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Interpreting IZF in Sh(X)
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Classifying toposes



Definition
A geometric formula is a first order formula ¢ that only uses
the logical connectives

= T,ALv,3\/ )4\/ %’é/%(

A geometric theory is a first-order theory with axioms
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where ¢ and 1) are geometric formulas. é = \{/ D),
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Why geometric logic?

G

Every continuous map f : X — Y induces 5.4 SJ ¥
@ ¢
Sh(X) <— Sh(Y). 5
This f* preserves finite limits and all colimits.
= f* preserves models of geometric theories.

In fact, every geometric morphism f : £ — £ has such a

“pull-back part”
gLl¢.






Definition
A geometric theory T is classified by a topos &t if there is a
universal model Ur € Modg, (T), that is:

Geom(&',E7) = Modg(T)

is an equivalence of categories for every topos £’.
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Aside: ,TH

A point of £ is a geometric morphism Set — £.

Po?w]rs op ZW = Geow (fe%'Z”. = oo/m(('?ﬂ



Fvy
Example - (/04 e()
What is the classifying topos of sub-singletons?
» one sort A
» no function/relation symbols ,) v -1/0

» one axiom: T bk, .4 X =y
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Theorem
Every geometrietheory has a unique (up to equivalence)

c/assifyi@
Every toposciassifies some geometric theory.

Theorem
A geometric sequent ¢ = » 1 is fulfilled for Ur iff it is
provable modulo T.



Examples from algebraic geometry



Definition
A site is a category together with a “notion of covering” (a
Grothendieck topology).

site for Sh(X) site for Zar
objects U C X open finitely presented ring
A
morphisms VCU ring homomorphism
B+ A
covers U=y, U (Ala; '] < A)izin

whenever a; + ... +a,=1






Theorem
Al is the universal local ring.
(So Zar classifies local rings.)

Proof sketch.



Infinitesimals? ’Nﬁro’blem!
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Theorem
The big infinitesimal topos classifies the theory of
infinitesimally thickened local rings.
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