Two closed graphs with uncountable different Borel chromatic numbers

Michel Gaspar

Fachbereich Mathematik - Universität Hamburg

michel.gaspar@uni-hamburg.de

27th May, 2019

< 日 > < 同 > < 三 > < 三 > < 三 > <

1/132

1 Review: definable graphs and definable chromatic numbers

- 2 The G_0 graph and the G_0 -dichotomy
- 3 What is the Borel chromatic number of G_0 ?
- Separating Borel chromatic number of closed graphs

• Let X be any nonempty set and G be a graph on X (i.e., G is an irreflexive relation on X).

Let X be any nonempty set and G be a graph on X (i.e., G is an irreflexive relation on X). Recall that, for a cardinal κ, a κ-coloring of G is a function c : X → κ with the property that if (x, y) ∈ G then c(x) ≠ c(y).

Let X be any nonempty set and G be a graph on X (i.e., G is an irreflexive relation on X). Recall that, for a cardinal κ, a κ-coloring of G is a function c : X → κ with the property that if (x, y) ∈ G then c(x) ≠ c(y). The chromatic number of G is the least κ for which there exists a κ-coloring.

- Let X be any nonempty set and G be a graph on X (i.e., G is an irreflexive relation on X). Recall that, for a cardinal κ, a κ-coloring of G is a function c : X → κ with the property that if (x, y) ∈ G then c(x) ≠ c(y). The chromatic number of G is the least κ for which there exists a κ-coloring.
- Several important graphs are (irreflexive) relations on topological Hausdorff spaces (mostly on Polish spaces).

- Let X be any nonempty set and G be a graph on X (i.e., G is an irreflexive relation on X). Recall that, for a cardinal κ, a κ-coloring of G is a function c : X → κ with the property that if (x, y) ∈ G then c(x) ≠ c(y). The chromatic number of G is the least κ for which there exists a κ-coloring.
- Several important graphs are (irreflexive) relations on topological Hausdorff spaces (mostly on Polish spaces).
- This arises the question on what happens if we allow only *definable* types of colorings.

- Let X be any nonempty set and G be a graph on X (i.e., G is an irreflexive relation on X). Recall that, for a cardinal κ, a κ-coloring of G is a function c : X → κ with the property that if (x, y) ∈ G then c(x) ≠ c(y). The chromatic number of G is the least κ for which there exists a κ-coloring.
- Several important graphs are (irreflexive) relations on topological Hausdorff spaces (mostly on Polish spaces).
- This arises the question on what happens if we allow only *definable* types of colorings. What happens if we want to color the set of vertices in a graph in a definable way?

- Let X be any nonempty set and G be a graph on X (i.e., G is an irreflexive relation on X). Recall that, for a cardinal κ, a κ-coloring of G is a function c : X → κ with the property that if (x, y) ∈ G then c(x) ≠ c(y). The chromatic number of G is the least κ for which there exists a κ-coloring.
- Several important graphs are (irreflexive) relations on topological Hausdorff spaces (mostly on Polish spaces).
- This arises the question on what happens if we allow only *definable* types of colorings. What happens if we want to color the set of vertices in a graph in a definable way? How many colors do we need?

Definition

Let X be a topological Hausdorff space and G be a graph on X.

 We say that G is closed (open, Borel, analytic etc) iff G is a closed (respec. open, Borel, analytic etc) subset of X² \ Δ(X).

Definition

Let X be a topological Hausdorff space and G be a graph on X.

- We say that G is closed (open, Borel, analytic etc) iff G is a closed (respec. open, Borel, analytic etc) subset of X² \ Δ(X).
- For a family Γ of subsets of X, we say that a κ-coloring c of G is Γ-measurable iff c⁻¹(α) ∈ Γ for every α < κ.

Definition

Let X be a topological Hausdorff space and G be a graph on X.

- We say that G is closed (open, Borel, analytic etc) iff G is a closed (respec. open, Borel, analytic etc) subset of X² \ Δ(X).
- For a family Γ of subsets of X, we say that a κ-coloring c of G is Γ-measurable iff c⁻¹(α) ∈ Γ for every α < κ.
- The Γ -chromatic number of G, denoted by $\chi_{\Gamma}(G)$, is the least κ for which there exists a κ -coloring of G which is Γ -measurable.

• for $\Gamma = \mathcal{P}(X)$ we have the standard chromatic number.

- for $\Gamma = \mathcal{P}(X)$ we have the standard chromatic number.
- for Γ = B(X) we have the Borel chromatic number, denoted by χ_B(G).

- for $\Gamma = \mathcal{P}(X)$ we have the standard chromatic number.
- for $\Gamma = \mathcal{B}(X)$ we have the *Borel chromatic number*, denoted by $\chi_B(G)$.
- other families Γ that might be interesting are the family of the Lebesgue measurable sets or the family of sets with the Baire property.

- for $\Gamma = \mathcal{P}(X)$ we have the standard chromatic number.
- for $\Gamma = \mathcal{B}(X)$ we have the *Borel chromatic number*, denoted by $\chi_B(G)$.
- other families Γ that might be interesting are the family of the Lebesgue measurable sets or the family of sets with the Baire property.
- See [Mil08] for more.

Definition

Let $(s_n)_{n\in\omega}$ be a dense sequence of elements of $2^{<\omega}$ such that

Definition

Let $(s_n)_{n\in\omega}$ be a dense sequence of elements of $2^{<\omega}$ such that

• $|s_n| = n$ for all $n \in \omega$,

Definition

Let $(s_n)_{n\in\omega}$ be a dense sequence of elements of $2^{<\omega}$ such that

- $|s_n| = n$ for all $n \in \omega$, and
- every $t \in 2^{<\omega}$ has an extension of the form s_n .

Definition

Let $(s_n)_{n\in\omega}$ be a dense sequence of elements of $2^{<\omega}$ such that

•
$$|s_n| = n$$
 for all $n \in \omega$, and

• every $t \in 2^{<\omega}$ has an extension of the form s_n .

The G_0 -graph is the graph on 2^{ω} defined by

$$G_0 \doteq \{ (s_n^{\frown} 0^{\frown} x, s_n^{\frown} 1^{\frown} x) \mid n \in \omega \land x \in 2^{\omega} \}.$$

Definition

Let $(s_n)_{n\in\omega}$ be a dense sequence of elements of $2^{<\omega}$ such that

•
$$|s_n| = n$$
 for all $n \in \omega$, and

• every $t \in 2^{<\omega}$ has an extension of the form s_n .

The G_0 -graph is the graph on 2^{ω} defined by

$$G_0 \doteq \{ (s_n^{\frown} 0^{\frown} x, s_n^{\frown} 1^{\frown} x) \mid n \in \omega \land x \in 2^{\omega} \}.$$

Lemma

The chromatic number of G_0 is 2 and the Borel chromatic number of G_0 is uncountable.

