
In this note we prove the following result:

Proposition 1. Let ⟨L,<⟩ be a linear order, α an ordinal, and suppose there
is an injection i : L ↪! α2. Then ⟨L,<⟩ !̸ (η)η.

Equivalently, if ⟨L,<⟩ is a linear order with ⟨L,<⟩ ! (η)η, then the set L
witnesses the failure of the Kinna-Wagner principle KWP1.

We fix throughout a linear order ⟨L,<⟩, an ordinal α, and an injection
i : ⟨L,<⟩ ↪! α2. Our proof of Proposition 1 involves a complicated definition of
a colouring of [⟨L,<⟩]η with no homogeneous set, for which we will first need
some definitions and notation.

Definitions and notation

We write η for the order type of the rationals under their usual ordering. An
order is scattered if it has no suborder ordered as η; otherwise, it is non-scattered.
A countable order is non-scattered iff is it bi-embeddable with the rationals.

For α an ordinal, α2 is topologised by the basic open sets [s] := {x ∈ α2 :
s ⊑ x} for s ∈ <α2.

For α a fixed ordinal and X ⊆ α2, we say that s ∈ <α2 is η-splitting for X if

X−
s := [s⌢⟨0⟩] ∩X = {x ∈ X : s⌢⟨0⟩ ⊑ x} and

X+
s := [s⌢⟨1⟩] ∩X = {x ∈ X : s⌢⟨1⟩ ⊑ x}

are both non-scattered as suborders of ⟨α2, <lex⟩.
Let ⟨L,<⟩ a linear order, α an ordinal, and i : L ↪! α2 an injection be fixed

as above, and let A ⊆ L. For a ∈ A, write

ρA(a) := min{β ≤ α : ∀b ∈ A, a ̸= b =⇒ i(a) ↾ β ̸= i(b) ↾ β}.

We note that ρA(a) always exists as e.g. β = α has the property described.
This ρA(a) can be thought of as a measure of how isolated the point i(a) is in
i " A ⊆ α2, according to the topology described above; i(a) is isolated in i " A
iff ρA(a) < α.

By extension, for A ⊆ L we write

ρ(A) := sup
a∈A

ρA(a).

This ρ(A) is the least ordinal β ≤ α such that all members of i " A can be
distinguished by their restriction to β.

For A ⊆ L, δ ≤ α, we write

Aδ := {a ∈ A : ρA(a) = δ},

A≤δ := {a ∈ A : ρA(a) ≤ δ} =
⋃
γ≤δ

Aγ , and

A>δ := {a ∈ A : ρA(a) > δ} = A \A≤δ.

We refer to each Aδ as the δth level of A.
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Preliminary observations

1. For any X,α with X ⊆ α2, if s0, s1 ∈ <α2 are both η-splitting for X, then
so is their maximal common initial segment δ(s0, s1), and so if X ⊆ α2
has any η-splitting nodes, it has a unique one of minimal length.

2. Let A ∈ [⟨L,<⟩]η. For any B ⊆ i " A, there is A′ ∈ [A]η such that either
i " A′ ⊆ B or i " A′ = (i " A) \ B. This is because either i−1(B) ⊆ A is
non-scattered as a suborder of ⟨L,<⟩, in which case any A′ ∈ [i−1(B)]η

has i "A′ ⊆ B, or i−1(B) is scattered, in which case A′ := A \ (i−1(B)) is
still ordered as η and has i "A′ = (i "A) \B.

3. Let B ⊆ A ⊆ L and let a ∈ B. Then ρB(a) ≤ ρA(a). In particular, it
follows that ρ(B) ≤ ρ(A).

4. For any A ⊆ L, δ ≤ α, B with A>δ ⊆ B ⊆ A and a ∈ A>δ,

ρA(a) = ρB(a).

In other words, the levels of A strictly above δ are preserved if we remove
elements of A whose level is at most δ. To see this, let a ∈ A>δ, so
ρA(a) = γ > δ for some γ; then for any β ∈ [δ, γ) there is some bβ ∈ A,
b ̸= a, with i(a) ↾ β = i(b) ↾ β. But then this b necessarily has ρA(b) ≥ β,
so b ∈ A>δ, and in particular b ∈ B. It follows that ρB(a) ≥ ρA(a), and
by the previous observation we conclude that ρB(a) = ρA(a).

