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Modal Logic

The syntax of modal logic is the one of propositional logic together with symbols

� ‘necessary’
♦ ‘possible’

We view ♦ as an abbreviation for ¬�¬.
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Kripke Semantics I

Definition
A Kripke frame (𝐹, ≤) consists of a set of worlds 𝐹 and an accessibility relation ≤.
A Kripke model (𝐹, ≤, ‖ ⋅ ‖) consists of a frame and a valuation ‖ ⋅ ‖ ∶ Prop → ℘(𝐹).
We extend ‖ ⋅ ‖ to arbitrary modal formulas by

‖¬𝜓‖ = 𝐹 ∖ ‖𝜓‖
‖𝜓 ∧ 𝜒‖ = ‖𝜓‖ ∩ ‖𝜒‖

‖�𝜓‖ = {𝑤 ∈ 𝐹 ∣ ≤[𝑤] ⊆ ‖𝜓‖} = {𝑤 ∈ 𝐹 ∣ ∀𝑣 ≥ 𝑤 (𝑣 ∈ ‖𝜓‖)}

In a Kripke model, (𝐹, ≤, ‖ ⋅ ‖), 𝑤 ⊨ 𝜓 (‘𝜓 is true at 𝑤’) iff 𝑤 ∈ ‖𝜓‖.
In a Kripke frame, (𝐹, ≤), 𝑤 ⊨ 𝜓 (‘𝜓 is valid at 𝑤’) iff 𝑤 ∈ ‖𝜓‖ for every valuation ‖ ⋅ ‖.
(𝐹, ≤) ⊨ 𝜓 (‘𝜓 is valid’) iff (𝐹, ≤), 𝑤 ⊨ 𝜓 for every 𝑤 ∈ 𝐹.
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Kripke Semantics II

Example

s

𝑝

t

𝑞

u

𝑝, 𝑞

v

𝑞

w

(𝐹, ≤, ‖ ⋅ ‖), 𝑠 ⊨ 𝑝 ∧ ♦𝑝 ∧ ¬�𝑝 ∧ �𝑞
(𝐹, ≤, ‖ ⋅ ‖), 𝑤 ⊭ �𝑞
(𝐹, ≤), 𝑠 ⊨ �𝑝 → ��𝑝
(𝐹, ≤) ⊨ �𝑝 → ��𝑝
(𝐹, ≤), 𝑤 ⊨ �𝑝 → 𝑝
(𝐹, ≤) ⊭ �𝑝 → 𝑝
(𝐹, ≤), 𝑡 ⊨ �𝑝
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Normal Modal Logics I

Definition
A set of modal formulas is a normal modal logic if it contains all propositional
tautologies,

(K) = �(𝑝 → 𝑞) → (�𝑝 → �𝑞),

and is closed under

𝜓 → 𝜒 𝜓
MP𝜒

𝜓(𝑝1, … , 𝑝𝑛)
US𝜓(𝜒1, … , 𝜒𝑛)

𝜓
Nec�𝜓

K is the smallest normal modal logic.
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Normal Modal Logics II

Lemma
Log(𝐹, ≤) = {𝜓 ∣ (𝐹, ≤) ⊨ 𝜓} is normal for any frame (𝐹, ≤).
However, {𝜓 ∣ (𝐹, 𝑙𝑒𝑞), 𝑤 ⊨ 𝜓} is not always closed under Nec.

Lemma
Let 𝒞 be the class of all Kripke frames.
Then K = Log(𝒞) = ⋂(𝐹,≤)∈𝒞 Log(𝐹, ≤), i.e. K is sound and complete w.r.t. 𝒞.
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Common Modal Logics

Definition
Let 𝐿 + 𝜓 be the smallest normal modal logic containing 𝐿 and 𝜑.
a9 = K + �𝑝 → 𝑝 + �𝑝 → ��𝑝
a9.k = a9 + ♦�𝑝 → �♦𝑝
a8 = a9 + ♦�𝑝 → 𝑝

Lemma
a9 is sound and complete w.r.t. (finite) reflexive and transitive frames.
a9.k is sound and complete w.r.t. (finite) reflexive, transitive, and directed1 frames.
a8 is sound and complete w.r.t. (finite) reflexive, transitive, and symmetric frames.