Definition

Let $(s_n)_{n\in\omega}$ be a dense sequence of elements of $2^{<\omega}$ such that

•
$$|s_n| = n$$
 for all $n \in \omega$, and

• every $t \in 2^{<\omega}$ has an extension of the form s_n .

The G_0 -graph is the graph on 2^{ω} defined by

$$G_0 \doteq \{ (s_n^{\frown} 0^{\frown} x, s_n^{\frown} 1^{\frown} x) \mid n \in \omega \land x \in 2^{\omega} \}.$$

Lemma

The chromatic number of G_0 is 2 and the Borel chromatic number of G_0 is uncountable. In fact, $\chi_B(G_0) \ge \operatorname{cov}(\mathcal{M})$.

Definition

Let $(s_n)_{n\in\omega}$ be a dense sequence of elements of $2^{<\omega}$ such that

•
$$|s_n| = n$$
 for all $n \in \omega$, and

• every $t \in 2^{<\omega}$ has an extension of the form s_n .

The G_0 -graph is the graph on 2^{ω} defined by

$$G_0 \doteq \{ (s_n^{\frown} 0^{\frown} x, s_n^{\frown} 1^{\frown} x) \mid n \in \omega \land x \in 2^{\omega} \}.$$

Lemma

The chromatic number of G_0 is 2 and the Borel chromatic number of G_0 is uncountable. In fact, $\chi_B(G_0) \ge \operatorname{cov}(\mathcal{M})$.

For proof see (see [KST99].

Theorem (Kechris-Solecki-Todorcevic G_0 -dichotomy, [KST99])

Let X be a Polish space and G be an analytic graph on X. Then exactly one of the following holds:

Theorem (Kechris-Solecki-Todorcevic G_0 -dichotomy, [KST99])

Let X be a Polish space and G be an analytic graph on X. Then exactly one of the following holds:

(a) either $\chi_B(G) \leq \aleph_0$,

Theorem (Kechris-Solecki-Todorcevic G₀-dichotomy, [KST99])

Let X be a Polish space and G be an analytic graph on X. Then exactly one of the following holds:

- (a) either $\chi_B(G) \leq \aleph_0$, or
- (b) there is a continuous homomorphism from G_0 to G. In this case $\chi_B(G_0) \le \chi_B(G)$.

Theorem (Kechris-Solecki-Todorcevic G₀-dichotomy, [KST99])

Let X be a Polish space and G be an analytic graph on X. Then exactly one of the following holds:

(a) either
$$\chi_B(G) \leq \aleph_0$$
, or

(b) there is a continuous homomorphism from G_0 to G. In this case $\chi_B(G_0) \le \chi_B(G)$.

The G_0 -dichotomy implies many known dichotomies in descritive set theory such as the perfect set property or the Silver's dichotomy on co-analytic equivalence relations (see [Mil12]).

• We want to understand the relationship between $\chi_B(G_0)$ and the various cardinal invariants in the Cichón's diagram.

- We want to understand the relationship between $\chi_B(G_0)$ and the various cardinal invariants in the Cichón's diagram.
- First, notice that

$$G$$
 has a perfect clique $\Rightarrow \chi_B(G) = 2^{\aleph_0}$.

- We want to understand the relationship between $\chi_B(G_0)$ and the various cardinal invariants in the Cichón's diagram.
- First, notice that

G has a perfect clique
$$\Rightarrow \chi_B(G) = 2^{\aleph_0}$$
.

• Now, G₀ belongs to the class of closed graphs on the Cantor space.

- We want to understand the relationship between $\chi_B(G_0)$ and the various cardinal invariants in the Cichón's diagram.
- First, notice that

$$G$$
 has a perfect clique $\Rightarrow \chi_B(G) = 2^{\aleph_0}$.

- Now, G_0 belongs to the class of closed graphs on the Cantor space.
- We address the question of what are possible Borel chromatic numbers of closed graphs without perfect cliques in Polish spaces.

- We want to understand the relationship between $\chi_B(G_0)$ and the various cardinal invariants in the Cichón's diagram.
- First, notice that

$$G$$
 has a perfect clique $\Rightarrow \chi_B(G) = 2^{\aleph_0}$.

- Now, G_0 belongs to the class of closed graphs on the Cantor space.
- We address the question of what are possible Borel chromatic numbers of closed graphs without perfect cliques in Polish spaces. We also would like to compare them to other cardinal characteristics of the continuum.

First, in the model obtained by adding κ Cohen reals with finite support interation

First, in the model obtained by adding κ Cohen reals with finite support interation

$$\operatorname{cov}(\mathcal{M}) = \chi_B(G) = \kappa = 2^{\aleph_0},$$

for any analytic graph ${\it G}$ on a Polish space with uncountable Borel chromatic number

First, in the model obtained by adding κ Cohen reals with finite support interation

$$\operatorname{cov}(\mathcal{M}) = \chi_B(G) = \kappa = 2^{\aleph_0},$$

for any analytic graph G on a Polish space with uncountable Borel chromatic number (by the the well-known fact that Cohen forcing increases $cov(\mathcal{M})$ and $cov(\mathcal{M}) \leq \chi_B(G_0) \leq \chi_B(G) \leq 2^{\aleph_0}$ for G as above).

First, in the model obtained by adding κ Cohen reals with finite support interation

$$\operatorname{cov}(\mathcal{M}) = \chi_B(G) = \kappa = 2^{\aleph_0},$$

for any analytic graph G on a Polish space with uncountable Borel chromatic number (by the the well-known fact that Cohen forcing increases $cov(\mathcal{M})$ and $cov(\mathcal{M}) \leq \chi_B(G_0) \leq \chi_B(G) \leq 2^{\aleph_0}$ for G as above).

This is a situation where the Borel chromatic number of all analytic graphs is either countable or as big as the continuum. We will first see that this is independent of ZFC.
Theorem

Let X be a Polish space and G = (X, E) be a closed graph and suppose that CH holds in the ground model.

Theorem

Let X be a Polish space and G = (X, E) be a closed graph and suppose that CH holds in the ground model. Then either G has a perfect clique

Theorem

Let X be a Polish space and G = (X, E) be a closed graph and suppose that CH holds in the ground model. Then either G has a perfect clique or $\chi_B(G) \leq \aleph_1$ in the Sacks model.

Theorem

Let X be a Polish space and G = (X, E) be a closed graph and suppose that CH holds in the ground model. Then either G has a perfect clique or $\chi_B(G) \leq \aleph_1$ in the Sacks model.

In this model, the continuum is $2^{\aleph_0} = \aleph_2$. It remains open if the same holds for the classe of analytic graphs on Polish spaces.

> In the Cohen model: if the Borel chromatic number of an analytic graph is uncountable, then it has the cardinality of the continuum — they are all equally big.

- In the Cohen model: if the Borel chromatic number of an analytic graph is uncountable, then it has the cardinality of the continuum — they are all equally big.
- In the Sacks model: if a closed graph does not have perfect clique, then its Borel chromatic number is at most ℵ₁ in the Sacks model — they are all equally small.

