② if $a \in D$ and $a \le b$, then $b \in D$,
- **3** for any two elements $a, b \in D$, $a \land b \in D$.

Construct $\mathbf{V}^{(\mathbb{A})}$ as similar to the Boolean-valued models. Define an assignment function $[\![\cdot]\!]_{\mathbb{A}}$ (or simply denoted by $[\![\cdot]\!]$) from the collection of all sentences of the extended language into A. Fix a designated set D of \mathbb{A} .

Let us consider an algebra $\mathbb{A}=\langle A,\wedge,\vee,\Rightarrow,^*,1,0\rangle$, where $\langle A,\wedge,\vee,1,0\rangle$ is a complete distributive lattice. A subset D of A is said to be a designated set if it is a filter:

- 0 $1 \in D$ but $0 \notin D$,
- ② if $a \in D$ and $a \le b$, then $b \in D$,
- **③** for any two elements $a, b \in D$, $a \land b \in D$.

Construct $\mathbf{V}^{(\mathbb{A})}$ as similar to the Boolean-valued models. Define an assignment function $[\![\cdot]\!]_{\mathbb{A}}$ (or simply denoted by $[\![\cdot]\!]$) from the collection of all sentences of the extended language into A. Fix a designated set D of \mathbb{A} .

Definition

A sentence φ of the extended language is said to be valid in $\mathbf{V}^{(\mathbb{A})}$, denoted by $\mathbf{V}^{(\mathbb{A})}\models_D \varphi$ or by $\mathbf{V}^{(\mathbb{A})}\models\varphi$ (when the designated set is clear from the context), if $\llbracket\varphi\rrbracket\in D$.

Bounded Quantification Property, BQ_{φ}

Let us consider an algebra $\mathbb{A}=\langle A,\wedge,\vee,\Rightarrow,^*,1,0\rangle$, where $\langle A,\wedge,\vee,1,0\rangle$ is a complete distributive lattice. For any formula $\varphi(x)$, we say that bounded quantification property of φ holds in $\mathbf{V}^{(\mathbb{A})}$ if for any $u\in\mathbf{V}^{(\mathbb{A})}$ the following holds:

$$\llbracket \forall x (x \in u \to \varphi(x)) \rrbracket = \bigwedge_{x \in dom(u)} (u(x) \Rightarrow \llbracket \varphi(x) \rrbracket). \tag{\mathcal{BQ}_{φ}}$$

Reasonable Implication Algebra

Definition

An algebra $\mathbb{A} = \langle A, \wedge, \vee, \Rightarrow, \mathbf{1}, \mathbf{0} \rangle$ is called a reasonable implication algebra if $\langle A, \wedge, \vee, \mathbf{1}, \mathbf{0} \rangle$ is a complete distributive lattice and \Rightarrow has the following properties:

10 / 46

Reasonable Implication Algebra

Definition

An algebra $\mathbb{A} = \langle A, \wedge, \vee, \Rightarrow, \mathbf{1}, \mathbf{0} \rangle$ is called a reasonable implication algebra if $\langle A, \wedge, \vee, \mathbf{1}, \mathbf{0} \rangle$ is a complete distributive lattice and \Rightarrow has the following properties:

- P1: $x \land y \le z$ implies $x \le y \Rightarrow z$.
- P2: $y \le z$ implies $x \Rightarrow y \le x \Rightarrow z$.
- P3: $y \le z$ implies $z \Rightarrow x \le y \Rightarrow x$.

Reasonable Implication Algebra

Definition

An algebra $\mathbb{A}=\langle A,\wedge,\vee,\Rightarrow,\mathbf{1},\mathbf{0}\rangle$ is called a reasonable implication algebra if $\langle A,\wedge,\vee,\mathbf{1},\mathbf{0}\rangle$ is a complete distributive lattice and \Rightarrow has the following properties:

P1: $x \land y \le z$ implies $x \le y \Rightarrow z$.

P2: $y \le z$ implies $x \Rightarrow y \le x \Rightarrow z$.

P3: $y \le z$ implies $z \Rightarrow x \le y \Rightarrow x$.

