Colouring copies of the rationals and the Kinna-Wagner principle

Lyra Gardiner

Department of Pure Mathematics and Mathematical Statistics & Trinity College, University of Cambridge

STiHaC, 15th of November 2024

Joint work with Jonathan Schilhan

Notation and definitions

Kinna-Wagner

Definition: The (original) Kinna-Wagner principle

KWP₁ is the following statement:

$\forall X \exists \alpha \in \text{Ord such that } X \text{ injects into } \mathcal{P}(\alpha).$

This is a choice principle which is strictly weaker than AC (KWP₀). It implies that every set can be linearly ordered. Our base theory throughout the talk will be ZF.

Definition: The (original) Kinna-Wagner principle

KWP₁ is the following statement:

 $\forall X \exists \alpha \in \text{Ord such that } X \text{ injects into } \mathcal{P}(\alpha).$

This is a choice principle which is strictly weaker than AC (KWP₀). It implies that every set can be linearly ordered. Our base theory throughout the talk will be ZF.

The partition relation symbol

Notation: Copies of τ in $\langle L, < \rangle$

For $\langle L, < \rangle$ a linear order, τ an order type, write $[\langle L, < \rangle]^{\tau}$ for the set of subsets of L ordered as τ in the induced suborder.

Definition: Partition relation symbol

For $\langle L, < \rangle$ a linear order and σ , τ order types,

 $\langle L, < \rangle \rightarrow (\sigma)^{\tau}$

is the statement that for any $F : [\langle L, < \rangle]^{\tau} \to 2$, thought of as a *colouring* of the copies of τ in $\langle L, < \rangle$, there is some $H \in [\langle L, < \rangle]^{\sigma}$ which is *homogeneous* or *monochromatic* for F, in the sense that $|F " [H]^{\tau}| = 1$.

The partition relation symbol

Notation: Copies of τ in $\langle L, < \rangle$

For $\langle L, < \rangle$ a linear order, τ an order type, write $[\langle L, < \rangle]^{\tau}$ for the set of subsets of L ordered as τ in the induced suborder.

Definition: Partition relation symbol

For $\langle L, < \rangle$ a linear order and σ , τ order types,

$$\langle L, < \rangle
ightarrow (\sigma)^{\tau}$$

is the statement that for any $F : [\langle L, < \rangle]^{\tau} \to 2$, thought of as a *colouring* of the copies of τ in $\langle L, < \rangle$, there is some $H \in [\langle L, < \rangle]^{\sigma}$ which is *homogeneous* or *monochromatic* for F, in the sense that $|F " [H]^{\tau}| = 1$.

Background

Minimal relations on generalisations of the reals

In Udine, worked on relations of the form

$$\langle {}^{\alpha}2, <_{\mathsf{lex}} \rangle \rightarrow (\tau)^{\tau},$$

where α is an ordinal, with Thilo Weinert and Jonathan Schilhan.

The behaviour of these relations can change quite a lot as α increases, but some order types τ are so self-similar that a relation $\langle {}^{\alpha}2, <_{\mathsf{lex}} \rangle \to (\tau)^{\tau}$ can never hold:

Minimal relations on generalisations of the reals

In Udine, worked on relations of the form

$$\langle {}^{\alpha}2, <_{\mathsf{lex}} \rangle \rightarrow (\tau)^{\tau},$$

where α is an ordinal, with Thilo Weinert and Jonathan Schilhan.

The behaviour of these relations can change quite a lot as α increases, but some order types τ are so self-similar that a relation $\langle {}^{\alpha}2, <_{\mathsf{lex}} \rangle \rightarrow (\tau)^{\tau}$ can never hold:

Proposition 1

Let τ be an order type with $\tau + \tau \leq \tau$. Then for all ordinals α , $\langle {}^{\alpha}2, <_{\mathsf{lex}} \rangle \not\rightarrow (\tau)^{\tau}$.

Examples of τ satisfying this condition: the order type of the rationals η , the order type of the real line λ , any countable non-scattered order.

Proof sketch

Fix τ , α . We build a colouring $c : [\langle {}^{\alpha}2, <_{lex} \rangle]^{\tau} \to 2$ with no homogeneous set in the following way: for $A \in [\langle {}^{\alpha}2, <_{lex} \rangle]^{\tau}$, we associate two nodes $s_{A}^{0}, s_{A}^{1} \in {}^{<\alpha}2$ with A, and colour according to which is longer.

Proposition 1

Let τ be an order type with $\tau + \tau \leq \tau$. Then for all ordinals α , $\langle {}^{\alpha}2, <_{\mathsf{lex}} \rangle \not\rightarrow (\tau)^{\tau}$.

Examples of τ satisfying this condition: the order type of the rationals η , the order type of the real line λ , any countable non-scattered order.