1𝑥 ≤ 𝑦 and 𝑥 ≤ 𝑧 ⇒ ∃𝑤 (𝑦 ≤ 𝑤 and 𝑧 ≤ 𝑤)
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Nec is sometimes easy

Lemma
In a reflexive and transitive frame, (𝐹, ≤), 𝑤 ⊨ �𝜑 implies (𝐹, ≤), 𝑤 ⊨ a9 + 𝜑.

Proof.
We show by induction on proofs that (𝐹, ≤), 𝑣 ⊨ a9 + 𝜑 for all 𝑣 ≥ 𝑤. By reflexivity,
this implies (𝐹, ≤), 𝑤 ⊨ a9 + 𝜑.
If 𝜓 ∈ a9 ∪ {𝜑}, there is nothing to show.
Since {𝜓 ∣ (𝐹, ≤), 𝑣 ⊨ 𝜓} is always closed under JS and US, these cases are easy.
Assume (𝐹, ≤), 𝑢 ⊨ 𝜓 for all 𝑢 ≥ 𝑤, i.e. (𝐹, ≤), 𝑤 ⊨ �𝜓, and let 𝑣 ≥ 𝑤. By transitivity,
(𝐹, ≤), 𝑣 ⊨ �𝜓.
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Modal Logic of Forcing

Definition
Let 𝑀 be a countable transitive model of w6* and 𝜑 a sentence of set theory.
𝑀 ⊨ �𝜑 iff ⊩ℙ 𝜑 for every forcing poset ℙ ∈ 𝑀.
The modal logic of forcing of 𝑀 is

MLF(𝑀) = {𝜓(𝑞1, … , 𝑞𝑛) ∣ 𝑀 ⊨ 𝜓(𝜑1, … , 𝜑𝑛) for all 𝜑1, … , 𝜑𝑛 ∈ ℒ∈} .

The modal logic of forcing is

MLF = ⋂
𝑀⊨w6* countable

MLF(𝑀).

By the Truth Lemma, we can think of MLF as the modal formulas valid on the
Kripke frame of models of ZFC with 𝑀 ≤ 𝑁 iff 𝑁 is a generic extension of 𝑀.
Then MLF(𝑀) is the set of modal formulas valid at 𝑀.
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Lower Bound

Theorem (Hamkins and Löwe [4])
a9.k ⊆ MLF.

Proof.
The ‘frame’ is reflexive, transitive, and directed.

Reflexivity 𝑀 is a generic extension of itself
Transitivity iterated forcing ℙ ∗ ℚ

Directedness product forcing ℙ × ℚ

Hence a9.k is valid on it.
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Buttons and Switches

Definition
A sentence 𝜑 of set theory is a switch in 𝑀 if 𝑀 ⊨ �♦𝜑 ∧ �♦¬𝜑.
A sentence 𝜑 of set theory is a button in 𝑀 if 𝑀 ⊨ ♦�𝜑. It is unpushed if 𝑀 ⊭ 𝜑.

Example
*> is a switch in any model.
In 𝐿, “𝜔𝐿

𝑛+1 is not a cardinal” is an unpushed button.

Definition
A family of buttons 𝑏𝑖 and switches 𝑠𝑗 is independent in 𝑀 if none of the buttons is
pushed and in any generic extension of 𝑀, any button can be pushed and any
switch can be switched without affecting the others.
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Pre-Lattices I

Lemma
a9.k is complete w.r.t. the class of finite reflexive, transitive, and directed frames.

Definition
A frame (𝐹, ≤) is a pre-lattice if (𝐹/≡, ≤) is a lattice, where 𝑣 ≡ 𝑤 iff 𝑣 ≤ 𝑤 ≤ 𝑣.