A reasonable implication algebra is said to be deductive if it satisfies

$$(x \wedge y) \Rightarrow z = x \Rightarrow (y \Rightarrow z).$$
 (P4)

Negation Free Fragment (NFF)

If \mathcal{L} is any first-order language including the connectives \wedge , \vee , \perp , \rightarrow , and \neg and Λ any class of \mathcal{L} -formulas, we denote closure of Λ under \wedge , \vee , \perp , \rightarrow , \exists , and \forall by $\mathrm{Cl}(\Lambda)$ and call it the *negation-free closure of* Λ . A class Λ of formulas is *negation-free closed* if $\mathrm{Cl}(\Lambda) = \Lambda$. By NFF we denote the negation-free closure of the atomic formulas; its elements are called the negation-free formulas.

An Algebra-Valued Model of a Set Theory

Theorem

Let $\mathbb A$ be a deductive reasonable implication algebra such that $\mathbf V^{(\mathbb A)}$ satisfies the NFF-bounded quantification property (NFF- $\mathcal B\mathcal Q_\varphi$). Then Extensionality, Pairing, Infinity, Union, Power Set, NFF-Separation and NFF-Replacement are valid in $\mathbf V^{(\mathbb A)}$, for any designated set D of $\mathbb A$.

NFF-(...) stands for the instances of (...) only for the negation free formulas.

(Löwe, B., and S. Tarafder, Generalized Algebra-Valued Models of Set Theory, *Review of Symbolic Logic*, Cambridge University Press, 8(1), pp. 192–205, 2015.)

Three Valued Matrix PS₃

Let us consider the three valued matrix $\mathrm{PS}_3 = \langle \{1,1/2,0\}, \wedge, \vee, \Rightarrow,^*, 1,0 \rangle$ where the truth tables for the operators are given below:

Three Valued Matrix PS₃

Let us consider the three valued matrix $\mathrm{PS}_3 = \langle \{1,1/2,0\},\wedge,\vee,\Rightarrow,^*,1,0\rangle$ where the truth tables for the operators are given below:

\land	1	1/2	0
1	1	1/2	0
1/2	1/2	1/2	0
0	0	0	0

\Rightarrow	1	1/2	0
1	1	1	0
1/2	1	1	0
0	1	1	1

V	1	1/2	0
1	1	1	1
1/2	1	1/2	1/2
0	1	1/2	0

*	
1	0
1/2	1/2
0	1

Three Valued Matrix PS₃

Let us consider the three valued matrix $\mathrm{PS}_3 = \langle \{1,1/2,0\},\wedge,\vee,\Rightarrow,^*,1,0\rangle$ where the truth tables for the operators are given below:

\wedge	1	1/2	0
1	1	1/2	0
1/2	1/2	1/2	0
0	0	0	0

V	1	1/2	0
1	1	1	1
1/2	1	1/2	1/2
0	1	1/2	0

\Rightarrow	1	1/2	0
1	1	1	0
1/2	1	1	0
0	1	1	1

*	
1	0
1/2	1/2
0	1

Fix the designated set as $D = \{1, 1/2\}$.

It can be checked that PS_3 is a deductive reasonable implication algebra

It can be checked that PS_3 is a deductive reasonable implication algebra and $\mathrm{NFF}\text{-}\mathcal{BQ}_\varphi$ holds in $\mathbf{V}^{(\mathrm{PS}_3)}$.

It can be checked that PS_3 is a deductive reasonable implication algebra and $NFF-\mathcal{BQ}_{\varphi}$ holds in $\mathbf{V}^{(PS_3)}$. Hence, the axioms Extensionality, Pairing, Infinity, Union, Power Set, NFF-Separation, and NFF-Replacement are valid in $\mathbf{V}^{(PS_3)}$.

It can be checked that PS_3 is a deductive reasonable implication algebra and $NFF-\mathcal{BQ}_{\varphi}$ holds in $\mathbf{V}^{(PS_3)}$. Hence, the axioms Extensionality, Pairing, Infinity, Union, Power Set, NFF-Separation, and NFF-Replacement are valid in $\mathbf{V}^{(PS_3)}$. In addition, NFF-Foundation is also valid in $\mathbf{V}^{(PS_3)}$.