- In the Cohen model: if the Borel chromatic number of an analytic graph is uncountable, then it has the cardinality of the continuum — they are all equally big.
- In the Sacks model: if a closed graph does not have perfect clique, then its Borel chromatic number is at most ℵ₁ in the Sacks model — they are all equally small.

Are there two closed graphs without perfect cliques with uncountable but consistently different Borel chromatic numbers?

- In the Cohen model: if the Borel chromatic number of an analytic graph is uncountable, then it has the cardinality of the continuum — they are all equally big.
- In the Sacks model: if a closed graph does not have perfect clique, then its Borel chromatic number is at most ℵ₁ in the Sacks model — they are all equally small.

Are there two closed graphs without perfect cliques with uncountable but consistently different Borel chromatic numbers?

We answer this question affirmatively.

$$(x,y) \in G_1 \leftrightarrow \exists! n \in \omega(x(n) \neq y(n)).$$

Define the graph G_1 by

$$(x,y) \in G_1 \leftrightarrow \exists ! n \in \omega(x(n) \neq y(n)).$$

• $G_0 \subseteq G_1$ and, just like G_0 , G_1 is a closed graph without perfect cliques.

$$(x,y) \in G_1 \leftrightarrow \exists ! n \in \omega(x(n) \neq y(n)).$$

- $G_0 \subseteq G_1$ and, just like G_0 , G_1 is a closed graph without perfect cliques.
- G_0 is a forest; G_1 has even cycles but does not have odd cycles, therefore is bipartite. This implies $\chi(G_0) = \chi(G_1) = 2$

$$(x,y) \in G_1 \leftrightarrow \exists ! n \in \omega(x(n) \neq y(n)).$$

- $G_0 \subseteq G_1$ and, just like G_0 , G_1 is a closed graph without perfect cliques.
- G_0 is a forest; G_1 has even cycles but does not have odd cycles, therefore is bipartite. This implies $\chi(G_0) = \chi(G_1) = 2$
- $\chi_B(G_0) \ge \chi_{BP}(G_0) \ge \operatorname{cov}(\mathcal{M})$

$$(x,y) \in G_1 \leftrightarrow \exists ! n \in \omega(x(n) \neq y(n)).$$

- $G_0 \subseteq G_1$ and, just like G_0 , G_1 is a closed graph without perfect cliques.
- G_0 is a forest; G_1 has even cycles but does not have odd cycles, therefore is bipartite. This implies $\chi(G_0) = \chi(G_1) = 2$
- $\chi_B(G_0) \ge \chi_{BP}(G_0) \ge \operatorname{cov}(\mathcal{M})$
- $\chi_{\mu}(G_1) \geq \operatorname{cov}(\mathcal{N})$

$$(x,y) \in G_1 \leftrightarrow \exists ! n \in \omega(x(n) \neq y(n)).$$

- $G_0 \subseteq G_1$ and, just like G_0 , G_1 is a closed graph without perfect cliques.
- G_0 is a forest; G_1 has even cycles but does not have odd cycles, therefore is bipartite. This implies $\chi(G_0) = \chi(G_1) = 2$
- $\chi_B(G_0) \ge \chi_{BP}(G_0) \ge \operatorname{cov}(\mathcal{M})$
- $\chi_{\mu}(G_1) \geq \operatorname{cov}(\mathcal{N})$
- $\chi_{\mu}(G_0) = 3$ (see [Mil08]).

From the previews this we get $\chi_B(G_1) \ge \max\{\operatorname{cov}(\mathcal{N}), \operatorname{cov}(\mathcal{M})\}.$

> From the previews this we get $\chi_B(G_1) \ge \max\{\operatorname{cov}(\mathcal{N}), \operatorname{cov}(\mathcal{M})\}$. The fact that $\chi_\mu(G_0) = 3$ is a good indicative that we may be able to increase $\chi_B(G_1)$ without affecting $\chi_B(G_0)$.

> From the previews this we get $\chi_B(G_1) \ge \max\{\operatorname{cov}(\mathcal{N}), \operatorname{cov}(\mathcal{M})\}$. The fact that $\chi_\mu(G_0) = 3$ is a good indicative that we may be able to increase $\chi_B(G_1)$ without affecting $\chi_B(G_0)$. One idea would be to increase $\operatorname{cov}(\mathcal{N})$ and hope that keeping $\operatorname{cov}(\mathcal{M})$ small it will not increase $\chi_B(G_0)$

From the previews this we get $\chi_B(G_1) \ge \max\{\operatorname{cov}(\mathcal{N}), \operatorname{cov}(\mathcal{M})\}$. The fact that $\chi_\mu(G_0) = 3$ is a good indicative that we may be able to increase $\chi_B(G_1)$ without affecting $\chi_B(G_0)$. One idea would be to increase $\operatorname{cov}(\mathcal{N})$ and hope that keeping $\operatorname{cov}(\mathcal{M})$ small it will not increase $\chi_B(G_0)$ — a good candidate for this is the random forcing.

• We proved that every random real is contained in a Borel *G*₀-independet set coded in the ground model. From the previews this we get $\chi_B(G_1) \ge \max\{\operatorname{cov}(\mathcal{N}), \operatorname{cov}(\mathcal{M})\}$. The fact that $\chi_\mu(G_0) = 3$ is a good indicative that we may be able to increase $\chi_B(G_1)$ without affecting $\chi_B(G_0)$. One idea would be to increase $\operatorname{cov}(\mathcal{N})$ and hope that keeping $\operatorname{cov}(\mathcal{M})$ small it will not increase $\chi_B(G_0)$ — a good candidate for this is the random forcing.

- We proved that every random real is contained in a Borel *G*₀-independet set coded in the ground model.
- We do not know whether the same can be said about any other real added in the random extension.

Definition

A tree p ⊆ 2^{<ω} is perfect iff for every t ∈ p there is s ∈ p such that t ⊆ s and s is a splitting node of p — i.e., s⁰, s¹ ∈ p.

Definition

- A tree p ⊆ 2^{<ω} is perfect iff for every t ∈ p there is s ∈ p such that t ⊆ s and s is a splitting node of p i.e., s⁰, s¹ ∈ p.
- A perfect tree p is uniform, or a Silver tree, iff for all $s, t \in p$

$$|s| = |t| \rightarrow s^{\frown}i \in p \leftrightarrow t^{\frown}i \in p$$

Definition

- A tree p ⊆ 2^{<ω} is perfect iff for every t ∈ p there is s ∈ p such that t ⊆ s and s is a splitting node of p i.e., s⁰, s¹ ∈ p.
- A perfect tree p is uniform, or a Silver tree, iff for all $s, t \in p$

$$|s| = |t| \rightarrow s^{\frown}i \in p \leftrightarrow t^{\frown}i \in p$$

• The Silver forcing $\ensuremath{\mathbb{V}}$ consists of uniform trees ordered by inclusion.