Lemma
a9.k is complete w.r.t. the class of finite pre-lattices.
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Pre-Lattices II

Proof.
Let (𝐹, ≤) be finite reflexive, transitive, and directed frame with (𝐹, ≤), 𝑤 ⊭ 𝜓.
W.l.o.g. 𝑤 ≤ 𝑣 for all 𝑣 ∈ 𝑀. Directedness implies that there is a top cluster [𝑡].
Unravel the frame of clusters at [𝑤], but merge all copies of [𝑡].
The unravelling is a finite pre-lattice:

[𝑢] ∧ [𝑣] =
⎧{
⎨{⎩

min([𝑢], [𝑣]) if 𝑢 and 𝑣 are comparable
[𝑤] otherwise

[𝑢] ∨ [𝑣] =
⎧{
⎨{⎩

max([𝑢], [𝑣]) if 𝑢 and 𝑣 are comparable
[𝑡] otherwise.

Since the two frames are bisimilar, 𝜓 is not valid in the unravelling either.
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Upper Bound I

Lemma
Let (𝐹, ≤, ‖ ⋅ ‖) be a Kripke model on a finite pre-lattice and 𝑤 ∈ 𝐹. Let 𝑀 ⊨ w6* have an
independent family of infinitely many buttons 𝑏𝑖 and infinitely many switches 𝑠𝑗. Then there
are 𝜑𝑖 ∈ ℒ∈ such that (𝐹, ≤, ‖ ⋅ ‖), 𝑤 ⊨ 𝜓(𝑞1, … , 𝑞𝑛) iff 𝑀 ⊨ 𝜓(𝜑1, … , 𝜑𝑛) for all modal
formulas 𝜓.

Theorem (Hamkins and Löwe [4])
MLF ⊆ MLF(𝐿) ⊆ a9.k.

Proof.
A result by Hamkins and Löwe [4, 3] shows that 𝐿 has enough buttons and switches.
Hence 𝜑 ∉ a9.k implies 𝜑 ∉ MLF(𝐿).
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Upper Bound II

Proof of the Lemma.
Assign distinct buttons 𝑏[𝑣] to all clusters [𝑣] ⊆ 𝐹. Define

𝑏𝐴 = ( ⋀
[𝑣]∈𝐴

�𝑏[𝑣]) ∧ ( ⋀
[𝑣]∉𝐴

¬�𝑏[𝑣]) for 𝐴 ⊆ 𝐹/≡

𝑝[𝑣] = ⋁ {𝑏𝐴 ∣ [𝑣] = ⋁ 𝐴} for [𝑣] ∈ 𝐹/≡.

If 𝑀[𝐺] ⊨ 𝑝[𝑣], then 𝑀[𝐺] ⊨ ♦𝑝[𝑢] iff 𝑣 ≤ 𝑢. W.l.o.g. 𝑀 ⊨ 𝑝[𝑤].
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Upper Bound III

Proof of the Lemma (continued).
Assume every cluster has at most 2𝑛 nodes. For any cluster [𝑣] ∈ 𝑀/≡, let
{𝐴𝑢 ∶ 𝑢 ∈ [𝑣]} partition ℘(𝑛)2 for every cluster [𝑣] ⊆ 𝐹 and define

𝑠𝐴 = ⋀
𝑖∈𝐴

𝑠𝑖 ∧ ⋀
𝑖∉𝐴

¬𝑠𝑖 for 𝐴 ⊆ 𝑛

𝑝𝑢 = 𝑝[𝑣] ∧ ⋁
𝐴∈𝐴𝑢

𝑠𝑎 for 𝑢 ∈ [𝑣].

Then 𝜑𝑖 = ⋁ {𝑝𝑢 ∣ (𝐹, ≤, ‖ ⋅ ‖), 𝑢 ⊨ 𝑞𝑖} works.

2⋃𝑢∈[𝑣] 𝐴𝑢 = ℘(𝑛), 𝐴𝑢 ≠ ∅ and 𝐴𝑢 ∩ 𝐴𝑢′ = ∅ for all 𝑢 ≠ 𝑢′ ∈ [𝑣]
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Maximality Principle I

Definition
The maximality principle JS is the scheme ∀𝜑 (♦�𝜑 → 𝜑).

Theorem (Hamkins [2])
w6* and w6* + JS are equiconsistent.

Theorem
If 𝑀 ⊨ JS, then MLF(𝑀) = a8.
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Maximality Principle II

Lemma
For any model 𝑀 of set theory, {𝜑 ∣ 𝑀 ⊨ ♦�𝜑} is consistent.

