In this note we prove the following result:

Proposition 1. Let (L, <) be a linear order, a an ordinal, and suppose there
is an injection i : L — “2. Then (L, <) - (n)".

Equivalently, if (L, <) is a linear order with (L, <) — (n)", then the set L
witnesses the failure of the Kinna-Wagner principle KWP;.

We fix throughout a linear order (L, <), an ordinal «, and an injection
i:(L,<) < *2. Our proof of Proposition 1 involves a complicated definition of
a colouring of [(L,<)]" with no homogeneous set, for which we will first need
some definitions and notation.

Definitions and notation

We write n for the order type of the rationals under their usual ordering. An
order is scattered if it has no suborder ordered as 7; otherwise, it is non-scattered.
A countable order is non-scattered iff is it bi-embeddable with the rationals.
For o an ordinal, “2 is topologised by the basic open sets [s] == {z € “2:
s Cz} for s € <2
For « a fixed ordinal and X C *2, we say that s € <®2 is n-splitting for X if

X, =[s"0NnX={xeX:5(0) Cz} and
XF=[s"()NnX={zeX :s(1)Cx}
are both non-scattered as suborders of (“2, <jeyx).

Let (L, <) a linear order, « an ordinal, and ¢ : L < %2 an injection be fixed
as above, and let A C L. For a € A, write

pala) =min{f<a:Vbe A,a#b = i(a) | B #1i(b) | B}.

We note that ps(a) always exists as e.g. 8 = « has the property described.
This pa(a) can be thought of as a measure of how isolated the point i(a) is in
i" A C 2, according to the topology described above; i(a) is isolated in i " A
iff pa(a) < a.
By extension, for A C L we write
p(A) = sup pa(a).
acA
This p(A) is the least ordinal 8 < « such that all members of i " A can be

distinguished by their restriction to 3.
For AC L, § < «a, we write

A5 ={a € A pala) = 3},
Acs={a€A:pala) <} = U A, and

<8

A>5 = {a cA: pA(a) > 5} :A\AS(;.

We refer to each Ag as the §*" level of A.



Preliminary observations

1. For any X, a with X C %2, if sg,s; € <*2 are both n-splitting for X, then
so is their maximal common initial segment §(sg, 1), and so if X C «2
has any n-splitting nodes, it has a unique one of minimal length.

2. Let A € [(L,<)]". For any B Ci" A, there is A’ € [A]" such that either
i"A"CBori"A = (i" A)\ B. This is because either i~1(B) C A is
non-scattered as a suborder of (L, <), in which case any A’ € [i~1(B)]"
has i " A’ C B, or i"'(B) is scattered, in which case A’ := A\ (i"1(B)) is
still ordered as n and has i " A’ = (i " A) \ B.

3. Let BC AC L and let a € B. Then pg(a) < pa(a). In particular, it
follows that p(B) < p(A).

4. Forany ACL, < a, Bwith Axs C BC Aanda € Ass,

pala) = ps(a).

In other words, the levels of A strictly above § are preserved if we remove
elements of A whose level is at most 0. To see this, let a € Ass, so
pa(a) =~ > ¢ for some 7; then for any 8 € [4,v) there is some bg € A,
b # a, with i(a) [ 8 =i(b) | 8. But then this b necessarily has pa(b) > S,
so b € Ass, and in particular b € B. Tt follows that pp(a) > pa(a), and
by the previous observation we conclude that pp(a) = pa(a).

The colouring

Proof of Proposition 1. We shall define a colouring ¢ : [(L,<)]" — 2 with no
homogeneous set by means of a number of cases. For A € [(L,<)]", we first
consider the order type of i " A C *2, equipped with the induced suborder
which it inherits from (*2, <jo,). This can be any countable order type. If we
can sufficiently easily switch between these by reducing A to some A’ € [(L, <)]",
we can exploit this in how we define our colouring;:

Case 1: There are A’, A” € [A]" such that i " A’ is ordered as n and ¢ " A”
is not ordered as 7.

In this case, we set ¢(A) = 0if i " A is ordered as 7, and ¢(A) = 1 otherwise.
If we can always reduce from an A € [(L, <)]" to some A’ € [A]" such that
precisely one of i " A, i " A’ is ordered as 7, then ¢ cannot have a homogeneous
set; it remains, therefore, to deal with those A € [(L, <)]7 which do not have
this property, so assume for the rest of the proof that A is either such that ¢ " A
is not ordered as n and there is no A" € [A]" with ¢ " A’ ordered as 7, or that
i" Ais ordered as 7, and so is i " A’ for every A’ € [A]". case 1

Case 2: i " A is ordered as 7, and so is i " A’ for every A’ € [A]".