Definition

- A tree p ⊆ 2^{<ω} is perfect iff for every t ∈ p there is s ∈ p such that t ⊆ s and s is a splitting node of p i.e., s⁰, s¹ ∈ p.
- A perfect tree p is uniform, or a Silver tree, iff for all $s, t \in p$

$$|s| = |t| \rightarrow s^{\frown}i \in p \leftrightarrow t^{\frown}i \in p$$

• The Silver forcing $\ensuremath{\mathbb{V}}$ consists of uniform trees ordered by inclusion.

Remark It is the same as the forcing notion of parcial function from ω to 2 with co-infinite domain ordered by direct inclusion.

For $i \in 2$, let I_0 and I_1 be the σ -ideal Borel generated by countable unions of G_0 and G_1 -independent sets, respectively.

For $i \in 2$, let I_0 and I_1 be the σ -ideal Borel generated by countable unions of G_0 and G_1 -independent sets, respectively.

Theorem (Zapletal [Zap04])

Let $A \subseteq 2^{\omega}$ be an analytic set. Then either $A \in I_{G_1}$ or there is a Silver tree p such that $[p] \subseteq A$

For $i \in 2$, let I_0 and I_1 be the σ -ideal Borel generated by countable unions of G_0 and G_1 -independent sets, respectively.

Theorem (Zapletal [Zap04])

Let $A \subseteq 2^{\omega}$ be an analytic set. Then either $A \in I_{G_1}$ or there is a Silver tree p such that $[p] \subseteq A$

This means that the fuction $p \mapsto [p]$ is a dense embeding from the Silver frocing into $B(2^{\omega}) \setminus I_{G_1}$.

For $i \in 2$, let I_0 and I_1 be the σ -ideal Borel generated by countable unions of G_0 and G_1 -independent sets, respectively.

Theorem (Zapletal [Zap04])

Let $A \subseteq 2^{\omega}$ be an analytic set. Then either $A \in I_{G_1}$ or there is a Silver tree p such that $[p] \subseteq A$

This means that the fuction $p \mapsto [p]$ is a dense embeding from the Silver frocing into $B(2^{\omega}) \setminus I_{G_1}$. Now we know that the generic real avoids any Borel set in I_{G_1} coded in the ground model (in particular the G_1 -independents), therefore it increases $\chi_B(G_1)$.

For $i \in 2$, let I_0 and I_1 be the σ -ideal Borel generated by countable unions of G_0 and G_1 -independent sets, respectively.

Theorem (Zapletal [Zap04])

Let $A \subseteq 2^{\omega}$ be an analytic set. Then either $A \in I_{G_1}$ or there is a Silver tree p such that $[p] \subseteq A$

This means that the fuction $p \mapsto [p]$ is a dense embeding from the Silver frocing into $B(2^{\omega}) \setminus I_{G_1}$. Now we know that the generic real avoids any Borel set in I_{G_1} coded in the ground model (in particular the G_1 -independents), therefore it increases $\chi_B(G_1)$. Furthermore, it is *the best* forcing to increase $\chi_B(G_1)$ (this is due to Zapletal [Zap08a]).

Let p ⊆ 2^{<ω} be a perfect tree. For n ∈ ω we denote by split_n(p) the set of all t ∈ p that are minimal in p with respect to ⊆ such that below t there are exactly n proper splitting nodes in p.

Let p ⊆ 2^{<ω} be a perfect tree. For n ∈ ω we denote by split_n(p) the set of all t ∈ p that are minimal in p with respect to ⊆ such that below t there are exactly n proper splitting nodes in p. We define a sequence of parcial orders (≤_n)_{n∈ω} by

$$p \leq_n q \leftrightarrow p \leq q \wedge \operatorname{split}_n(p) = \operatorname{split}_n(q).$$

Let p ⊆ 2^{<ω} be a perfect tree. For n ∈ ω we denote by split_n(p) the set of all t ∈ p that are minimal in p with respect to ⊆ such that below t there are exactly n proper splitting nodes in p. We define a sequence of parcial orders (≤_n)_{n∈ω} by

$$p \leq_n q \leftrightarrow p \leq q \wedge \operatorname{split}_n(p) = \operatorname{split}_n(q).$$

• We say that a sequence $(p_n)_{n \in \omega}$ of Sacks (Silver) conditions is a fusion sequence for the Sacks (respec. Silver)forcing iff

$$\cdots \leq_{n+1} p_{n+1} \leq_n p_n \leq_{n-1} \cdots \leq_0 p_0$$

Let p ⊆ 2^{<ω} be a perfect tree. For n ∈ ω we denote by split_n(p) the set of all t ∈ p that are minimal in p with respect to ⊆ such that below t there are exactly n proper splitting nodes in p. We define a sequence of parcial orders (≤_n)_{n∈ω} by

$$p \leq_n q \leftrightarrow p \leq q \wedge \operatorname{split}_n(p) = \operatorname{split}_n(q).$$

• We say that a sequence $(p_n)_{n \in \omega}$ of Sacks (Silver) conditions is a fusion sequence for the Sacks (respec. Silver)forcing iff

$$\cdots \leq_{n+1} p_{n+1} \leq_n p_n \leq_{n-1} \cdots \leq_0 p_0$$

It should be noted that if If $(p_n)_{n\in\omega}$ is a fusion sequence for the Sacks or Silver forcing then $q \doteq \bigcap_{n\in\omega} p_n$ is a Sacks or a Silver condition.

In the model obtained by adding \aleph_2 Silver reals over a model of CH, we have

$$\chi_B(G_1) = \aleph_2 = 2^{\aleph_0}.$$

In the model obtained by adding \aleph_2 Silver reals over a model of CH, we have

$$\chi_B(G_1) = \aleph_2 = 2^{\aleph_0}.$$

Definition

A forcing notion \mathbb{P} does not add G_0 -independent closed sets if we can force every element of 2^{ω} to be in a G_0 -independent closed set coded in the ground model.

In the model obtained by adding \aleph_2 Silver reals over a model of CH, we have

$$\chi_B(G_1) = \aleph_2 = 2^{\aleph_0}.$$

Definition

A forcing notion \mathbb{P} does not add G_0 -independent closed sets if we can force every element of 2^{ω} to be in a G_0 -independent closed set coded in the ground model.

Theorem

If α is any ordinal, then the countable support iterated Silver forcing \mathbb{V}_{α} does not add G0-independent closed sets.

In the model obtained by adding \aleph_2 Silver reals over a model of CH, we have

$$\chi_B(G_1) = \aleph_2 = 2^{\aleph_0}.$$

Definition

A forcing notion \mathbb{P} does not add G_0 -independent closed sets if we can force every element of 2^{ω} to be in a G_0 -independent closed set coded in the ground model.

Theorem

If α is any ordinal, then the countable support iterated Silver forcing \mathbb{V}_{α} does not add G0-independent closed sets.

