Some logical aspects of topos theory and examples from algebraic geometry

Matthias Hutzler

Universität Augsburg

June 15, 2020

Definition

An (elementary) topos is a category with

- finite limits and
- power objects.

Example

For a topological space X, the category Sh(X) of *sheaves* on X is a topos.

Sheaves

Definition

A sheaf (of sets) \mathcal{F} on a topological space X is the following data:

- ▶ a set $\mathcal{F}(U)$ for every open $U \subseteq X$
- "restriction" maps $\mathcal{F}(U) \to \mathcal{F}(V)$ for $V \subseteq U$ such that $\mathcal{F}(U) \to \mathcal{F}(V) \to \mathcal{F}(W)$ is $\mathcal{F}(U) \to \mathcal{F}(W)$ for $W \subseteq V \subseteq U$

satisfying a certain *glueing condition*.

Examples

$$\blacktriangleright \mathcal{F}(U) = C^0(U) = C^0(U, \mathbb{R})$$

C⁰(·, Y)
 C[∞](·, ℝ) if X is a smooth manifold

 $rac{P}{(u)} = M$, M fixed

Glueing condition: U7 $\mathcal{F}(U_1 \cup U_2) = \mathcal{F}(U_1) \times \mathcal{F}(U_2)$ for $U_1 \cap U_2 = \emptyset$. $\mathcal{F}(U_1 \cup U_2) = \mathcal{F}(U_1) \times_{\mathcal{F}(U_1 \cap U_2)} \mathcal{F}(U_2) = \{ f \in \mathcal{F}(U_1) \mid u_i \in \mathcal{F}(U_1) \mid u_i$ i, j, there is a unique $s \in \mathcal{F}(U)$ with $s|_{U_i} = s_i$ for all i. Example $\mathcal{F}(U) = M$ for a fixed set M. Is this a sheaf? $M = M \times M$

Example

For every set *M* we have the *constant sheaf* $\underline{M}(U) = \{ \text{locally constant functions } U \to M \}.$

Remark

For every sheaf \mathcal{F} we have $|\mathcal{F}(\emptyset)| = 1$.

Remark

 $f(g) = \{*\}$ $f(g) = \{*\}$ A sheaf on $X = \{pt\}$ is just a set.

topological spaces c toposos × -----> Sh (x)

Internal language

We want to treat sheaves like sets/sorts/types.

Want to get only statements that can be checked locally.

for
$$s_1 s' \in F(X)$$
, $s = s'$ can be checked locally
for $f_1g: X \rightarrow R$, $f = g$ "

$$f: \hat{f} \rightarrow \hat{G}$$
recursive definition (Kripke-Joyal semantics)

$$f: \hat{f} \rightarrow \hat{G}$$

$$f: \hat{f} \rightarrow \hat{f}$$

$$(f: \hat{f} \rightarrow \hat{K})$$

$$f: \hat{f} \rightarrow \hat{f}$$

$$for \quad cuery \quad i, \quad U_i \not = \hat{f}$$

$$for \quad cuery \quad i, \quad U_i \not = \hat{f}$$

$$for \quad cuery \quad i, \quad U_i \not = \hat{f}$$

$$U \models s = s^{1}$$

 $(s, e) \not\in (u)$ if $f = s^{1}$ in $\mathcal{F}(u)$
 $(s, s^{2}) \not\in (u)$

0,1 : A $+,\cdot;A \times A \longrightarrow A$

Definition

A sheaf of rings on X is just a ring internal to Sh(X).

Example

 C^{0} is a ring internal to Sh(X).

Ox - modules

+, · ; (* C -> C * C°(U) is a ring