It can be checked that PS_3 is a deductive reasonable implication algebra and $NFF-\mathcal{BQ}_{\varphi}$ holds in $\mathbf{V}^{(PS_3)}$. Hence, the axioms Extensionality, Pairing, Infinity, Union, Power Set, NFF-Separation, and NFF-Replacement are valid in $\mathbf{V}^{(PS_3)}$. In addition, NFF-Foundation is also valid in $\mathbf{V}^{(PS_3)}$. As a conclusion we get the following theorem.

Theorem

 $\mathbf{V}^{(\mathrm{PS}_3)} \models_{\mathcal{D}} \mathrm{NFF}\text{-}\mathrm{ZF}.$

The Logic of PS₃

Theorem

The logic sound and complete with respect to (PS_3, D) is a maximal paraconsistent logic.

The Logic of PS₃

Theorem

The logic sound and complete with respect to (PS_3, D) is a maximal paraconsistent logic.

• Paraconsistent logic: A logic is said to be paraconsistent if there are formulas φ and ψ such that ψ cannot be derived from $\{\varphi, \neg \varphi\}$.

The Logic of PS₃

Theorem

The logic sound and complete with respect to (PS_3, D) is a maximal paraconsistent logic.

- Paraconsistent logic: A logic is said to be paraconsistent if there are formulas φ and ψ such that ψ cannot be derived from $\{\varphi, \neg \varphi\}$.
- Maximal: The logic of (PS_3, D) is a proper fragment of the classical propositional logic (CPL). If a theorem φ of CPL, which is not a theorem of the logic of (PS_3, D) , is added as an axiom of the logic of (PS_3, D) , then the resultant logic will be CPL.

Tarafder, S., & Chakraborty, M. K., *A Paraconsistent Logic Obtained from an Algebra-Valued Model of Set Theory.* New Directions in Paraconsistent Logic, Springer Proceedings in Mathematics & Statistics, Vol. 152. New Delhi: Springer, pp. 165 – 183 (2016).

An Algebra-Valued Model of a Paraconsistent Set Theory

Hence we have the following theorem.

Theorem

 $\mathbf{V}^{(\mathrm{PS}_3)}$ is an algebra-valued model of a paraconsistent set theory.

Definition

By a totally-ordered implicative algebra we shall mean an algebra of the form $\mathbb{A} = \langle A, \wedge, \vee, \Rightarrow, \mathbf{1}, \mathbf{0} \rangle$, which satisfies the following conditions:

① $\langle A, \wedge, \vee, \mathbf{1}, \mathbf{0} \rangle$ is a bounded lattice having top and bottom elements $\mathbf{1}$ and $\mathbf{0}$, respectively,

Definition

By a totally-ordered implicative algebra we shall mean an algebra of the form $\mathbb{A} = \langle A, \wedge, \vee, \Rightarrow, \mathbf{1}, \mathbf{0} \rangle$, which satisfies the following conditions:

- $igl(A, \land, \lor, 1, 0)$ is a bounded lattice having top and bottom elements f 1 and f 0, respectively,

Definition

By a totally-ordered implicative algebra we shall mean an algebra of the form $\mathbb{A} = \langle A, \wedge, \vee, \Rightarrow, \mathbf{1}, \mathbf{0} \rangle$, which satisfies the following conditions:

- $\langle A, \wedge, \vee, 1, 0 \rangle$ is a bounded lattice having top and bottom elements 1 and 0, respectively,
- \odot the operator \Rightarrow is defined by

$$a\Rightarrow b=\left\{ egin{array}{ll} \mathbf{0}, & ext{if } a
eq \mathbf{0} ext{ and } b=\mathbf{0}; \\ \mathbf{1}, & ext{otherwise,} \end{array}
ight.$$

for any two elements $a, b \in \mathbf{A}$.

Lemma (Jockwich & Venturi)

Any totally-ordered implicative algebra \mathbb{A} is a deductive reasonable implicative algebra and NFF- \mathcal{BQ}_{φ} holds in $\mathbf{V}^{(\mathbb{A})}$.

Lemma (Jockwich & Venturi)

Any totally-ordered implicative algebra \mathbb{A} is a deductive reasonable implicative algebra and NFF- \mathcal{BQ}_{φ} holds in $\mathbf{V}^{(\mathbb{A})}$.

