Some logical aspects of topos theory and examples from algebraic geometry (Part II)

Matthias Hutzler

Universität Augsburg

June 29, 2020

 $\begin{pmatrix} V & U \end{pmatrix} \models \phi$ $\neg \phi \equiv \phi \Rightarrow \bot$ Π¢] $U \models \phi \Rightarrow 1$ iff $(V \models \phi) \Rightarrow V = \phi$ [] ~ U=0 $U \models (\not\models =) 1) =) 1$ ift V = (φ=>⊥) => V=∞ E&JAV=Ø ;ff [OI is dense in U open

Interpreting IZF in Sh(X)

problem: x e y only makes sense for x:F, y:P(F)

 $\bigcup_{\alpha} \widetilde{\mathcal{P}}(\mathscr{O}) =: \bigvee$ $(e) \in V \times V$

 $V_{\alpha} := \mathcal{P}^{*}(\emptyset)$ $(e^n \in V_{\alpha} \times V_{\alpha+1})$

Classifying toposes

Definition

A geometric formula is a first order formula ϕ that only uses the logical connectives

A geometric theory is a first-order theory with axioms

 $\phi \vdash_{\vec{x}:\vec{A}} \psi \qquad ((\forall x_{\eta}: A_{\eta}... \forall x_{\eta}:A_{\eta}... \forall x_{\eta}:A_{\eta}..$ where ϕ and ψ are geometric formulas.

$$T \stackrel{1}{\underset{x,y_{z},A}{\vdash}} \underbrace{x} \cdot (y \cdot z) = (x \cdot y) \cdot z$$

Why geometric logic?

Every continuous map $f: X \to Y$ induces

$$\operatorname{Sh}(X) \xleftarrow{f^*} \operatorname{Sh}(Y).$$

This f^* preserves finite limits and all colimits. $\Rightarrow f^*$ preserves models of geometric theories.

In fact, every geometric morphism $f : \mathcal{E}' \to \mathcal{E}$ has such a "pull-back part"

$$\mathcal{E}' \xleftarrow{f^*} \mathcal{E}.$$

Definition

A geometric theory \mathbb{T} is *classified* by a topos $\mathcal{E}_{\mathbb{T}}$ if there is a universal model $U_{\mathbb{T}} \in \operatorname{Mod}_{\mathcal{E}_{\mathbb{T}}}(\mathbb{T})$, that is:

$$\begin{array}{rcl} \mathsf{Geom}(\mathcal{E}',\mathcal{E}_{\mathbb{T}}) &\cong & \mathrm{Mod}_{\mathcal{E}'}(\mathbb{T}) \\ f &\mapsto & f^* U_{\mathbb{T}} \end{array}$$

is an equivalence of categories for every topos \mathcal{E}' .

think: bijection

Aside:

Sh (pt) A *point* of \mathcal{E} is a geometric morphism Set $\rightarrow \mathcal{E}$.

points of
$$\mathcal{E}_{\mathrm{TT}} = \mathrm{Geom}\left(\mathrm{Set}, \mathcal{E}_{\mathrm{TT}}\right) = \mathrm{Mod}_{\mathrm{Set}}(\mathrm{Tt})$$

Example

What is the classifying topos of sub-singletons?

- \blacktriangleright one sort A
- no function/relation symbols
- one axiom: $\top \vdash_{x,y:A} x = y$

р V Ч П (р Л q)

 $Cout(X,Y) = \{opens \ U \leq X\}$

Grothendieck topos

Theorem Every geometrie theory has a unique (up to equivalence) classifying topos. Every topos classifies some geometric theory.

Theorem

A geometric sequent $\phi \vdash_{\vec{x}:\vec{A}} \psi$ is fulfilled for $U_{\mathbb{T}}$ iff it is provable modulo \mathbb{T} .

Examples from algebraic geometry

Definition

A *site* is a category together with a "notion of covering" (a *Grothendieck topology*).

	site for $Sh(X)$	site for Zar
objects	$U \subseteq X$ open	finitely presented ring A
morphisms	$V \subseteq U$	ring homomorphism $B \leftarrow A$
covers	$U = \bigcup_i U_i$	$(A[a_i^{-1}] \leftarrow A)_{i=1\dots n}$ whenever $a_1 + \dots + a_n = 1$

Theorem \mathbb{A}^1 is the universal local ring. (So Zar classifies local rings.)

Proof sketch.

Infinitesimals? No problem!

 $\mathcal{E} \neq 0$, $\mathcal{E}^2 = 0$

 $\mathcal{F}(\chi^2) \ni \chi$

Spec C =

Spec $C[X]/(X^2)$ 2

Theorem The big infinitesimal topos classifies the theory of infinitesimally thickened local rings.

-Rroof-sketetr.

" theory of vings: A, ... " A local · or E A idea with $x \in \mathcal{O}$ $\xrightarrow{}_{x;A} \bigvee_{n \in \mathbb{N}} x^n = 0$