Proof sketch

Fix τ , α . We build a colouring $c : [\langle {}^{\alpha}2, <_{lex} \rangle]^{\tau} \to 2$ with no homogeneous set in the following way: for $A \in [\langle {}^{\alpha}2, <_{lex} \rangle]^{\tau}$, we associate two nodes $s^{0}_{A}, s^{1}_{A} \in {}^{<\alpha}2$ with A, and colour according to which is longer.

Proposition 1

Let τ be an order type with $\tau + \tau \leq \tau$. Then for all ordinals α , $\langle {}^{\alpha}2, <_{\mathsf{lex}} \rangle \not\rightarrow (\tau)^{\tau}.$

Examples of τ satisfying this condition: the order type of the rationals η , the order type of the real line λ , any countable non-scattered order.

Proof sketch

Fix τ , α . We build a colouring $c : [\langle {}^{\alpha}2, <_{\text{lex}} \rangle]^{\tau} \to 2$ with no homogeneous set in the following way: for $A \in [\langle {}^{\alpha}2, <_{\text{lex}} \rangle]^{\tau}$, we associate two nodes $s_A^0, s_A^1 \in {}^{<\alpha}2$ with A, and colour according to which is longer.

τ -splitting nodes

$$A \in [\langle {}^{\alpha}2, <_{\mathsf{lex}} \rangle]^{ au}$$

Say s is τ -splitting for A if both A_s^- and A_s^+ contain copies of τ , where

$$\begin{aligned} A_s^- &:= \{ x \in A : s^{\frown} \langle 0 \rangle \sqsubseteq x \}; \\ A_s^+ &:= \{ x \in A : s^{\frown} \langle 1 \rangle \sqsubseteq x \}. \end{aligned}$$

τ -splitting nodes

$$A \in [\langle^{\alpha} 2, <_{\mathsf{lex}} \rangle]^{\tau}$$

Say s is τ -splitting for A if both A_s^- and A_s^+ contain copies of τ , where

$$\begin{aligned} A_s^- &:= \{ x \in A : s^{\frown} \langle 0 \rangle \sqsubseteq x \}; \\ A_s^+ &:= \{ x \in A : s^{\frown} \langle 1 \rangle \sqsubseteq x \}. \end{aligned}$$

Proof sketch of Prop. 1 ctd.

Claim 1

For any $A \in [\langle {}^lpha 2, <_{\mathsf{lex}} \rangle]^ au$,

- 1. there exist $s \in {}^{<\alpha}2$ which are τ -splitting for A;
- 2. given any $s, t \in {}^{<\alpha}2$ which are both τ -splitting for A, so is their maximal common initial segment.

It follows that there is a unique au-splitting node of minimal length; call this s_A .

Proof sketch of Prop. 1 ctd.

Claim 1

For any $A \in [\langle {}^lpha 2, <_{\mathsf{lex}}
angle]^ au$,

- 1. there exist $s \in {}^{<\alpha}2$ which are τ -splitting for A;
- 2. given any $s, t \in {}^{<\alpha}2$ which are both τ -splitting for A, so is their maximal common initial segment.

It follows that there is a unique τ -splitting node of minimal length; call this s_A .

The nodes s_A^0 and s_A^1

 $A \in [\langle \alpha 2, \langle e_{\text{lex}} \rangle]^{\tau}$ SA

Write s_A^0 for the unique minimal-length τ -splitting node of A extending $s_A^{\frown}\langle 0 \rangle$, and s_A^1 for the unique minimal-length τ -splitting node of A extending $s_A^{\frown}\langle 1 \rangle$.

The nodes s_A^0 and s_A^1

$$A \in [\langle^{\alpha}2, <_{\mathsf{lex}}\rangle]^{\tau}$$

Write s_A^0 for the unique minimal-length τ -splitting node of A extending $s_{\widehat{A}} \langle 0 \rangle$, and s_A^1 for the unique minimal-length τ -splitting node of A extending $s_{\widehat{A}} \langle 1 \rangle$.

The colouring

 $A \in [\langle \alpha 2, <_{\mathsf{lex}} \rangle]^{\tau}$

We colour according to which of $len(s_A^-)$, $len(s_A^+)$ is longer, i.e.

$$c(A) = \begin{cases} 0 & \text{if } \operatorname{len}(s_A^-) \ge \operatorname{len}(s_A^+); \\ 1 & \text{if } \operatorname{len}(s_A^-) < \operatorname{len}(s_A^+). \end{cases}$$

Proof sketch of Prop. 1 ctd.

Claim 2

If $t_0 <_{\text{lex}} t_1 \in {}^{<\alpha}2$ are any τ -splitting nodes for A, then there is some $A' \in [A]^{\tau}$ with $s_{A'}^0 = t_0$ and $s_{A'}^1 = t_1$.

Claim 3

There is an embedding of the tree $\langle {}^{<\omega}2, \subseteq \rangle$ in the τ -splitting nodes of A, preserving both the tree structure and the lexicographic ordering.

These two claims together give that our colouring c can have no homogeneous set, as ${}^{<\omega}2$ contains both ω -sequences and ω^* -sequences in $<_{lex}$, so a homogeneous set in either colour would induce an infinite descending sequence of ordinals.

