Proposition 1. Let τ be an order type with $\tau + \tau \leq \tau$. Then for any ordinal α , $\langle {}^{\alpha}2, <_{lex} \rangle \not\rightarrow (\tau)^{\tau}$.

Proof. For $A \subseteq {}^{\alpha}2, s \in {}^{<\alpha}2$, write

$$A_s^0 \coloneqq \{x \in A : s^\frown \langle 0 \rangle \sqsubseteq x\}$$
$$A_s^1 \coloneqq \{x \in A : s^\frown \langle 1 \rangle \sqsubseteq x\}.$$

For $A \in [\langle \alpha 2, \langle e_{\text{lex}} \rangle]^{\tau}$, $s \in \langle \alpha 2, e_{\text{say}} s$ is τ -splitting for A if A_s^0 and A_s^1 both embed τ .

Claim 1. For any $A \in [\langle \alpha 2, <_{\text{lex}} \rangle]^{\tau}$, there is a unique $s \in \langle \alpha 2 \rangle$ of minimal length which is τ -splitting for A.

Proof of claim: First note that given any $s <_{\text{lex}} t$ both τ -splitting for A, $s \cap t$ is also τ -splitting for A. This is because $A_{s\cap t}^0 \supseteq A_s^0$, and $A_{s\cap t}^1 \supseteq A_t^1$, and A_s^0, A_t^1 each embed τ by assumption. So given that there are any τ -splitting nodes for A, there is a unique one of minimal length; it remains to show that there are any such nodes at all.

Consider the relation \sim_{τ} defined on A by $x \sim_{\tau} y$ iff $A \cap [x, y]$ does not embed τ . Note that this is an equivalence relation, as if x < y < z and $A \cap [x, z]$ does embed τ , then it also embeds e.g. $\tau + \tau + \tau$ and so at least one or the other of $A \cap [x, y]$ or $A \cap [y, z]$ must embed τ . Further, it is a condensation, i.e. the equivalence classes are intervals of A, and as such the ordering on A induces an ordering on these equivalence classes. We claim that this is a dense order; given [x] < [y], by definition the interval between x and y in A embeds τ ; but since $\tau + \tau \leq \tau$, we have that $\tau + 1 + \tau \leq \tau$; fix a copy of $\tau + 1 + \tau$ between x and y in A, and let z be the element of it corresponding to the 1 (we remark that this z is not necessarily unique, but this is not a problem); then $x \not\sim_{\tau} z$ and $z \not\sim_{\tau} y$ so [x] < [z] < [y].

Now consider the set

$$S \coloneqq \{s \in {}^{<\alpha}2 : \exists x, y \in A \text{ with } [x] < [y], \\ s = x \cap y, \text{ and } [x], [y] \text{ not extremal in } A/\sim_{\tau}\},$$

where here by *extremal* we mean maximal or minimal. Note that if s, t are both in S then so is $s \cap t$. It follows that the element of S of minimal length is unique; call this s_A . We claim that s_A is τ -splitting for A. Let x < y witness that $s_A \in S$, so $s_A = x \cap y$ and [x] < [y]. Then since [x] and [y] are not extremal, there exist $x', y' \in A$ with [x'] < [x] and [y] < [y'], and [x'], [y'] also not extremal. Then by minimality $s_A = x' \cap y'$ also. But now, both x and x'extend $s_A^{-}\langle 0 \rangle$ and both y and y' extend $s_A^{-}\langle 1 \rangle$; in particular, $A_{s_A}^0 \supseteq A \cap [x', x]$ and $A_{s_A}^1 \supseteq A \cap [y, y']$; but since [x'] < [x] < [y] < [y'], we have in particular that $x' \not\sim_{\tau} x$ and $y \not\sim_{\tau} y'$, so $A \cap [x', x]$ and $A \cap [y, y']$ both embed τ . $\blacksquare_{\text{Claim 1}}$

We now build an injection $f_A : {}^{<\omega}2 \to {}^{<\alpha}2$ which preserves both the tree structure and the lexicographic ordering of ${}^{<\omega}2$ by means of the following recursion:

 $f_A(\emptyset) = s_A$, and for $i \in \{0, 1\}$, given $f_A(t)$ for some $t \in {}^{<\omega}2$, $f_A(t^{\frown}\langle i \rangle)$ is the minimal-height τ -splitting node for $A^i_{f_A(t)}$. Then in particular $f_A(t \land \langle i \rangle)$ extends $f_A(t) \land \langle i \rangle$, so f_A preserves both the tree structure and the lexicographic ordering of $\langle \omega 2 \rangle$, as claimed.