Observe that for any interval B C i " A which is not empty and not a
singleton, we have that i~!(B) is non-scattered; if i ~(B) were scattered, then
we could remove all but two of its elements from A to obtain A’ € [A]” with the
property that some two elements of " A’ have no element of " A’ between them,



contradicting our assumption that i " A’ is ordered as n for all A’ € [A]"7. In
particular, for any s € <®2, [s]Ni" A has non-scattered preimage under i unless
it is empty or a singleton. We can now apply the same colouring used to show
that (*2, <jex) 7 (1)"; we describe this in detail in the following paragraph.
For A € [(L, <)]" in Case 2, associate A with three nodes s 4, s, s} € <*2in
the following way: s, is the unique minimal-length n-splitting node for i " A C
@2, Y is the unique minimal-length n-splitting node for [s™(0)] N (i " A), and
s} is the unique minimal-length 7-splitting node for [s™(1)] N (i " A). Now we

set
((A) = {O if len(s9) i

%) > len(sl);
1 iflen(s%) < len(sy

(s4)-
Similarly to the argument that (“2, <jex) # ()", we now show that there can
be no homogeneous set for this colouring by means of the following claim:

Claim 1. For A in Case 2, if tg,t; € <*2 are both 5-splitting for ¢ " A and
to <lex t1, then there is some A’ € [A]7 with s%, =ty and sl, = ¢;.

Proof of claim: Fix A, to, t1. It suffices to find A’ € [A]" with i " A" C
[to] U [t1] and i " A" N [t (k)] non-scattered for j,k € {0,1} (for which it in
fact suffices to ensure that i " A’ N [t; (k)] has at least two elements). By
definition, each i " AN [t;" (k)] is non-scattered, so has non-scattered preimage
under 7 by the observation above; it is easy to check that we can find subsets of
ANUj rego1y i~ ([t; (K)]) ordered as 1 whose intersection with each i~ ([t} (k)])

is also ordered as 1. Take A’ to be any such subset. Moim 1
It now follows exactly as in the proof that (*2, <jex) - ()" that no A in
Case 2 can be homogeneous for c. Hcase 2

Cases 1 and 2 together deal with those A € [(L, <)]" for which there is some
A’ € [A]" with i " A’ ordered as 7, so for the rest of the proof we may assume
that this is false for every A which we consider.

We may further assume that p(A) is minimal in {p(A") : A’ € [A]"}. This
is because if A € [(L,<)]" is homogeneous for ¢, then any A’ € [(L,<)]" is
also homogeneous, and so we can reduce to some A’ with p(A’) minimal in this
sense. The value of ¢(A) for those A with p(A) # min{p(A") : A’ € [A]"} is
therefore irrelevant; we may define it arbitrarily, e.g. ¢(A) = 0 for all such A.
This assumption on A has the following two important consequences:

Claim 2. Let A € [(L, <)]" be such that p(A) = min{p(4’) : A’ € [A]"}.
Then:

(a) If § < p(A), then A<s is scattered as a suborder of (L, <);
(b) p(A) is a limit ordinal.
Proof of claim:

(a) If 6 < p(A) is such that A<; is non-scattered, then there is some A’ €
[A<5]", but then p(A’) < < p(A), contradicting the minimality of p(A).



(b) Suppose p(A) = 5’ + 1 for some . Then we have that at least one of

A% ={ac A:i(a)(B) =0}
Ali={ac A:i(a)(8) =1}

is non-scattered, from which it follows that there is some A’ € [A]" such
that either A’ C A° or A’ C A'. In either case, p(4’) < B' < p(A),
contradicting the minimality of p(A). e o

Let us write 8 = p(A) = min{p(A’") : A’ € [A]"}. We split into cases
according to whether A< is empty or not.

Case 3: There are A’, A” € [A]" with A 5 # 0 and A” ; = (.

In this case we simply set

e(4) = {1 it Ay # 0.

_|Case 3

Case 4: For all A’ € [A]", A, = 0.

In this case, i " A is non-scattered as a suborder of (*2, <jex), as in particular
every condensation class of ¢ " A has at most two elements. Here we use the
same idea as in Case 2; write s4 to be the minimal-length n-splitting node for
i" A, s% the unique minimal-length n-splitting node for [s™(0)] N (i " A), and
sl the unique minimal-length 7-splitting node for [s™(1)] N (i " A). Now we set

0 if len(s9) > len(s});
o(A) = : 0 1
1 if len(s) < len(sh).

Claim 3. For A in Case 5, if tp,t; € <*2 are both n-splitting for i " A and
to <iex t1, then there is some A’ € [A]" with 59, = to and s}y, = ¢;.