Theorem

For any totally-ordered implicative algebra \mathbb{A} and any designated set D, $\mathbf{V}^{(\mathbb{A})} \models_{D} \mathrm{NFF-ZF}$.

Let us consider a totally-ordered implicative algebra \mathbb{A} associated with a unary operator *_1 , which is defined as follows: for any element a in \mathbb{A}

$$a^{*1} = \begin{cases} \mathbf{0}, & \text{if } a = 1 \\ 1, & \text{if } a = 0 \\ a, & \text{otherwise.} \end{cases}$$
 (*1)

Let us consider a totally-ordered implicative algebra $\mathbb A$ associated with a unary operator *_1 , which is defined as follows: for any element a in $\mathbb A$

$$a^{*1} = \begin{cases} \mathbf{0}, & \text{if } a = 1 \\ 1, & \text{if } a = 0 \\ a, & \text{otherwise.} \end{cases}$$
 (*1)

It can be proved that for any designated set $D \ (\neq \{1\})$ of \mathbb{A} , the logic of $(\mathbb{A},^{*_1},D)$ is paraconsistent. Hence, $\mathbf{V}^{(\mathbb{A},^{*_1})}$ becomes an algebra-valued model of a paraconsistent set theory which validates NFF-ZF.

Let us now consider another unary operator *_2 on a totally-ordered implicative algebra \mathbb{A} , which is defined as follows: for any element a in \mathbb{A}

$$a^{*2} = \begin{cases} 1, & \text{if } a = 0 \\ 0, & \text{otherwise.} \end{cases}$$
 (\$)

Let us now consider another unary operator *_2 on a totally-ordered implicative algebra \mathbb{A} , which is defined as follows: for any element a in \mathbb{A}

$$a^{*2} = \begin{cases} 1, & \text{if } a = 0 \\ 0, & \text{otherwise.} \end{cases}$$
 (\$)

Theorem

For any totally-ordered implicative algebra \mathbb{A} , associated with a unary operator *_2 , as similar as defined in (\$), $\mathbf{V}^{(\mathbb{A},^{*_2})} \models_D \mathrm{ZF}$, for any designated set D.

(Jockwich, S. and Venturi, G. (2021), Non-classical models of ${\rm ZF}.$ Studia Logica, 109, pp. 509 - 537).

Foundation of Mathematics

Foundation of Mathematics

Definition

An algebra $\mathbb{A} = \langle \mathbf{A}, \wedge, \vee, \Rightarrow, \mathbf{1}, \mathbf{0} \rangle$ is called a well-ordered deductive reasonable implication algebra if the following conditions hold:

- (i) $\langle {\bf A}, \wedge, \vee, {\bf 1}, {\bf 0} \rangle$ is a bounded lattice having top and bottom elements 1 and 0, respectively,
- (ii) the lattice order \leq is a well-ordered relation on **A**, and
- (iii) the operator \Rightarrow is defined as in (†).

\mathcal{PS} -Algebra

Definition

Let \mathcal{PS} be the collection of all algebras $\mathbb{A}=\langle \mathbf{A},\wedge,\vee,\Rightarrow,^*,\mathbf{1},\mathbf{0}\rangle$ satisfying the following conditions:

- (i) $\langle {\bf A}, \wedge, \vee, \Rightarrow, {\bf 1}, {\bf 0} \rangle$ is a well-ordered deductive reasonable implication algebra,
- (ii) * is a unary operator on **A** which satisfies $\mathbf{1}^* = \mathbf{0}$, $\mathbf{0}^* = \mathbf{1}$.

Any algebra $\mathbb{A} \in \mathcal{PS}$ will be called a \mathcal{PS} -algebra.

Logics corresponding to \mathcal{PS} -algebras

Depending on the operator * in a \mathcal{PS} -algebra $\mathbb A$ and the designated set D, it can be shown that the logic of $(\mathbb A,D)$ might be the classical logic or some non-classical logic (viz. paraconsistent, paracomplete, neither paraconsistent nor paracomplete).

\mathcal{PS} -Algebra-Valued Models

Combining all the above results we get that for any \mathcal{PS} -algebra \mathbb{A} and a designated set D, $\mathbf{V}^{(\mathbb{A})}$ becomes an algebra-valued model of the classical set theory or some non-classical set theory. In particular, $\mathbf{V}^{(\mathbb{A})} \models_D \mathrm{NFF-ZF}$.

