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Schilhan’s question
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Kinna-Wagner

Definition: The (original) Kinna-Wagner principle

KWP1 is the following statement:

∀X ∃α ∈ Ord such that X injects into P(α).

This is a choice principle which is strictly weaker than AC (KWP0).
It implies that every set can be linearly ordered. Our base theory
throughout the talk will be ZF.
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Schilhan’s question
Notation and definitions

The partition relation symbol

Notation: Copies of τ in ⟨L, <⟩
For ⟨L, <⟩ a linear order, τ an order type, write [⟨L, <⟩]τ for the
set of subsets of L ordered as τ in the induced suborder.

Definition: Partition relation symbol

For ⟨L, <⟩ a linear order and σ, τ order types,

⟨L, <⟩ → (σ)τ

is the statement that for any F : [⟨L, <⟩]τ → 2, thought of as a
colouring of the copies of τ in ⟨L, <⟩, there is some H ∈ [⟨L, <⟩]σ
which is homogeneous or monochromatic for F , in the sense that
|F " [H]τ | = 1.
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Schilhan’s question

Background

Minimal relations on generalisations of the reals

In Udine, worked on relations of the form

⟨α2, <lex⟩ → (τ)τ ,

where α is an ordinal, with Thilo Weinert and Jonathan Schilhan.

The behaviour of these relations can change quite a lot as α
increases, but some order types τ are so self-similar that a relation
⟨α2, <lex⟩ → (τ)τ can never hold:
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Schilhan’s question

Background

Proposition 1

Let τ be an order type with τ + τ ≤ τ . Then for all ordinals α,

⟨α2, <lex⟩ ̸→ (τ)τ .

Examples of τ satisfying this condition: the order type of the
rationals η, the order type of the real line λ, any countable
non-scattered order.

Proof sketch

Fix τ , α. We build a colouring c : [⟨α2, <lex⟩]τ → 2 with no
homogeneous set in the following way: for A ∈ [⟨α2, <lex⟩]τ , we
associate two nodes s0A, s

1
A ∈ <α2 with A, and colour according to

which is longer.
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τ -splitting nodes

s

s⌢⟨1⟩s⌢⟨0⟩

A−
s A+

s

A ∈ [⟨α2, <lex⟩]τ

Say s is τ -splitting for A if both A−
s and A+

s contain copies of τ ,
where

A−
s := {x ∈ A : s⌢⟨0⟩ ⊑ x};

A+
s := {x ∈ A : s⌢⟨1⟩ ⊑ x}.
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Proof sketch of Prop. 1 ctd.

Claim 1

For any A ∈ [⟨α2, <lex⟩]τ ,
1. there exist s ∈ <α2 which are τ -splitting for A;

2. given any s, t ∈ <α2 which are both τ -splitting for A, so is
their maximal common initial segment.

It follows that there is a unique τ -splitting node of minimal length;
call this sA.
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The nodes s0A and s1A

sA

A− A+

A ∈ [⟨α2, <lex⟩]τ

s0A
s1A

Write s0A for the unique minimal-length τ -splitting node of A
extending s⌢A ⟨0⟩, and s1A for the unique minimal-length τ -splitting
node of A extending s⌢A ⟨1⟩.
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The colouring

sA

A− A+

A ∈ [⟨α2, <lex⟩]τ

We colour according to which of len(s−A ), len(s+A ) is longer, i.e.

c(A) =

{
0 if len(s−A ) ≥ len(s+A );

1 if len(s−A ) < len(s+A ).
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Proof sketch of Prop. 1 ctd.

Claim 2

If t0 <lex t1 ∈ <α2 are any τ -splitting nodes for A, then there is
some A′ ∈ [A]τ with s0A′ = t0 and s1A′ = t1.

Claim 3

There is an embedding of the tree ⟨<ω2,⊆⟩ in the τ -splitting
nodes of A, preserving both the tree structure and the
lexicographic ordering.

These two claims together give that our colouring c can have no
homogeneous set, as <ω2 contains both ω-sequences and
ω∗-sequences in <lex, so a homogeneous set in either colour would
induce an infinite descending sequence of ordinals.
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A consistent relation with exponent η
The failure of the Kinna-Wagner principle

The question

Result (Schilhan)

It is consistent with ZF that there is a linear order ⟨L, <⟩ with
⟨L, <⟩ → (η)η.