Now we define a colouring $F : [\langle \alpha 2, <_{\text{lex}} \rangle]^{\tau} \to 2$ by, for $A \in [\langle \alpha 2, <_{\text{lex}} \rangle]^{\tau}$,

$$F(A) = \begin{cases} 0 & \text{if } h(f_A(\langle 0 \rangle)) \ge h(f_A(\langle 1 \rangle)); \\ 1 & \text{if } h(f_A(\langle 0 \rangle)) < h(f_A(\langle 1 \rangle)). \end{cases}$$

Claim 2. For any $s, t \in {}^{<\alpha}2$ which are both τ -splitting for A and have $s <_{\text{lex}} t$, there is $B \in [A]^{\tau}$ with $f_B(\langle 0 \rangle) = s$, $f_B(\langle 1 \rangle) = t$, and $f_B(\emptyset) = s \cap t$.

Proof of claim: By definition each of A_s^0 , A_s^1 , A_t^0 , and A_t^1 embed τ , and since s and t do not extend each other, all four of these sets are disjoint. Since $\tau + \tau + \tau + \tau \leq \tau$, we can find some $\tau_0, \tau_1, \tau_2, \tau_3$, all bi-embeddable with τ , such that $\tau = \tau_0 + \tau_1 + \tau_2 + \tau_3$. Then let B be formed of the disjoint union of a copy of τ_0 in A_s^0 , a copy of τ_1 in A_s^1 , a copy of τ_2 in A_t^0 , and a copy of τ_3 in A_t^1 .

Since all of B extends $s \cap t$ and $B_{s\cap t}^0$, $B_{s\cap t}^1$ both embed τ (as $s \cap t \cap \langle 0 \rangle \sqsubseteq s$ and $s \cap t \cap \langle 1 \rangle \sqsubseteq t$), it follows that $s \cap t$ is the minimal τ -splitting node for B. Then since every element of $B_{s\cap t}^0$ extends s and s is τ -splitting for B by construction, $f_B(\langle 0 \rangle) = s$, and similarly $f_B(\langle 1 \rangle) = t$.

Now, using Claim 2, we will show that no $A \in [\langle ^{\alpha}2, <_{\text{lex}} \rangle]^{\tau}$ can be homogeneous for the colouring F defined above. First observe that if A is such that $h(f_A(\langle 0 \rangle)) = h(f_A(\langle 1 \rangle))$, then, applying Claim 2 with e.g. $s = f_A(\langle 0 \rangle)$, $t = f_A(\langle 11 \rangle)$, we obtain some $B \in [A]^{\tau}$ with $h(f_B(\langle 0 \rangle)) < h(f_B(\langle 1 \rangle))$, and so $F(A) \neq F(B)$.

It follows that for some $A \in [\langle \alpha 2, <_{\text{lex}} \rangle]^{\tau}$ to be homogeneous for F, it must be the case either that $h(f_B(\langle 0 \rangle)) > h(f_B(\langle 1 \rangle))$ for all $B \in [A]^{\tau}$, or that $h(f_B(\langle 0 \rangle)) < h(f_B(\langle 1 \rangle))$ for all $B \in [A]^{\tau}$. But now, for any $s <_{\text{lex}} t$ in ${}^{<\omega}2$, we can apply Claim 2 to $f_A(s)$ and $f_A(t)$, and obtain either that for every $s <_{\text{lex}} t \in {}^{<\omega}2$, $h(f_A(s)) > h(f_A(t))$, or that for every $s <_{\text{lex}} t \in {}^{<\omega}2$, $h(f_A(s)) < h(f_A(t))$. Both situations are impossible, as ${}^{<\omega}2$ contains both ω sequences and ω^* -sequences in $<_{\text{lex}}$, so in either case we would get an infinite descending sequence of ordinals.