Mathematical Induction

Let us consider the formula

$$\forall x \forall y (\operatorname{SetNat}(x) \land y \subseteq x \land \operatorname{Ind}(y) \to x = y), \tag{MI}$$

where $\operatorname{SetNat}(x)$ and $\operatorname{Ind}(y)$ are the first order formulas naively state that 'x is the set of all natural numbers' and 'y is an inductive set', respectively.

Mathematical Induction

Let us consider the formula

$$\forall x \forall y (\operatorname{SetNat}(x) \land y \subseteq x \land \operatorname{Ind}(y) \to x = y), \tag{MI}$$

where $\operatorname{SetNat}(x)$ and $\operatorname{Ind}(y)$ are the first order formulas naively state that 'x is the set of all natural numbers' and 'y is an inductive set', respectively.

$\mathsf{Theorem}\;(\mathsf{Tarafder})$

The formula MI is valid in any \mathcal{PS} -algebra-valued model $\mathbf{V}^{(\mathbb{A})}$, i.e., $\mathbf{V}^{(\mathbb{A})} \models_{D} \mathsf{MI}$, corresponding to any designated set D of \mathbb{A} .

The Axiom of Choice

It is known that the first order formula defining the Axiom of Choice (AC) is given below:

$$\forall u(\neg(u=\varnothing) \to \exists f(\operatorname{Func}(f) \land \operatorname{Dom}(f;u) \land \forall x(x \in u \land \neg(x=\varnothing) \to \exists z \exists y(\operatorname{Pair}(z;x,y) \land z \in f \land y \in x)))),$$

where the naive interpretations of the first order formulas $\operatorname{Func}(f), \operatorname{Dom}(f; u)$, and $\operatorname{Pair}(z; x, y)$ are respectively 'f is a function', 'domain of f is u', and 'z is the pair (x, y)'.

The Axiom of Choice

It is known that the first order formula defining the Axiom of Choice (AC) is given below:

$$\forall u(\neg(u=\varnothing) \to \exists f(\operatorname{Func}(f) \land \operatorname{Dom}(f;u) \land \forall x(x \in u \land \neg(x=\varnothing) \to \exists z \exists y(\operatorname{Pair}(z;x,y) \land z \in f \land y \in x)))),$$

where the naive interpretations of the first order formulas $\operatorname{Func}(f), \operatorname{Dom}(f; u)$, and $\operatorname{Pair}(z; x, y)$ are respectively 'f is a function', 'domain of f is u', and 'z is the pair (x, y)'.

Theorem (Tarafder)

If $\mathbf{V} \models \mathrm{AC}$, then for any \mathcal{PS} -algebra $\mathbb A$ and any ultra-designated set D of $\mathbb A$, $\mathbf{V}^{(\mathbb A)} \models_D \mathrm{AC}$.

Cantor's Theorem and the Schröder-Bernstein Theorem

Cantor's Theorem and the Schröder-Bernstein Theorem

Schröder-Bernstein Theorem

For any \mathcal{PS} -algebra $\mathbb A$ and designated set D, if $u,v\in \mathbf V^{(\mathbb A)}$ are such that

$$\mathbf{V}^{(\mathbb{A})} \models_{D} \exists g \text{ InjFunc}(g; u, v) \land \exists h \text{ InjFunc}(h; v, u)$$

holds then $\mathbf{V}^{(\mathbb{A})} \models_D \exists f \ \mathrm{BijFunc}(f; u, v)$ also holds.

Cantor's Theorem and the Schröder-Bernstein Theorem

Schröder-Bernstein Theorem

For any \mathcal{PS} -algebra $\mathbb A$ and designated set D, if $u,v\in \mathbf V^{(\mathbb A)}$ are such that

$$\mathbf{V}^{(\mathbb{A})} \models_{D} \exists g \text{ InjFunc}(g; u, v) \land \exists h \text{ InjFunc}(h; v, u)$$

holds then $\mathbf{V}^{(\mathbb{A})} \models_{D} \exists f \ \mathrm{BijFunc}(f; u, v)$ also holds.