Proof.
Let 𝑀 ⊨ ♦�𝜑1, … ,♦�𝜑𝑛. Choose forcing posets such that 𝑀ℙ𝑖 ⊨ �𝜑𝑖. Then
𝑀ℙ1×⋯×ℙ𝑛 ⊨ 𝜑1, … , 𝜑𝑛.
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Maximality Principle III

Theorem (Hamkins [2])
w6* and w6* + JS are equiconsistent.

Proof.
Let 𝑀 ⊨ w6* and 𝑇 = {𝜑 ∣ 𝑀 ⊨ ♦�𝜑}. Since 𝑇 is consistent, there is a model
𝑁 ⊨ 𝑇 ⊇ w6*. Assuming 𝑁 ⊨ ♦�𝜑, we show 𝑁 ⊨ 𝜑, i.e. 𝑁 ⊨ JS.
If 𝑀 ⊨ ♦�¬♦�𝜑, then ¬♦�𝜑 ∈ 𝑇, so 𝑁 ⊨ ¬♦�𝜑 in contradiction to 𝑁 ⊨ ♦�𝜑.
Hence 𝑀 ⊨ ¬♦�¬♦�𝜑 ≡ �♦♦�𝜑. By transitivity, 𝑀 ⊨ �♦�𝜑. By reflexivity,
𝑀 ⊨ ♦�𝜑. Thus 𝜑 ∈ 𝑇 and 𝑁 ⊨ 𝜑.
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Maximality Principle IV
Lemma
If 𝑀 ⊨ JS, then so does every generic extension of 𝑀.

Proof.
Let 𝑁 be a generic extension of 𝑀. Assume 𝑁 ⊨ ♦�𝜑. By transitivity, 𝑀 ⊨ ♦��𝜑.
By JS, 𝑀 ⊨ �𝜑. Hence 𝑁 ⊨ 𝜑.

Theorem
If 𝑀 ⊨ JS, then MLF(𝑀) = a8.

Proof.
By the above, � (♦�𝑝 → 𝑝) ∈ MLF(𝑀). Since the forcing relation is reflexive and
transitive, MLF(𝑀) ⊇ a9 + ♦�𝑝 → 𝑝 = a8. MLF(𝑀) ⊆ a8 holds for every 𝑀.
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Another Sufficient Condition for a8

Lemma
Let 𝑀′ be a ground of 𝑀 such that 𝑀 ⊨ |𝛼| = ℵ0 for all ordinals 𝛼 definable in 𝑀′. Then
MLF(𝑀) = a8.

Proof.
We show 𝑀 ⊨ JS. Assume 𝑀 ⊨ ♦�𝜑. By transitivity, 𝑀′ ⊨ ♦�𝜑. In 𝑀′, let

𝛼 = min {2|ℙ| ∣ ℙ is a forcing with ⊩ℙ �𝜑} .

Then 𝑀 ⊨ |𝛼| = ℵ0. Choose a forcing ℙ ∈ 𝑀′ such that ⊩ℙ �𝜑 in 𝑀′ and
𝑀 ⊨ (2|ℙ|)𝑀′

= ℵ0. In 𝑀, ℙ has only countably many dense subsets. Thus 𝑀 can
recursively define a 𝐺 ⊆ ℙ such that 𝑁 ⊨ 𝐺 is a ℙ-generic filter. Hence 𝑀′[𝐺] ⊆ 𝑀.
By Grigorieff’s Theorem, 𝑀′[𝐺] ⊨ �𝜑 implies 𝑀 ⊨ 𝜑.
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""G

Definition
(BBL′) = (¬�𝑝 ∧ ♦�𝑞) → � (�𝑝 → �𝑞).
""G = a9.k + (BBL′).

Lemma
""G is sound and complete w.r.t. (finite) pre-Boolean algebras with at most two clusters.
In particular, a9.k ⊊ ""G ⊊ a8.

Lemma
In a reflexive and transitive and directed Kripke model, 𝑤 ⊨ (BBL′) implies 𝑤 ⊨ ""G.