In this way, if CH holds in the ground model, then in the generic extension obtained by forcing with \mathbb{V}_{ω_2} :
In the model obtained by adding \aleph_2 Silver reals over a model of CH, we have

$$\chi_B(G_1) = \aleph_2 = 2^{\aleph_0}.$$

Definition

A forcing notion \mathbb{P} does not add G_0 -independent closed sets if we can force every element of 2^{ω} to be in a G_0 -independent closed set coded in the ground model.

Theorem

If α is any ordinal, then the countable support iterated Silver forcing \mathbb{V}_{α} does not add G_0 -independent closed sets.

In this way, if CH holds in the ground model, then in the generic extension obtained by forcing with \mathbb{V}_{ω_2} :

We first will look at a close property to not adding G-independent sets, for certain graphs G.

We first will look at a close property to not adding G-independent sets, for certain graphs G.

Definition

A forcing notion $\mathbb P$ has the 2-localization property if we can force every element of ω^ω to be in set of branches of some ground model binary tree.

We first will look at a close property to not adding G-independent sets, for certain graphs G.

Definition

A forcing notion $\mathbb P$ has the 2-localization property if we can force every element of ω^ω to be in set of branches of some ground model binary tree.

The 2-localization property implies the Sacks property and

Sacks property = Laver property + ω^{ω} -bounding.

We first will look at a close property to not adding G-independent sets, for certain graphs G.

Definition

A forcing notion $\mathbb P$ has the 2-localization property if we can force every element of ω^ω to be in set of branches of some ground model binary tree.

The 2-localization property implies the Sacks property and

Sacks property = Laver property + ω^{ω} -bounding.

• Laver property and ω^{ω} -bounding are both preserved under countable supported iterations of proper forcing notions.

We first will look at a close property to not adding G-independent sets, for certain graphs G.

Definition

A forcing notion $\mathbb P$ has the 2-localization property if we can force every element of ω^ω to be in set of branches of some ground model binary tree.

The 2-localization property implies the Sacks property and

Sacks property = Laver property + ω^{ω} -bounding.

- Laver property and $\omega^\omega\text{-bounding}$ are both preserved under countable supported iterations of proper forcing notions.
- By Bartoszynsky's:

 \mathbb{P} has the Sacks property $\Rightarrow \Vdash_{\mathbb{P}} \operatorname{cof}(\mathcal{N}) = |2^{\omega} \cap V|.$

We first will look at a close property to not adding G-independent sets, for certain graphs G.

Definition

A forcing notion $\mathbb P$ has the 2-localization property if we can force every element of ω^ω to be in set of branches of some ground model binary tree.

The 2-localization property implies the Sacks property and

Sacks property = Laver property + ω^{ω} -bounding.

- Laver property and ω^{ω} -bounding are both preserved under countable supported iterations of proper forcing notions.
- By Bartoszynsky's:

 \mathbb{P} has the Sacks property $\Rightarrow \Vdash_{\mathbb{P}} \operatorname{cof}(\mathcal{N}) = |2^{\omega} \cap \mathcal{V}|.$

• if additionaly CH holds in V, then $\operatorname{cof}(\mathcal{N}) = \aleph_1$

We first will look at a close property to not adding G-independent sets, for certain graphs G.

Definition

A forcing notion $\mathbb P$ has the 2-localization property if we can force every element of ω^ω to be in set of branches of some ground model binary tree.

The 2-localization property implies the Sacks property and

Sacks property = Laver property + ω^{ω} -bounding.

- Laver property and ω^{ω} -bounding are both preserved under countable supported iterations of proper forcing notions.
- By Bartoszynsky's:

 \mathbb{P} has the Sacks property $\Rightarrow \Vdash_{\mathbb{P}} \operatorname{cof}(\mathcal{N}) = |2^{\omega} \cap \mathcal{V}|.$

• if additionaly CH holds in V, then $\operatorname{cof}(\mathcal{N}) = \aleph_1$

Theorem

If α is any ordinal, then the countable support iterated Silver forcing \mathbb{V}_α has the 2-localization property.

Theorem

If α is any ordinal, then the countable support iterated Silver forcing \mathbb{V}_α has the 2-localization property.

See [NR93], [Ros06], [RS08], [Zap08b] for more discussion.

Theorem

If α is any ordinal, then the countable support iterated Silver forcing \mathbb{V}_α has the 2-localization property.

See [NR93], [Ros06], [RS08], [Zap08b] for more discussion.

For $\mathbb P$ forcing notion and $\dot x$ a $\mathbb P\text{-name}$ for an element of ω^ω wtinessed by p,

Theorem

If α is any ordinal, then the countable support iterated Silver forcing \mathbb{V}_α has the 2-localization property.

See [NR93], [Ros06], [RS08], [Zap08b] for more discussion.

For \mathbb{P} forcing notion and \dot{x} a \mathbb{P} -name for an element of ω^{ω} wtinessed by p, define for each $q \leq p$,

$$T_q(\dot{x}) = \{ s \in \omega^{<\omega} \mid \exists r \leq q(r \Vdash s \subseteq \dot{x}) \},\$$

the tree of *q*-possibilities for \dot{x} .

Theorem

If α is any ordinal, then the countable support iterated Silver forcing \mathbb{V}_α has the 2-localization property.

See [NR93], [Ros06], [RS08], [Zap08b] for more discussion.

For \mathbb{P} forcing notion and \dot{x} a \mathbb{P} -name for an element of ω^{ω} wtinessed by p, define for each $q \leq p$,

$${\mathcal T}_q(\dot{x}) = \{ s \in \omega^{<\omega} \mid \exists r \leq q(r \Vdash s \subseteq \dot{x}) \},$$

the tree of *q*-possibilities for \dot{x} . We have

 $q \Vdash \dot{x} \in [T_q(\dot{x})].$

Each $[T_q(\dot{x})]$ is a closed set coded in the ground model that contains \dot{x} .

Each $[T_q(\dot{x})]$ is a closed set coded in the ground model that contains \dot{x} . Now for an arbitrary forcing notion, we can ask whether we can ensure that $[T_q(\dot{x})]$ has some desired property:

binary?

Each $[T_q(\dot{x})]$ is a closed set coded in the ground model that contains \dot{x} . Now for an arbitrary forcing notion, we can ask whether we can ensure that $[T_q(\dot{x})]$ has some desired property:

binary? in I_{G_0} ?

Each $[T_q(\dot{x})]$ is a closed set coded in the ground model that contains \dot{x} . Now for an arbitrary forcing notion, we can ask whether we can ensure that $[T_q(\dot{x})]$ has some desired property:

binary? in I_{G_0} ? in I_{G_1} ?

Each $[T_q(\dot{x})]$ is a closed set coded in the ground model that contains \dot{x} . Now for an arbitrary forcing notion, we can ask whether we can ensure that $[T_q(\dot{x})]$ has some desired property:

binary? in I_{G_0} ? in I_{G_1} ? Lebesgue null?