Cantor's Theorem

Let $\mathbb A$ be any \mathcal{PS} -algebra, D be a designated set and $u \in \mathbf V^{(\mathbb A)}$ be an arbitrary element. If $v \in \mathbf V^{(\mathbb A)}$ is such that $\mathbf V^{(\mathbb A)} \models_D \operatorname{Pow}(u,v)$, then $\mathbf V^{(\mathbb A)} \models_D |u|_{\mathbf V^{(\mathbb A)}} < |v|_{\mathbf V^{(\mathbb A)}}$ also holds.

Generalized Continuum Hypothesis (GCH)

The naive statement of GCH is as follows.

For any infinite set s there does not exist any set t such that the cardinal number of s is less than the cardinal number of t and the cardinal number of t is less than the cardinal number of the power set of s.

Generalized Continuum Hypothesis (GCH)

The naive statement of GCH is as follows.

For any infinite set s there does not exist any set t such that the cardinal number of s is less than the cardinal number of t and the cardinal number of t is less than the cardinal number of the power set of s.

Theorem (Tarafder)

For any \mathcal{PS} -algebra \mathbb{A} , ultra-designated set D, and a model \mathbf{V} of ZFC , $\mathbf{V} \models \mathrm{GCH}$ if and only if $\mathbf{V}^{(\mathbb{A})} \models_{D} \mathrm{GCH}$.

(Tarafder, S. (2022). Non-classical foundations of set theory. *The Journal of Symbolic Logic*, 87(1), pp. 347–376.)

Question: Are the Axiom of Choice, Zorn's Lemma (ZL) and Well-Ordering Theorem (WOT) equivalent in these non-classical algebra-valued models?

Cobounded-Algebra

An algebra $\mathbb{A}=\langle \mathbf{A},\wedge,\vee,\Rightarrow,\mathbf{1},\mathbf{0}
angle$ is called a Cobounded-algebra if

- (i) $\langle \textbf{A}, \wedge, \vee, \textbf{1}, \textbf{0} \rangle$ is a complete distributive lattice,
- (ii) if $\bigvee_{i \in I} a_i = 1$, then there exists $j \in I$ such that $a_j = 1$, where I is an index set and $a_i \in A$ for all $i \in I$,
- (iii) if $\bigwedge_{i \in I} a_i = \mathbf{0}$, then there exists $j \in I$ such that $a_j = \mathbf{0}$, where I is an index set and $a_i \in A$ for all $i \in I$,
- (iv) the binary operator \Rightarrow is defined as follows: for $a, b \in A$

$$a \Rightarrow b = \begin{cases} \mathbf{0}, & \text{if } a \neq \mathbf{0} \text{ and } b = \mathbf{0}; \\ \mathbf{1}, & \text{otherwise.} \end{cases}$$

Designated Cobounded-Algebra

Let $\mathbb{A}=\langle \mathbf{A},\wedge,\vee,\Rightarrow,^*,\mathbf{1},\mathbf{0}\rangle$ be an algebra and D be a designated set of \mathbb{A} . The pair (\mathbb{A},D) is called a designated Cobounded-algebra if

- (i) $\langle \mathbf{A}, \wedge, \vee, \Rightarrow, \mathbf{1}, \mathbf{0} \rangle$ is a Cobounded-algebra,
- (ii) the operator * is defined as follows: for $a, b \in A$

$$a^* = \left\{ \begin{array}{l} \mathbf{0}, & \text{if } a = \mathbf{1}; \\ a, & \text{if } a \in D \setminus \{\mathbf{1}\}; \\ \mathbf{1}, & \text{if } a \notin D. \end{array} \right.$$

A designated Cobounded-algebra (\mathbb{A}, D) is called an ultra-designated Cobounded-algebra, if the corresponding designated set D is an ultrafilter.

Cobounded-Algebra-Valued Models

All the foundational results shown in \mathcal{PS} -algebra-valued models hold in the Cobounded-algebra-valued models as well. Moreover, the Transfinite Induction is valid in these models.

Equivalence of the Axiom of Choice

Theorem (Ganguly & Tarafder, 2025)

For any Cobounded-algebra $\mathbb A$ and the ultradesignated set D, the following are equivalent.

