
Proposition 1. Let τ be an order type with τ + τ ≤ τ . Then for any ordinal
α, ⟨α2, <lex⟩ !̸ (τ)τ .

Proof. For A ⊆ α2, s ∈ <α2, write

A0
s := {x ∈ A : s⌢⟨0⟩ ⊑ x}

A1
s := {x ∈ A : s⌢⟨1⟩ ⊑ x}.

For A ∈ [⟨α2, <lex⟩]τ , s ∈ <α2, say s is τ -splitting for A if A0
s and A1

s both
embed τ .

Claim 1. For any A ∈ [⟨α2, <lex⟩]τ , there is a unique s ∈ <α2 of minimal
length which is τ -splitting for A.

Proof of claim: First note that given any s <lex t both τ -splitting for A, s∩ t
is also τ -splitting for A. This is because A0

s∩t ⊇ A0
s, and A1

s∩t ⊇ A1
t , and A0

s, A
1
t

each embed τ by assumption. So given that there are any τ -splitting nodes for
A, there is a unique one of minimal length; it remains to show that there are
any such nodes at all.

Consider the relation ∼τ defined on A by x ∼τ y iff A∩ [x, y] does not embed
τ . Note that this is an equivalence relation, as if x < y < z and A ∩ [x, z] does
embed τ , then it also embeds e.g. τ + τ + τ and so at least one or the other
of A ∩ [x, y] or A ∩ [y, z] must embed τ . Further, it is a condensation, i.e. the
equivalence classes are intervals of A, and as such the ordering on A induces an
ordering on these equivalence classes. We claim that this is a dense order; given
[x] < [y], by definition the interval between x and y in A embeds τ ; but since
τ + τ ≤ τ , we have that τ + 1 + τ ≤ τ ; fix a copy of τ + 1 + τ between x and y
in A, and let z be the element of it corresponding to the 1 (we remark that this
z is not necessarily unique, but this is not a problem); then x ̸∼τ z and z ̸∼τ y
so [x] < [z] < [y].

Now consider the set

S := {s ∈ <α2 : ∃x, y ∈ A with [x] < [y],

s = x ∩ y, and [x], [y] not extremal in A/ ∼τ},
where here by extremal we mean maximal or minimal. Note that if s, t are
both in S then so is s ∩ t. It follows that the element of S of minimal length is
unique; call this sA. We claim that sA is τ -splitting for A. Let x < y witness
that sA ∈ S, so sA = x ∩ y and [x] < [y]. Then since [x] and [y] are not
extremal, there exist x′, y′ ∈ A with [x′] < [x] and [y] < [y′], and [x′], [y′] also
not extremal. Then by minimality sA = x′ ∩ y′ also. But now, both x and x′

extend s⌢A ⟨0⟩ and both y and y′ extend s⌢A ⟨1⟩; in particular, A0
sA ⊇ A ∩ [x′, x]

and A1
sA ⊇ A ∩ [y, y′]; but since [x′] < [x] < [y] < [y′], we have in particular

that x′ ̸∼τ x and y ̸∼τ y′, so A ∩ [x′, x] and A ∩ [y, y′] both embed τ . ■Claim 1

We now build an injection fA : <ω2 ! <α2 which preserves both the tree
structure and the lexicographic ordering of <ω2 by means of the following re-
cursion:

fA(∅) = sA, and for i ∈ {0, 1}, given fA(t) for some t ∈ <ω2,

fA(t
⌢⟨i⟩) is the minimal-height τ -splitting node for Ai

fA(t).
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Then in particular fA(t
⌢⟨i⟩) extends fA(t)

⌢⟨i⟩, so fA preserves both the tree
structure and the lexicographic ordering of <ω2, as claimed.

Now we define a colouring F : [⟨α2, <lex⟩]τ ! 2 by, for A ∈ [⟨α2, <lex⟩]τ ,

F (A) =

{
0 if h(fA(⟨0⟩)) ≥ h(fA(⟨1⟩));
1 if h(fA(⟨0⟩)) < h(fA(⟨1⟩)).

Claim 2. For any s, t ∈ <α2 which are both τ -splitting for A and have
s <lex t, there is B ∈ [A]τ with fB(⟨0⟩) = s, fB(⟨1⟩) = t, and fB(∅) = s ∩ t.

Proof of claim: By definition each of A0
s, A

1
s, A

0
t , and A1

t embed τ , and
since s and t do not extend each other, all four of these sets are disjoint. Since
τ + τ + τ + τ ≤ τ , we can find some τ0, τ1, τ2, τ3, all bi-embeddable with τ , such
that τ = τ0 + τ1 + τ2 + τ3. Then let B be formed of the disjoint union of a copy
of τ0 in A0

s, a copy of τ1 in A1
s, a copy of τ2 in A0

t , and a copy of τ3 in A1
t .

Since all of B extends s ∩ t and B0
s∩t, B

1
s∩t both embed τ (as s ∩ t⌢⟨0⟩ ⊑ s

and s ∩ t⌢⟨1⟩ ⊑ t), it follows that s ∩ t is the minimal τ -splitting node for
B. Then since every element of B0

s∩t extends s and s is τ -splitting for B by
construction, fB(⟨0⟩) = s, and similarly fB(⟨1⟩) = t. ■Claim 2

Now, using Claim 2, we will show that no A ∈ [⟨α2, <lex⟩]τ can be ho-
mogeneous for the colouring F defined above. First observe that if A is such
that h(fA(⟨0⟩)) = h(fA(⟨1⟩)), then, applying Claim 2 with e.g. s = fA(⟨0⟩),
t = fA(⟨11⟩), we obtain some B ∈ [A]τ with h(fB(⟨0⟩)) < h(fB(⟨1⟩)), and so
F (A) ̸= F (B).

It follows that for some A ∈ [⟨α2, <lex⟩]τ to be homogeneous for F , it
must be the case either that h(fB(⟨0⟩)) > h(fB(⟨1⟩)) for all B ∈ [A]τ , or
that h(fB(⟨0⟩)) < h(fB(⟨1⟩)) for all B ∈ [A]τ . But now, for any s <lex t in
<ω2, we can apply Claim 2 to fA(s) and fA(t), and obtain either that for ev-
ery s <lex t ∈ <ω2, h(fA(s)) > h(fA(t)), or that for every s <lex t ∈ <ω2,
h(fA(s)) < h(fA(t)). Both situations are impossible, as <ω2 contains both ω-
sequences and ω∗-sequences in <lex, so in either case we would get an infinite
descending sequence of ordinals.

2