Each $[T_q(\dot{x})]$ is a closed set coded in the ground model that contains \dot{x} . Now for an arbitrary forcing notion, we can ask whether we can ensure that $[T_q(\dot{x})]$ has some desired property:

binary? in I_{G_0} ? in I_{G_1} ? Lebesgue null?

Let us first consider the case of adding one single Silver real.

Each $[T_q(\dot{x})]$ is a closed set coded in the ground model that contains \dot{x} . Now for an arbitrary forcing notion, we can ask whether we can ensure that $[T_q(\dot{x})]$ has some desired property:

binary? in I_{G_0} ? in I_{G_1} ? Lebesgue null?

Let us first consider the case of adding one single Silver real. For a Silver tree q, consider the natural bijection between $\operatorname{split}_n(q)$ and 2^n .

Each $[T_q(\dot{x})]$ is a closed set coded in the ground model that contains \dot{x} . Now for an arbitrary forcing notion, we can ask whether we can ensure that $[T_q(\dot{x})]$ has some desired property:

binary? in I_{G_0} ? in I_{G_1} ? Lebesgue null?

Let us first consider the case of adding one single Silver real. For a Silver tree q, consider the natural bijection between $\operatorname{split}_n(q)$ and 2^n . This induces for every $\sigma \in 2^n$, a corresponding $q_\sigma \in \operatorname{split}_n(q)$,

Each $[T_q(\dot{x})]$ is a closed set coded in the ground model that contains \dot{x} . Now for an arbitrary forcing notion, we can ask whether we can ensure that $[T_q(\dot{x})]$ has some desired property:

binary? in I_{G_0} ? in I_{G_1} ? Lebesgue null?

Let us first consider the case of adding one single Silver real. For a Silver tree q, consider the natural bijection between $\operatorname{split}_n(q)$ and 2^n . This induces for every $\sigma \in 2^n$, a corresponding $q_\sigma \in \operatorname{split}_n(q)$, then we define

$$q * \sigma = \{s \in q \mid s \subseteq q_{\sigma} \lor q_{\sigma} \subseteq s\} \in \mathbb{V}.$$

For a splitting level n, define the Silver tree

$$q*n^{\frown}i=\bigcup_{\sigma\in 2^n}q*\sigma^{\frown}i,$$

for $i \in 2$.

For a splitting level n, define the Silver tree

$$q*n^{\frown}i=\bigcup_{\sigma\in 2^n}q*\sigma^{\frown}i,$$

for $i \in 2$.

A level *n* is \dot{x} -indifferent for a condition *q* iff *n* is a splitting level of *q* and for every $r \leq q$ either

For a splitting level n, define the Silver tree

$$q*n^{\frown}i=\bigcup_{\sigma\in 2^n}q*\sigma^{\frown}i,$$

for $i \in 2$.

A level *n* is \dot{x} -indifferent for a condition *q* iff *n* is a splitting level of *q* and for every $r \leq q$ either

• *n* is not a splitting level of *q*,

For a splitting level n, define the Silver tree

$$q*n^{\frown}i=\bigcup_{\sigma\in 2^n}q*\sigma^{\frown}i,$$

for $i \in 2$.

A level *n* is \dot{x} -indifferent for a condition *q* iff *n* is a splitting level of *q* and for every $r \leq q$ either

- n is not a splitting level of q, or
- $r * n^{0}$ and $r * n^{1}$ are compatible about \dot{x} .

For a splitting level n, define the Silver tree

$$q*n^{\frown}i=\bigcup_{\sigma\in 2^n}q*\sigma^{\frown}i,$$

for $i \in 2$.

A level *n* is \dot{x} -indifferent for a condition *q* iff *n* is a splitting level of *q* and for every $r \leq q$ either

- n is not a splitting level of q, or
- $r * n^{0}$ and $r * n^{1}$ are compatible about \dot{x} .

We have the following dichotomy:

(a) Either there is $q \le p$ such that for all $r \le q$, no *n* is \dot{x} -indifferent to *r*, or

For a splitting level n, define the Silver tree

$$q*n^{\frown}i=\bigcup_{\sigma\in 2^n}q*\sigma^{\frown}i,$$

for $i \in 2$.

A level *n* is \dot{x} -indifferent for a condition *q* iff *n* is a splitting level of *q* and for every $r \leq q$ either

- n is not a splitting level of q, or
- $r * n^{0}$ and $r * n^{1}$ are compatible about \dot{x} .

We have the following dichotomy:

- (a) Either there is $q \le p$ such that for all $r \le q$, no *n* is \dot{x} -indifferent to *r*, or
- (b) for all $q \leq p$ there is $r \leq q$ and n that is \dot{x} -indifferent to r.

For a splitting level n, define the Silver tree

$$q*n^{\frown}i=\bigcup_{\sigma\in 2^n}q*\sigma^{\frown}i,$$

for $i \in 2$.

A level *n* is \dot{x} -indifferent for a condition *q* iff *n* is a splitting level of *q* and for every $r \leq q$ either

- n is not a splitting level of q, or
- $r * n^{0}$ and $r * n^{1}$ are compatible about \dot{x} .

We have the following dichotomy:

- (a) Either there is $q \le p$ such that for all $r \le q$, no *n* is \dot{x} -indifferent to *r*, or
- (b) for all $q \leq p$ there is $r \leq q$ and *n* that is \dot{x} -indifferent to *r*.

If condition (b) is satisfied, \dot{x} is actually a name for a ground-model real.

If condition (b) is satisfied, \dot{x} is actually a name for a ground-model real. If condition (a) is satisfied, we can make $[T_q(\dot{x})]$ binary and we have a ground model name for a homeomorphism

$$\dot{h}:[q] \rightarrow [T_q(\dot{x})]$$

mapping the generic real onto \dot{x} .

If condition (b) is satisfied, \dot{x} is actually a name for a ground-model real. If condition (a) is satisfied, we can make $[T_q(\dot{x})]$ binary and we have a ground model name for a homeomorphism

$$\dot{h}:[q] \rightarrow [T_q(\dot{x})]$$

mapping the generic real onto \dot{x} .

This helps us to handle the successor case for the property of not adding G_0 -independent closed sets.

If condition (b) is satisfied, \dot{x} is actually a name for a ground-model real. If condition (a) is satisfied, we can make $[T_q(\dot{x})]$ binary and we have a ground model name for a homeomorphism

$$\dot{h}:[q] \rightarrow [T_q(\dot{x})]$$

mapping the generic real onto \dot{x} .

This helps us to handle the successor case for the property of not adding G_0 -independent closed sets. We need to import the fusion technology to the iterations:

If condition (b) is satisfied, \dot{x} is actually a name for a ground-model real. If condition (a) is satisfied, we can make $[T_q(\dot{x})]$ binary and we have a ground model name for a homeomorphism

$$\dot{h}:[q] \rightarrow [T_q(\dot{x})]$$

mapping the generic real onto \dot{x} .