Proof.
By transitivity, 𝑤 ⊨ (BBL′) implies 𝑤 ⊨ �(BBL′).
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Final Buttons I

Definition
A sentence 𝜑 of set theory is a final button over 𝑀 if it is an unpushed button over 𝑀
and for any button 𝜓 over 𝑀,

𝑀 ⊨ ♦ (¬�𝜑 ∧ �𝜓) → �𝜓

as well as

𝑀 ⊨ � (�𝜑 → �𝜓) .
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Final Buttons II

Lemma
Let 𝑀 ⊨ w6* with a final button 𝜑 over 𝑀 and arbitrarily large finite families 𝑆 of switches
over 𝑀 such that 𝑆 ∪ {𝜑} is independent. Then MLF(𝑀) = ""G.

Proof.
To show ""G ⊆ MLF(𝑀), it suffices to show that (BBL′) ∈ MLF(𝑀).
Let 𝜓 and 𝜒 be sentences of set theory.
We show 𝑀 ⊨ (¬�𝜓 ∧ ♦�𝜒) → � (�𝜓 → �𝜒).
If 𝜓 is not a button over 𝑀, then 𝑀 ⊨ ¬♦�𝜓 ≡ �¬�𝜓, so 𝑀 ⊨ � (�𝜓 → �𝜒).
So assume 𝜓 and 𝜒 are buttons over 𝑀 and 𝜓 is unpushed in 𝑀.
Since 𝜑 is a final button, 𝑀 ⊨ ♦ (¬�𝜑 ∧ �𝜓) → �𝜓 and 𝑀 ⊨ � (�𝜑 → �𝜒).
Since 𝑀 ⊨ ¬�𝜓, we get 𝑀 ⊨ ¬♦ (¬�𝜑 ∧ �𝜓) ≡ � (�𝜓 → �𝜑).
Hence 𝑀 ⊨ � (�𝜓 → �𝜒).
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Final Buttons III

Proof (continued).
To show MLF(𝑀) ⊆ ""G, let (𝐹, ≤) be a pre-Boolean algebra with at most two
clusters [⊥] ≤ [⊤].
If [⊥] = [⊤], then MLF(𝑀) ⊆ a8 ⊆ Log(𝐹, ≤).
Otherwise, use the unpushed final button to distinguish between the two clusters
and the switches to distinguish between equivalent worlds. We obtain a labelling
with sentences of set theory which shows MLF(𝑀) ⊆ Log(𝐹, ≤).
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""G as Modal Logic of Forcing I

Theorem (Block and Hamkins)
There is a model of w6* whose modal logic of forcing is ""G.

Proof.
Let 𝑀𝑀𝑀 denote the mantle, i.e. the intersection of all grounds. Let 𝑊𝑊𝑊 be a unary
predicate symbol and define

𝑆 = {𝑊𝑊𝑊 is a ground ∧ 𝜔1 = 𝜔𝑀𝑀𝑀
1 } ∪ {♦ (𝜔1 = 𝜔𝑀𝑀𝑀

1 ∧ �𝜑) → �𝜑 ∣ 𝜑 ∈ ℒ∈,𝑊𝑊𝑊} .

Assume there is a model (𝑀, ∈, 𝑀′) ⊨ w6* ∪ 𝑆. We claim that 𝜔1 ≠ 𝜔𝑀𝑀𝑀
1 is a final

button over 𝑀.
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""G as Modal Logic of Forcing II

Proof (continued).
For any ℒ∈,𝑊𝑊𝑊-formula 𝜑, 𝑀 ⊨ ♦ (𝜔1 = 𝜔𝑀𝑀𝑀

1 ∧ �𝜑) → �𝜑 implies

𝑀 ⊨ ♦ (¬� (𝜔1 ≠ 𝜔𝑀𝑀𝑀
1 ) ∧ �𝜑) → �𝜑

because 𝜔1 ≠ 𝜔𝑀𝑀𝑀
1 is upwards absolute

Let 𝛼 > 𝜔1 be definable in 𝑀′. Since there is a forcing collapsing 𝛼 to 𝜔1 without
collapsing 𝜔1 and 𝑀 ⊨ 𝜔1 = 𝜔𝑀𝑀𝑀