The colouring

Proof of Proposition 1. We shall define a colouring c : [⟨L,<⟩]η ! 2 with no
homogeneous set by means of a number of cases. For A ∈ [⟨L,<⟩]η, we first
consider the order type of i " A ⊆ α2, equipped with the induced suborder
which it inherits from ⟨α2, <lex⟩. This can be any countable order type. If we
can sufficiently easily switch between these by reducing A to some A′ ∈ [⟨L,<⟩]η,
we can exploit this in how we define our colouring:

Case 1: There are A′, A′′ ∈ [A]η such that i "A′ is ordered as η and i "A′′

is not ordered as η.
In this case, we set c(A) = 0 if i "A is ordered as η, and c(A) = 1 otherwise.

If we can always reduce from an A ∈ [⟨L,<⟩]η to some A′ ∈ [A]η such that
precisely one of i "A, i "A′ is ordered as η, then c cannot have a homogeneous
set; it remains, therefore, to deal with those A ∈ [⟨L,<⟩]η which do not have
this property, so assume for the rest of the proof that A is either such that i"A
is not ordered as η and there is no A′ ∈ [A]η with i " A′ ordered as η, or that
i "A is ordered as η, and so is i "A′ for every A′ ∈ [A]η. ⊣Case 1

Case 2: i "A is ordered as η, and so is i "A′ for every A′ ∈ [A]η.
Observe that for any interval B ⊊ i " A which is not empty and not a

singleton, we have that i−1(B) is non-scattered; if i−1(B) were scattered, then
we could remove all but two of its elements from A to obtain A′ ∈ [A]η with the
property that some two elements of i"A′ have no element of i"A′ between them,
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contradicting our assumption that i " A′ is ordered as η for all A′ ∈ [A]η. In
particular, for any s ∈ <α2, [s]∩ i"A has non-scattered preimage under i unless
it is empty or a singleton. We can now apply the same colouring used to show
that ⟨α2, <lex⟩ !̸ (η)η; we describe this in detail in the following paragraph.

For A ∈ [⟨L,<⟩]η in Case 2, associate A with three nodes sA, s
0
A, s

1
A ∈ <α2 in

the following way: sA is the unique minimal-length η-splitting node for i "A ⊆
α2, s0A is the unique minimal-length η-splitting node for [s⌢⟨0⟩] ∩ (i " A), and
s1A is the unique minimal-length η-splitting node for [s⌢⟨1⟩] ∩ (i " A). Now we
set

c(A) =

{
0 if len(s0A) ≥ len(s1A);

1 if len(s0A) < len(s1A).

Similarly to the argument that ⟨α2, <lex⟩ !̸ (η)η, we now show that there can
be no homogeneous set for this colouring by means of the following claim:

Claim 1. For A in Case 2, if t0, t1 ∈ <α2 are both η-splitting for i " A and
t0 <lex t1, then there is some A′ ∈ [A]η with s0A′ = t0 and s1A′ = t1.

Proof of claim: Fix A, t0, t1. It suffices to find A′ ∈ [A]η with i " A′ ⊆
[t0] ∪ [t1] and i " A′ ∩ [t⌢j ⟨k⟩] non-scattered for j, k ∈ {0, 1} (for which it in
fact suffices to ensure that i " A′ ∩ [t⌢j ⟨k⟩] has at least two elements). By
definition, each i " A ∩ [t⌢j ⟨k⟩] is non-scattered, so has non-scattered preimage
under i by the observation above; it is easy to check that we can find subsets of
A∩

⋃
j,k∈{0,1} i

−1([t⌢j ⟨k⟩]) ordered as η whose intersection with each i−1([t⌢j ⟨k⟩])
is also ordered as η. Take A′ to be any such subset. ■Claim 1

It now follows exactly as in the proof that ⟨α2, <lex⟩ !̸ (η)η that no A in
Case 2 can be homogeneous for c. ⊣Case 2

Cases 1 and 2 together deal with those A ∈ [⟨L,<⟩]η for which there is some
A′ ∈ [A]η with i " A′ ordered as η, so for the rest of the proof we may assume
that this is false for every A which we consider.