This helps us to handle the successor case for the property of not adding G_0 -independent closed sets. We need to import the fusion technology to the iterations:

Let F be a finite subset of α and $\eta: F \to \omega$.

If condition (b) is satisfied, \dot{x} is actually a name for a ground-model real. If condition (a) is satisfied, we can make $[T_q(\dot{x})]$ binary and we have a ground model name for a homeomorphism

$$\dot{h}:[q] \rightarrow [T_q(\dot{x})]$$

mapping the generic real onto \dot{x} .

This helps us to handle the successor case for the property of not adding G_0 -independent closed sets. We need to import the fusion technology to the iterations:

Let F be a finite subset of α and $\eta: F \to \omega$. For $p, q \in \mathbb{V}_{\alpha}$ let

$$p \leq_{F,\eta} q \leftrightarrow \forall \gamma \in F(p \upharpoonright \gamma \Vdash p(\gamma) \leq_{\eta(\gamma)} q(\gamma)).$$

A sequence $(p_n)_{n\in\omega}$ is a fusion sequence if there are an increasing sequence $(F_n)_{n\in\omega}$ of finite subsets of α and a sequence $(\eta_n : F_n \to \omega \mid n \in \omega)$ satisfying that for all $n \in \omega$
A sequence $(p_n)_{n\in\omega}$ is a fusion sequence if there are an increasing sequence $(F_n)_{n\in\omega}$ of finite subsets of α and a sequence $(\eta_n : F_n \to \omega \mid n \in \omega)$ satisfying that for all $n \in \omega$

(a) $p_{n+1} \leq_{F_n,\eta_n} p_n$

A sequence $(p_n)_{n\in\omega}$ is a fusion sequence if there are an increasing sequence $(F_n)_{n\in\omega}$ of finite subsets of α and a sequence $(\eta_n : F_n \to \omega \mid n \in \omega)$ satisfying that for all $n \in \omega$

(a) p_{n+1} ≤_{F_n,η_n} p_n
(b) for all γ ∈ F_n we have η_n(γ) ≤ η_{n+1}(γ)

A sequence $(p_n)_{n \in \omega}$ is a fusion sequence if there are an increasing sequence $(F_n)_{n \in \omega}$ of finite subsets of α and a sequence $(\eta_n : F_n \to \omega \mid n \in \omega)$ satisfying that for all $n \in \omega$

(a) p_{n+1} ≤_{F_n,η_n} p_n
(b) for all γ ∈ F_n we have η_n(γ) ≤ η_{n+1}(γ)
(c) for all γ ∈ supt(p_n) there is m ∈ ω such that γ ∈ F_m and η_m(γ) ≥ n

A sequence $(p_n)_{n \in \omega}$ is a fusion sequence if there are an increasing sequence $(F_n)_{n \in \omega}$ of finite subsets of α and a sequence $(\eta_n : F_n \to \omega \mid n \in \omega)$ satisfying that for all $n \in \omega$

The fusion p_{ω} of a fusion sequence $(p_n)_{n \in \omega}$ in \mathbb{V}_{α} is defined recursively by

$$p_{\omega} \restriction \gamma \Vdash p_{\omega}(\gamma) = \bigcap_{n \in \omega} p_n(\gamma).$$

Let $p \in \mathbb{V}_{\alpha}$, F a finite subset of α and $\eta : F \to \omega$. For $\sigma \in \prod_{\gamma \in F} 2^{\eta(\gamma)}$ we define a condition $p * \sigma \in \mathbb{V}_{\alpha}$ by

$$(p * \sigma) \upharpoonright \delta \Vdash (p * \sigma)(\delta) = p(\delta) * \sigma(\delta)$$

if
$$\delta \in F$$
, and $(p * \sigma)(\delta) = p(\delta)$ if $\delta \in \alpha \setminus F$.

For F a finite subset of α and $\eta : F \to \omega$, the right notion of faithfulness for a condition $p \in \mathbb{V}_{\alpha}$ can give provide us with various preservation theorems in the Silver model.

For F, η as above

(a) we can say that $p \in \mathbb{V}_{\alpha}$ is (F, η) -faithfull iff for every $\sigma, \tau \in \prod_{\gamma \in F} 2^{\eta(\gamma)}$ such that $\sigma \neq \tau$, $\dot{x}_{p*\sigma}$ and $\dot{x}_{p*\tau}$ — the maximal initial segments of \dot{x} decided by $p * \sigma$ and $p * \tau$, respectively — are incompatible.

For F, η as above

- (a) we can say that $p \in \mathbb{V}_{\alpha}$ is (F, η) -faithfull iff for every $\sigma, \tau \in \prod_{\gamma \in F} 2^{\eta(\gamma)}$ such that $\sigma \neq \tau$, $\dot{x}_{p*\sigma}$ and $\dot{x}_{p*\tau}$ the maximal initial segments of \dot{x} decided by $p * \sigma$ and $p * \tau$, respectively are incompatible.
- (b) we can say that $p \in \mathbb{V}_{\alpha}$ is (F, η) -faithfull iff for every $\sigma, \tau \in \prod_{\gamma \in F} 2^{\eta(\gamma)}$ such that $\sigma \neq \tau$, $[T_{p*\sigma}(\dot{x})]$ and $[T_{p*\tau}(\dot{x})]$ are relatively G_0 -independent i.e., there is no element of $[T_{p*\sigma}(\dot{x})]$ forming a G_0 -edge with some element of $[T_{p*\tau}(\dot{x})]$

For F, η as above

- (a) we can say that $p \in \mathbb{V}_{\alpha}$ is (F, η) -faithfull iff for every $\sigma, \tau \in \prod_{\gamma \in F} 2^{\eta(\gamma)}$ such that $\sigma \neq \tau$, $\dot{x}_{p*\sigma}$ and $\dot{x}_{p*\tau}$ the maximal initial segments of \dot{x} decided by $p * \sigma$ and $p * \tau$, respectively are incompatible.
- (b) we can say that $p \in \mathbb{V}_{\alpha}$ is (F, η) -faithfull iff for every $\sigma, \tau \in \prod_{\gamma \in F} 2^{\eta(\gamma)}$ such that $\sigma \neq \tau$, $[T_{p*\sigma}(\dot{x})]$ and $[T_{p*\tau}(\dot{x})]$ are relatively G_0 -independent i.e., there is no element of $[T_{p*\sigma}(\dot{x})]$ forming a G_0 -edge with some element of $[T_{p*\tau}(\dot{x})]$

In the first case we get the preservation of the 2-localization property.