Proof of claim: We will conclude this proof in the same way as the proof of
Claim 1, but we need a different argument to show that the [t7" (k)] Ni " A have
non-scattered preimages. Observe by definition of p(A4) that for ¢ € <*2 to be
n-splitting for 4 " A, we in fact must have ¢t € <#2. Now suppose some t € <2
is such that [t] i " A is non-empty but scattered and let a € i~1([t] Ni " A).
Then A’ := (A\ i }([t]ni" A)) U{a} is ordered as 7, as we have only removed
a scattered set from A, but pas(a) < len(t) < §, contradicting our assumption
that A’ 5 is empty for every A" € [A]". Now we can proceed exactly as in the

proof of Claim 1. Hoim 3
It follows as in the proof that (*2, <jx) - (7)7 for any countable non-
scattered T that any A in Case 5 cannot be homogeneous for c. Tcase 4

Case 5: For every A’ € [A]", A5 is non-empty.

For any A in Case 5, we have in particular that A.g is infinite. It is helpful
in this case to consider the projection of i " A to <#2 (i.e. by replacing each
i(a) by i(a) | B; this is injective, as 8 = p(A)), so A< and Ag correspond to



isolated points and limit points, respectively. We now consider the sequence of
i-preimages of Cantor-Bendixson derivatives of i " A in <A2:

A(O) = A,
A€+ — Ag) for any ordinal &, and

A = ﬂ A for ~ a limit ordinal.
&<y

Let o4 < w; be minimal such that A(*4) is not ordered as 7. Reducing if
necessary, assume that o4 = min{pa : A’ € [A]"}. Now, A\ A(¥4) is necessarily
non-scattered; any A’ € [A\ A(“"A)]n has the property that (A’)(¥4) = . Such
an A’ also necessarily has @4 = 4, by minimality of ¢4, so the sequence
(A€ : ¢ < w) has the property that every term is ordered as 7 until (A’)(¥4)]
which is empty.

In this way we can, by reducing A to some A’ € [A]" if necessary, assume
that the first term of the sequence A% not ordered as 7 is empty, that this is
also true of all A’ € [A]7, and that for all A’ € [A]" it happens at the same
point in the sequence (i.e. at £ = p4). We will assume that this is the case for
all A which we consider for the rest of the proof, and define ¢(A) arbitrarily for
A in Case 5 not satisfying these further assumptions.

We note here two important consequences of these assumptions. Since ¢4
is minimal, we have that for any ¢ < ¢4, A\ A is scattered. Otherwise,
we could reduce to some A’ € [A\ A(@]n, which would have 4 < & < g,
contradicting the minimality of ¢ 4. Since A(¥4) = (), for every a € A there is a
unique ordinal ¥4 (a) < @4 with a € A®al@))\ AWala)+1),

Now we will show that in this setting, we can essentially “pick out” any two
elements of A; our colouring will ask whether the ordering of these two elements
in (L, <) agrees with the ordering of their images in (*2, <jex), and have no
homogeneous set because there will always be pairs for which the orderings
agree and pairs for which they disagree.

Claim 4. Let A be in Case 5 and have the additional properties that
A®4) = () and that p4 is minimal among {@a/ : A’ € [A]"}. Then for any
a,b € A, there is an A’ € [A]" and some 0 < j such that A_; = {a,b}.

Proof of claim: Fix a,b € A. We first reduce to some A” € [A]" such that
a,b € A” ;. To do this, let ¢ := max{ta(a),a(b)} and set A” = AW U{a,b).
Then pa~(a) <  and par(b) < B, for the following reasons: a and b are already
“isolated points” in AWa(®) and AWa®) respectively; A”\ {b} C AWa(®) and
A"\ {a} € AWa(®); 3 is a limit ordinal so the common initial segment of a and
b has length strictly less than .

Now let ¢ := max{pa~(a),par(b)}, and set A" := {a,b} U AL;. By the
minimality of p(A), we have p(A”) = p(A), and in particular, by the minimality
of p(A”) among {p(A’) : A" € [A"]"}, A’L; is scattered. Since A"\ A" C A, it
follows that A’ is ordered as 7. Now, by preliminary observation 4, A ; = A” .
and since pas(a) < par(a) <6 and par(b) < par(b) <6, it follows that AL 5 =
{a, b}- Mciaim 4



In this way we can essentially “pick out” any two elements of A. We now
define a colouring based on whether the ordering of these two elements in (L, <)
agrees with the ordering of their images in (2, <jex) or not. For A in Case 5,
define ¢(A) arbitrarily on those A for which there is no § < 8 with |[A<s| = 2,
and for those A such that |A<s| = 2 for some 9,

0 if 4 is order-preserving on A<yg;
c(A) = { b g <6

1 if ¢ is order-reversing on A<s.

Then since by assumption i " A is not ordered as 7, it is necessarily the case
both that there are @ < b in A with i(a) < i(b) and that there are o’ < b’ in A
with i(a’) > i(b'); applying Claim 2, it follows that there are A’, A” € [A]" with
C(A/) 7& C(A”)' _|Case 5

O