We may further assume that ρ(A) is minimal in {ρ(A′) : A′ ∈ [A]η}. This
is because if A ∈ [⟨L,<⟩]η is homogeneous for c, then any A′ ∈ [⟨L,<⟩]η is
also homogeneous, and so we can reduce to some A′ with ρ(A′) minimal in this
sense. The value of c(A) for those A with ρ(A) ̸= min{ρ(A′) : A′ ∈ [A]η} is
therefore irrelevant; we may define it arbitrarily, e.g. c(A) = 0 for all such A.
This assumption on A has the following two important consequences:

Claim 2. Let A ∈ [⟨L,<⟩]η be such that ρ(A) = min{ρ(A′) : A′ ∈ [A]η}.
Then:

(a) If δ < ρ(A), then A≤δ is scattered as a suborder of ⟨L,<⟩;

(b) ρ(A) is a limit ordinal.

Proof of claim:

(a) If δ < ρ(A) is such that A≤δ is non-scattered, then there is some A′ ∈
[A≤δ]

η, but then ρ(A′) ≤ δ < ρ(A), contradicting the minimality of ρ(A).
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(b) Suppose ρ(A) = β′ + 1 for some β′. Then we have that at least one of

A0 := {a ∈ A : i(a)(β′) = 0};
A1 := {a ∈ A : i(a)(β′) = 1}

is non-scattered, from which it follows that there is some A′ ∈ [A]η such
that either A′ ⊆ A0 or A′ ⊆ A1. In either case, ρ(A′) ≤ β′ < ρ(A),
contradicting the minimality of ρ(A). ■Claim 2

Let us write β := ρ(A) = min{ρ(A′) : A′ ∈ [A]η}. We split into cases
according to whether A<β is empty or not.

Case 3: There are A′, A′′ ∈ [A]η with A′
<β ̸= ∅ and A′′

<β = ∅.
In this case we simply set

c(A) =

{
0 if A<β = ∅;
1 if A<β ̸= ∅.

⊣Case 3

Case 4: For all A′ ∈ [A]η, A′
<β = ∅.

In this case, i"A is non-scattered as a suborder of ⟨α2, <lex⟩, as in particular
every condensation class of i " A has at most two elements. Here we use the
same idea as in Case 2; write sA to be the minimal-length η-splitting node for
i " A, s0A the unique minimal-length η-splitting node for [s⌢⟨0⟩] ∩ (i " A), and
s1A the unique minimal-length η-splitting node for [s⌢⟨1⟩]∩ (i "A). Now we set

c(A) =

{
0 if len(s0A) ≥ len(s1A);

1 if len(s0A) < len(s1A).

Claim 3. For A in Case 5, if t0, t1 ∈ <α2 are both η-splitting for i " A and
t0 <lex t1, then there is some A′ ∈ [A]η with s0A′ = t0 and s1A′ = t1.

Proof of claim: We will conclude this proof in the same way as the proof of
Claim 1, but we need a different argument to show that the [t⌢j ⟨k⟩]∩ i "A have
non-scattered preimages. Observe by definition of ρ(A) that for t ∈ <α2 to be
η-splitting for i " A, we in fact must have t ∈ <β2. Now suppose some t ∈ <α2
is such that [t] ∩ i " A is non-empty but scattered and let a ∈ i−1([t] ∩ i " A).
Then A′ := (A \ i−1([t] ∩ i "A)) ∪ {a} is ordered as η, as we have only removed
a scattered set from A, but ρA′(a) ≤ len(t) < β, contradicting our assumption
that A′

<β is empty for every A′ ∈ [A]η. Now we can proceed exactly as in the
proof of Claim 1. ■Claim 3

It follows as in the proof that ⟨α2, <lex⟩ !̸ (τ)τ for any countable non-
scattered τ that any A in Case 5 cannot be homogeneous for c. ⊣Case 4

Case 5: For every A′ ∈ [A]η, A′
<β is non-empty.

For any A in Case 5, we have in particular that A<β is infinite. It is helpful
in this case to consider the projection of i " A to <β2 (i.e. by replacing each
i(a) by i(a) ↾ β; this is injective, as β = ρ(A)), so A<β and Aβ correspond to
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isolated points and limit points, respectively. We now consider the sequence of
i-preimages of Cantor-Bendixson derivatives of i "A in <β2:

A(0) := A,

A(ξ+1) := A
(ξ)
β for any ordinal ξ, and

A(γ) :=
⋂
ξ<γ

A(ξ) for γ a limit ordinal.