For F, η as above

- (a) we can say that $p \in \mathbb{V}_{\alpha}$ is (F, η) -faithfull iff for every $\sigma, \tau \in \prod_{\gamma \in F} 2^{\eta(\gamma)}$ such that $\sigma \neq \tau$, $\dot{x}_{p*\sigma}$ and $\dot{x}_{p*\tau}$ the maximal initial segments of \dot{x} decided by $p * \sigma$ and $p * \tau$, respectively are incompatible.
- (b) we can say that $p \in \mathbb{V}_{\alpha}$ is (F, η) -faithfull iff for every $\sigma, \tau \in \prod_{\gamma \in F} 2^{\eta(\gamma)}$ such that $\sigma \neq \tau$, $[T_{p*\sigma}(\dot{x})]$ and $[T_{p*\tau}(\dot{x})]$ are relatively G_0 -independent i.e., there is no element of $[T_{p*\sigma}(\dot{x})]$ forming a G_0 -edge with some element of $[T_{p*\tau}(\dot{x})]$

In the first case we get the preservation of the 2-localization property. In the second case we get the preservation of not adding G_0 -independent closed sets.

Lemma

If \dot{x} is a \mathbb{V} -name for an element of 2^{ω} witnessed by p, then

Lemma

If \dot{x} is a \mathbb{V} -name for an element of 2^{ω} witnessed by p, then

(a) either there is $q \le p$ such that $[T_q(\dot{x})]$ is a Silver tree and, furthermore, we may assume $[T_q(\dot{x})]$ is a G_0 -independent set, or

Lemma

- If \dot{x} is a \mathbb{V} -name for an element of 2^{ω} witnessed by p, then
- (a) either there is $q \le p$ such that $[T_q(\dot{x})]$ is a Silver tree and, furthermore, we may assume $[T_q(\dot{x})]$ is a G_0 -independent set, or
- (b) there is q such that $[T_q(\dot{x})]$ is a G_1 -independent set (hence G_0 -independent).

Lemma

If \dot{x} is a \mathbb{V} -name for an element of 2^{ω} witnessed by p, then

- (a) either there is $q \le p$ such that $[T_q(\dot{x})]$ is a Silver tree and, furthermore, we may assume $[T_q(\dot{x})]$ is a G_0 -independent set, or
- (b) there is q such that $[T_q(\dot{x})]$ is a G_1 -independent set (hence G_0 -independent).

For the part (a), it is useful to note that for any Silver tree p, there is $q \le p$ such that [q] is G_0 -independent.

Lemma

If \dot{x} is a \mathbb{V} -name for an element of 2^{ω} witnessed by p, then

- (a) either there is $q \le p$ such that $[T_q(\dot{x})]$ is a Silver tree and, furthermore, we may assume $[T_q(\dot{x})]$ is a G_0 -independent set, or
- (b) there is q such that $[T_q(\dot{x})]$ is a G_1 -independent set (hence G_0 -independent).

For the part (a), it is useful to note that for any Silver tree p, there is $q \leq p$ such that [q] is G_0 -independent. This means that the Silver real is always in some closed G_0 -independent ground model set.

Theorem

Let α be an ordinal, $\mathbb{V}_{\alpha+1}$ an $\alpha + 1$ countable supported iteration of copies of the Silver forcing and and let \dot{x} be a $\mathbb{V}_{\alpha+1}$ -name for an element of 2^{ω} only added at stage $\alpha + 1$ and $p \in \mathbb{V}_{\alpha+1}$ such that $p \Vdash \dot{x} : \omega \to 2$ witnessing that.

Theorem

Let α be an ordinal, $\mathbb{V}_{\alpha+1}$ an $\alpha + 1$ countable supported iteration of copies of the Silver forcing and and let \dot{x} be a $\mathbb{V}_{\alpha+1}$ -name for an element of 2^{ω} only added at stage $\alpha + 1$ and $p \in \mathbb{V}_{\alpha+1}$ such that $p \Vdash \dot{x} : \omega \to 2$ witnessing that. Then there is $q \leq p$ such that $[T_q(\dot{x})]$ is a G_0 -independent set. Using the previows lemma and the maximal principle, there are \mathbb{V}_{α} -names \dot{q} for a condition and \dot{h} a homeomorphism such that $p \upharpoonright \alpha$ forces

- $\dot{q} \leq p(\alpha)$,
- $\dot{h}:\dot{q} \rightarrow [{\cal T}_{\dot{q}}(\dot{x})]$ maps the generic real onto \dot{x} , and either
 - (a) $T_{\dot{q}}(\dot{x})$ is a Silver tree such that $[T_{\dot{q}}(\dot{x})]$ is G0-independent, or
 - (b) any two incompatible nodes of $T_{\dot{q}}(\dot{x})$ disagree in at least two coordinates.

Theorem

Let α be a limit ordinal, \mathbb{V}_{α} an α countable supported iteration of copies of the Silver forcing and let \dot{x} be a \mathbb{V}_{α} -name for an element of 2^{ω} only added at stage α and $p \in \mathbb{V}_{\alpha}$ such that $p \Vdash \dot{x} : \omega \to 2$ witnessing that.

Theorem

Let α be a limit ordinal, \mathbb{V}_{α} an α countable supported iteration of copies of the Silver forcing and let \dot{x} be a \mathbb{V}_{α} -name for an element of 2^{ω} only added at stage α and $p \in \mathbb{V}_{\alpha}$ such that $p \Vdash \dot{x} : \omega \to 2$ witnessing that. Then there is $q \leq p$ such that $[T_q(\dot{x})]$ is a G_1 -independent set

Theorem

Let α be a limit ordinal, \mathbb{V}_{α} an α countable supported iteration of copies of the Silver forcing and let \dot{x} be a \mathbb{V}_{α} -name for an element of 2^{ω} only added at stage α and $p \in \mathbb{V}_{\alpha}$ such that $p \Vdash \dot{x} : \omega \to 2$ witnessing that. Then there is $q \leq p$ such that $[T_q(\dot{x})]$ is a G_1 -independent set (hence G_0 -independent).

Theorem

Let α be a limit ordinal, \mathbb{V}_{α} an α countable supported iteration of copies of the Silver forcing and let \dot{x} be a \mathbb{V}_{α} -name for an element of 2^{ω} only added at stage α and $p \in \mathbb{V}_{\alpha}$ such that $p \Vdash \dot{x} : \omega \to 2$ witnessing that. Then there is $q \leq p$ such that $[T_q(\dot{x})]$ is a G_1 -independent set (hence G_0 -independent).

In particular, no Silver reals are added at limit steps of countable supported iterations of the Silver forcing.

Andrzej Rosłanowski.

n-localization property.

The Journal of Symbolic Logic, 71(3):881–902, 2006.

Andrzej Rosłanowski and Juris Steprāns. Chasing silver.

Canadian Mathematical Bulletin, 51(4):593-603, 2008.

Jindřich Zapletal.

Descriptive set theory and definable forcing. American Mathematical Soc., 2004.

Jindřich Zapletal.

Forcing idealized, volume 174. Cambridge University Press Cambridge, 2008.

Jindrich Zapletal.

n-localization property in iterations. 2008.