The linear order ⟨L, <⟩ in the model Schilhan built has the
property that the set L consists of sets of reals, prompting him to
ask the following question:

Question

If ⟨L, <⟩ is a linear order with ⟨L, <⟩ → (η)η, is it possible that
L ⊆ R, or more generally L ⊆ P(α) for α some ordinal?
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A consistent relation with exponent η
The failure of the Kinna-Wagner principle

The answer

Proposition 2

Let ⟨L, <⟩ be a linear order such that the set L injects into the
power set of an ordinal. Then

⟨L, <⟩ ̸→ (η)η.

Equivalently, if ⟨L, <⟩ is such that ⟨L, <⟩ → (η)η, then the set L
witnesses a failure of the Kinna-Wagner principle KWP1.
We remark that if the order ⟨L, <⟩ embedded in some ⟨α2, <lex⟩,
Proposition 1 would immediately gives ⟨L, <⟩ ̸→ (η)η, but the set
L injecting into some α2 does not imply the existence of such an
order-embedding.
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A consistent relation with exponent η
The failure of the Kinna-Wagner principle

The colouring

Proof sketch

We prove the contrapositive. Fix ⟨L, <⟩ a linear order, α an ordinal,
and i : L ↪→ α2 an injection; we build a colouring witnessing

⟨L, <⟩ ̸→ (η)η,

going by a series of five cases. For A ∈ [⟨L, <⟩]η, the colour c(A)
will be determined by the properties of its image i " A ⊆ α2 and
the properties of the images of A′ ∈ [A]η.
First, we split into cases according to the order-theoretic properties
of {i " A′ : A′ ∈ [A]η}, considered as sub-orders of ⟨α2, <lex⟩; then
we split into further cases according to the the topological
properties of the i " A′.
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A consistent relation with exponent η
The failure of the Kinna-Wagner principle

The colouring

Case 1

Case 1: There are A′ ∈ [A]η, A′′ ∈ [A]η such that i " A′ is ordered
as η and i " A′′ is not ordered as η in ⟨α2, <lex⟩.
Simply order according to whether i " A is ordered as η or not:

c(A) =

{
0 if i " A is ordered as η in ⟨α2, <lex⟩;
1 otherwise.

Idea: if we remain in this case we can always change colour by
reducing to a subset whose image has a different order type.

Case 2

Case 2: For every A′ ∈ [A]η, i " A′ is ordered as η in ⟨α2, <lex⟩.
Apply the colouring used in Proposition 1 to i " A (the argument
that there is no homogeneous set is more involved).
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A consistent relation with exponent η
The failure of the Kinna-Wagner principle

The colouring

Cases 1 and 2 deal with the situation where some A′ ∈ [A]η has
i " A′ ordered as η in ⟨α2, <lex⟩, so for the rest of the proof we can
assume that this is never the case.
We now consider the restrictions of the images i " A′ to β2, where
β ≤ α is the minimal ordinal sufficient to distinguish the members
of i " A.

Case 3

Case 3: There are A′ ∈ [A]η, A′′ ∈ [A]η such that i " A′ has no
isolated points in β2 and i " A′′ does have isolated points in β2.
Similar to case 1; we colour according to whether i " A has isolated
points or not:

c(A) =

{
0 if i " A has no isolated points in β2;

1 otherwise.
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A consistent relation with exponent η
The failure of the Kinna-Wagner principle

Case 4

Case 4: For all A′ ∈ [A]η, i " A′ has no isolated points in β2.
In this case, i " A is non-scattered (bi-embeddable with η) and we
can colour it with the colouring from Proposition 1. Again, the
argument that there is no homogeneous set is more involved.

Case 5

Case 5: For all A′ ∈ [A]η, i " A′ has isolated points in β2.
Disregard A unless i " A has two points which are “more isolated”
than all others. Ask whether ⟨L, <⟩ and ⟨α2, <lex⟩ agree on the
ordering of these two points and colour according to that.
Lots of WLOGing: we can assume that for any x , y ∈ A there is
some A′ ∈ [A]η such that x and y are the two points picked out in
this way. Now, since i " A is not ordered as η, there are x0 < y0
with i(x0) <lex i(y0) and x1 < y1 with i(x0) >lex i(y0).
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A consistent relation with exponent η
The failure of the Kinna-Wagner principle

Flowchart for determining c(A)

Properties of i " A′ for A′ ∈ [A]η

1: Some ordered
as η, some not
ordered as η;
colour based on this

2: All ordered as η;
Prop. 1 colouring*

3: Some with isolated
points, some with no
isolated points;
colour based on this

4: Never has isolated pts;
Prop. 1 colouring†

5: Always has isolated pts;
Lots of WLOGing. Look at
two most isolated points
and colour based on
whether the ⟨L, <⟩-order
and the ⟨α2, <lex⟩-order
agree on these points

(3-5: Never ordered as η)
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