Let φA < ω1 be minimal such that A(φA) is not ordered as η. Reducing if
necessary, assume that φA = min{φA′ : A′ ∈ [A]η}. Now, A\A(φA) is necessarily
non-scattered; any A′ ∈

[
A \A(φA)

]η
has the property that (A′)(φA) = ∅. Such

an A′ also necessarily has φA′ = φA, by minimality of φA, so the sequence
⟨(A′)(ξ) : ξ < ω1⟩ has the property that every term is ordered as η until (A′)(φA),
which is empty.

In this way we can, by reducing A to some A′ ∈ [A]η if necessary, assume
that the first term of the sequence A(ξ) not ordered as η is empty, that this is
also true of all A′ ∈ [A]η, and that for all A′ ∈ [A]η it happens at the same
point in the sequence (i.e. at ξ = φA). We will assume that this is the case for
all A which we consider for the rest of the proof, and define c(A) arbitrarily for
A in Case 5 not satisfying these further assumptions.

We note here two important consequences of these assumptions. Since φA
is minimal, we have that for any ξ < φA, A \ A(ξ) is scattered. Otherwise,
we could reduce to some A′ ∈

[
A \A(ξ)

]η
, which would have φA′ ≤ ξ < φA,

contradicting the minimality of φA. Since A
(φA) = ∅, for every a ∈ A there is a

unique ordinal ψA(a) < φA with a ∈ A(ψA(a)) \A(ψA(a)+1).
Now we will show that in this setting, we can essentially “pick out” any two

elements of A; our colouring will ask whether the ordering of these two elements
in ⟨L,<⟩ agrees with the ordering of their images in ⟨α2, <lex⟩, and have no
homogeneous set because there will always be pairs for which the orderings
agree and pairs for which they disagree.

Claim 4. Let A be in Case 5 and have the additional properties that
A(φA) = ∅ and that φA is minimal among {φA′ : A′ ∈ [A]η}. Then for any
a, b ∈ A, there is an A′ ∈ [A]η and some δ < β such that A′

≤δ = {a, b}.
Proof of claim: Fix a, b ∈ A. We first reduce to some A′′ ∈ [A]η such that

a, b ∈ A′′
<β . To do this, let ψ := max{ψA(a), ψA(b)} and set A′′ := A(ψ) ∪{a, b}.

Then ρA′′(a) < β and ρA′′(b) < β, for the following reasons: a and b are already
“isolated points” in A(ψA(a)) and A(ψA(b)), respectively; A′′ \{b} ⊆ A(ψA(a)) and
A′′ \ {a} ⊆ A(ψA(b)); β is a limit ordinal so the common initial segment of a and
b has length strictly less than β.

Now let δ := max{ρA′′(a), ρA′′(b)}, and set A′ := {a, b} ∪ A′′
>δ. By the

minimality of ρ(A), we have ρ(A′′) = ρ(A), and in particular, by the minimality
of ρ(A′′) among {ρ(A′) : A′ ∈ [A′′]η}, A′′

≤δ is scattered. Since A′′ \A′ ⊆ A′′
≤δ, it

follows that A′ is ordered as η. Now, by preliminary observation 4, A′
>δ = A′′

>δ,
and since ρA′(a) ≤ ρA′′(a) ≤ δ and ρA′(b) ≤ ρA′′(b) ≤ δ, it follows that A′

≤δ =
{a, b}. ■Claim 4
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In this way we can essentially “pick out” any two elements of A. We now
define a colouring based on whether the ordering of these two elements in ⟨L,<⟩
agrees with the ordering of their images in ⟨α2, <lex⟩ or not. For A in Case 5,
define c(A) arbitrarily on those A for which there is no δ < β with |A≤δ| = 2,
and for those A such that |A≤δ| = 2 for some δ,

c(A) =

{
0 if i is order-preserving on A≤δ;

1 if i is order-reversing on A≤δ.

Then since by assumption i " A is not ordered as η, it is necessarily the case
both that there are a < b in A with i(a) < i(b) and that there are a′ < b′ in A
with i(a′) > i(b′); applying Claim 2, it follows that there are A′, A′′ ∈ [A]η with
c(A′) ̸= c(A′′). ⊣Case 5
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