1 ,

𝑀 ⊨ ♦ (¬� (𝜔1 ≠ 𝜔𝑀𝑀𝑀
1 ) ∧ � (|𝛼| = 𝜔𝑀𝑀𝑀

1 ))

Since 𝛼 can be defined using an ℒ∈,𝑊𝑊𝑊-formula, 𝑀 ⊨ � (|𝛼| = 𝜔𝑀𝑀𝑀
1 ).
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""G as Modal Logic of Forcing III

Proof (continued).
Let 𝑁 be a generic extension of 𝑀 in which 𝜔1 is collapsed, i.e. 𝜔𝑀𝑀𝑀

1 = 𝜔𝑀
1 = 𝜔𝑁.

Then 𝑁 ⊨ |𝛼| = 𝜔𝑀𝑀𝑀
1 , so

|𝛼|𝑁 = 𝜔𝑀𝑀𝑀
1 = 𝜔𝑀

1 = 𝜔𝑁.

Hence MLF(𝑁) = a8. If 𝜑 is a button over 𝑀, then it also is over 𝑁, so 𝑁 ⊨ 𝜑. Thus

𝑀 ⊨ � (� (𝜔1 ≠ 𝜔𝑀𝑀𝑀
1 ) → �𝜑)

for any button 𝜑 over 𝑀.
We conclude that {𝜔1 ≠ 𝜔𝑀𝑀𝑀

1 } ∪ {2ℵ𝜔+𝑛 = ℵ𝜔+𝑛+1 ∣ 𝑛 ≥ 1} is an independent family
of a final button and infinitely many switches over 𝑀. Hence MLF(𝑀) = ""G.

28/32



""G as Modal Logic of Forcing IV

Proof (continued).
It remains to show that w6* ∪ 𝑆 is consistent. Let Φ = {𝜑0, … , 𝜑𝑛−1} ⊆ ℒ∈,𝑊𝑊𝑊 be
finite. We show the consistency of

w6* ∪ {𝑊𝑊𝑊 is a ground ∧ 𝜔1 = 𝜔𝑀𝑀𝑀
1 } ∪ {♦ (𝜔1 = 𝜔𝑀𝑀𝑀

1 ∧ �𝜑) → �𝜑 ∣ 𝜑 ∈ Φ} .

There is a model 𝑀′ of w6* with 𝑀′ ⊨ 𝜔1 = 𝜔𝑀𝑀𝑀
1 . Let 𝑀0 = 𝑀′.

If (𝑀𝑖, ∈, 𝑀′) ⊨ ♦ (𝜔1 = 𝜔𝑀𝑀𝑀
1 ∧ �𝜑𝑖), let 𝑀𝑖+1 be a generic extension of 𝑀𝑖

witnessing it. Otherwise, let 𝑀𝑖+1 = 𝑀𝑖.
𝑀′ is a ground of 𝑀𝑛 and 𝑀𝑛 ⊨ 𝜔1 = 𝜔𝑀𝑀𝑀

1 . If (𝑀, ∈, 𝑀′) ⊨ ♦ (𝜔1 = 𝜔𝑀𝑀𝑀
1 ∧ �𝜑𝑖),

then (𝑀𝑖, ∈, 𝑀′) ⊨ ♦ (𝜔1 = 𝜔𝑀𝑀𝑀
1 ∧ �𝜑𝑖) by transitivity. Hence (𝑀𝑖+1, ∈, 𝑀′) ⊨ �𝜑𝑖

and (𝑀𝑛, ∈, 𝑀) ⊨ �𝜑𝑖.
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""G as Modal Logic of Forcing V

Corollary
There is a model 𝑀 of w6* in whose multiverse a9.k, ""G, as well as a8 occur as modal
logics of forcing.

Proof.
A result by Piribauer [5] shows that a9.k occurs in every multiverse.
The previous theorem shows that ""G can occur.
Its proof shows that a8 also occurs.
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Outlook

Open questions

▶ Are any other modal logics possible?
▶ Are there multiverses with more than three modal logics of forcing?
▶ Is MLF(𝑀) normal for every model 𝑀 of w6*?
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