- (i) $\mathbf{V} \models AC$
- (ii) $\mathbf{V}^{(\mathbb{A})} \models_{D} AC$
- (iii) $\mathbf{V}^{(\mathbb{A})} \models_{D} \mathrm{ZL}$
- (iv) $\mathbf{V}^{(\mathbb{A})} \models_{D} WOT$

A Drawback

Leibniz's law of indiscernibility of identicals:

$$\forall x \forall y \big((x = y \land \varphi(x)) \to \varphi(y) \big) \tag{LL}_{\varphi}$$

A Drawback

Leibniz's law of indiscernibility of identicals:

$$\forall x \forall y \big((x = y \land \varphi(x)) \to \varphi(y) \big) \tag{LL}_{\varphi})$$

It can be proved that there are formulas φ so that LL_{φ} fails to be valid in any totally-ordered-algebra-valued models.

A Rectification

To rectify the issue regarding LL_{φ} , we have modified the assignment function $[\![\cdot]\!]$. In other words, we have modified the algebraic interpretations of = and \in to rectify the problem. To distinguish the standard assignment function and the modified one, we denote the former by $[\![\cdot]\!]_{BA}$ and the later by $[\![\cdot]\!]_{PA}$.

Cobounded-Algebra-Valued Models Under a New Interpretation Function

Let us consider a designated Cobounded-algebra (\mathbb{A}, D) and the following assignment function on the cobounded-algebra-valued model $\mathbf{V}^{(\mathbb{A})}$.

Then extend the assignment function homomorphically, similar to the Boolean-valued models.

Extensionality

One of the axioms of ZF, Axiom of Extensionality is modified together with the interpretation function. We name the modified version Extensionality, which is as follows:

$$\forall x \forall y \forall z \big(((z \in x \leftrightarrow z \in y) \land (\neg (z \in x) \leftrightarrow \neg (z \in y))) \rightarrow x = y \big).$$

Extensionality

One of the axioms of ZF, Axiom of Extensionality is modified together with the interpretation function. We name the modified version Extensionality, which is as follows:

$$\forall x \forall y \forall z \big(((z \in x \leftrightarrow z \in y) \land (\neg (z \in x) \leftrightarrow \neg (z \in y))) \rightarrow x = y \big).$$

Let \overline{ZF} be the axiom system containing all the axioms of ZF where Extensionality is replaced by $\overline{Extensionality}$. Notice that if the basic logic is classical, then \overline{ZF} and \overline{ZF} are two equivalent systems.

Comparison

	Axioms of ZF	Axioms of $\overline{ m ZF}$	LL_arphi
$\llbracket \cdot \rrbracket_{\mathrm{BA}}$	Valid	Valid	Valid
$\llbracket \cdot rbracket_{\mathrm{PA}}$	Valid	Valid	Valid

Table: With respect to Boolean-valued models, $\mathbf{V}^{(\mathbb{A})}$.

	Axioms of ZF	Axioms of $\overline{ m ZF}$	LL_arphi
$\llbracket \cdot \rrbracket_{\mathrm{BA}}$	NFF-ZF is valid	NFF-ZF + Extensionality	Fails for
		is valid	some $arphi$
$\llbracket \cdot rbracket$ PA	${ m ZF}-{\sf Extensionality}$	Valid	Valid
	is valid		

Table: With respect to ultra-designated Cobounded-algebra valued models, $\mathbf{V}^{(\mathbb{A})}$, where \mathbb{A} has more than two elements.

(Jockwich, S., Tarafder, S. and Venturi, G. (2024). ZF and its interpretations, Annals of Pure and Applied Logic, 175(6): 103427.

Independence results

Independence results

Definition

Let T and φ be respectively a theory and a sentence in the language of ZFC. We say that φ is independent from T whenever there are two models \mathcal{M}_1 and \mathcal{M}_2 such that:

Hereditary Independence

If a formula φ is independent from ZF then φ is independent from any fragment T of ZF.

Hereditary Independence

If a formula φ is independent from ZF then φ is independent from any fragment T of ZF.

Question: Can we find two models \mathcal{M}_1 and \mathcal{M}_2 of a given proper fragment T of ZF, which are not models of ZF, such that $\mathcal{M}_1 \models \varphi$ but $\mathcal{M}_2 \not\models \varphi$?

Hereditary Independence

If a formula φ is independent from ZF then φ is independent from any fragment T of ZF.

Question: Can we find two models \mathcal{M}_1 and \mathcal{M}_2 of a given proper fragment T of ZF, which are not models of ZF, such that $\mathcal{M}_1 \models \varphi$ but $\mathcal{M}_2 \not\models \varphi$?

Theorem

Let φ be a sentence in the language of ZF, T be a proper fragment of ZF, and $\mathbb A$ be a complete algebra such that

- $oldsymbol{\Phi} \varphi$ is independent with respect to ${\rm ZF}$,
- $oldsymbol{0}$ the logic of $\mathbb A$ is a proper fragment of the classical propositional logic,
- **3** $\mathbf{V}^{(\mathbb{A})} \models \varphi$ and $\mathbf{V}^{(\mathbb{A})} \models \mathsf{T}$.

Then, there are two algebra-valued models of T, but not of ZF, which do not agree on the validity of φ .

Definition

Let $\mathbb A$ be a complete algebra. Then, by $\mathbb A\text{-}\mathrm{ZF}$ we mean the fragment of ZF which is valid in all algebra-valued models of the form $\mathbf V^{(\mathbb A imes \mathbb B)}$, for all complete Boolean algebra $\mathbb B$.

Definition

Let $\mathbb A$ be a complete algebra. Then, by $\mathbb A\text{-}\mathrm{ZF}$ we mean the fragment of ZF which is valid in all algebra-valued models of the form $\mathbf V^{(\mathbb A \times \mathbb B)}$, for all complete Boolean algebra $\mathbb B$.

Observation

We can prove that:

- NFF-ZF is included in PS₃-ZF,
- ${f 2}$ ${
 m PS}_3\text{-}{
 m ZF}$ is a proper fragment of ${
 m ZF}$, and
- PS₃-ZF is a paraconsistent set theory.

Theorem

There are two algebra-valued models of PS₃-ZF, and not of ZF, which do not agree on the validity of the Continuum Hypothesis, thus showing the independence of the Continuum Hypothesis from PS₃-ZF.

Independence in the Fragment Only

Theorem

If \mathbb{A} is a complete algebra and φ is a sentence in the language of ZF , such that one of the following two (exclusive) conditions holds:

then, φ is independent from A-ZF but not from ZF.

Example

Let us consider the following formula

$$\forall x \exists y \forall z \big(z \in y \leftrightarrow (z \in x \land (\neg \exists w (w \in z))) \big). \tag{Sep}$$

The formula Sep is an instance of the Separation Axiom. In addition, $\mathbf{V}^{(\mathrm{PS}_3)} \not\models \mathsf{Sep}$. Hence, Sep is independent from $\mathrm{PS}_3\text{-}\mathrm{ZF}$ but not from ZF .

Example

Consider the three-valued Heyting algebra \mathbb{H}_3 . Let φ be the sentence which intuitively states that 'if κ is the cardinal number of a set, then 2^{κ} is the cardinal number of its power set'. It is well-known that, in IZF, the cardinality of the power set of a singleton set cannot be 2 (since this would imply the Law of Excluded Middle). Using this fact, we can prove that $\mathbf{V}^{(\mathbb{H}_3)} \not\models \varphi$. However, we know that $\mathrm{ZF} \models \varphi$. Hence, φ is independent from $\mathbb{H}_3\text{-}\mathrm{ZF}$, but not from ZF .

Example

Consider the three-valued Heyting algebra \mathbb{H}_3 . Let φ be the sentence which intuitively states that 'if κ is the cardinal number of a set, then 2^{κ} is the cardinal number of its power set'. It is well-known that, in IZF, the cardinality of the power set of a singleton set cannot be 2 (since this would imply the Law of Excluded Middle). Using this fact, we can prove that $\mathbf{V}^{(\mathbb{H}_3)} \not\models \varphi$. However, we know that $\mathrm{ZF} \models \varphi$. Hence, φ is independent from $\mathbb{H}_3\text{-}\mathrm{ZF}$, but not from ZF .

Tarafder, S. and Venturi, G. (2023). Independence proofs in non-classical set theories, The Review of Symbolic Logic, 16(4), pp. 979 - 1010.

Thank You...