Proof sketch of Prop. 1 ctd.

Claim 2

If $t_0 <_{\text{lex}} t_1 \in {}^{<\alpha}2$ are any τ -splitting nodes for A, then there is some $A' \in [A]^{\tau}$ with $s_{A'}^0 = t_0$ and $s_{A'}^1 = t_1$.

Claim 3

There is an embedding of the tree $\langle {}^{<\omega}2, \subseteq \rangle$ in the τ -splitting nodes of A, preserving both the tree structure and the lexicographic ordering.

These two claims together give that our colouring c can have no homogeneous set, as ${}^{<\omega}2$ contains both ω -sequences and ω^* -sequences in $<_{lex}$, so a homogeneous set in either colour would induce an infinite descending sequence of ordinals.

Proof sketch of Prop. 1 ctd.

Claim 2

If $t_0 <_{\text{lex}} t_1 \in {}^{<\alpha}2$ are any τ -splitting nodes for A, then there is some $A' \in [A]^{\tau}$ with $s_{A'}^0 = t_0$ and $s_{A'}^1 = t_1$.

Claim 3

There is an embedding of the tree $\langle {}^{<\omega}2, \subseteq \rangle$ in the τ -splitting nodes of A, preserving both the tree structure and the lexicographic ordering.

These two claims together give that our colouring c can have no homogeneous set, as ${}^{<\omega}2$ contains both ω -sequences and ω^* -sequences in $<_{lex}$, so a homogeneous set in either colour would induce an infinite descending sequence of ordinals.

The question

Result (Schilhan)

It is consistent with ZF that there is a linear order $\langle L,<\rangle$ with $\langle L,<\rangle\to (\eta)^\eta.$

The linear order $\langle L, < \rangle$ in the model Schilhan built has the property that the set *L* consists of sets of reals, prompting him to ask the following question:

Question

If $\langle L, < \rangle$ is a linear order with $\langle L, < \rangle \rightarrow (\eta)^{\eta}$, is it possible that $L \subseteq \mathbb{R}$, or more generally $L \subseteq \mathcal{P}(\alpha)$ for α some ordinal?

The question

Result (Schilhan)

It is consistent with ZF that there is a linear order $\langle L,<\rangle$ with $\langle L,<\rangle\to (\eta)^\eta.$

The linear order $\langle L, < \rangle$ in the model Schilhan built has the property that the set *L* consists of sets of reals, prompting him to ask the following question:

Question

If $\langle L, < \rangle$ is a linear order with $\langle L, < \rangle \rightarrow (\eta)^{\eta}$, is it possible that $L \subseteq \mathbb{R}$, or more generally $L \subseteq \mathcal{P}(\alpha)$ for α some ordinal?

The answer

Proposition 2

Let $\langle L, < \rangle$ be a linear order such that the set L injects into the power set of an ordinal. Then

 $\langle L, < \rangle \not\rightarrow (\eta)^{\eta}.$

Equivalently, if $\langle L, < \rangle$ is such that $\langle L, < \rangle \rightarrow (\eta)^{\eta}$, then the set L witnesses a failure of the Kinna-Wagner principle KWP₁. We remark that if the order $\langle L, < \rangle$ embedded in some $\langle^{\alpha}2, <_{\text{lex}}\rangle$, Proposition 1 would immediately gives $\langle L, < \rangle \not\rightarrow (\eta)^{\eta}$, but the set L injecting into some $^{\alpha}2$ does not imply the existence of such an order-embedding.

The answer

Proposition 2

Let $\langle L, < \rangle$ be a linear order such that the set L injects into the power set of an ordinal. Then

 $\langle L, < \rangle \not\rightarrow (\eta)^{\eta}.$

Equivalently, if $\langle L, < \rangle$ is such that $\langle L, < \rangle \rightarrow (\eta)^{\eta}$, then the set L witnesses a failure of the Kinna-Wagner principle KWP₁.

We remark that if the order $\langle L, < \rangle$ embedded in some $\langle {}^{\alpha}2, <_{\text{lex}} \rangle$, Proposition 1 would immediately gives $\langle L, < \rangle \not\rightarrow (\eta)^{\eta}$, but the set L injecting into some ${}^{\alpha}2$ does not imply the existence of such an order-embedding.

The answer

Proposition 2

Let $\langle L, < \rangle$ be a linear order such that the set L injects into the power set of an ordinal. Then

 $\langle L, < \rangle \not\rightarrow (\eta)^{\eta}.$

Equivalently, if $\langle L, < \rangle$ is such that $\langle L, < \rangle \rightarrow (\eta)^{\eta}$, then the set L witnesses a failure of the Kinna-Wagner principle KWP₁. We remark that if the *order* $\langle L, < \rangle$ embedded in some $\langle^{\alpha}2, <_{\text{lex}}\rangle$, Proposition 1 would immediately gives $\langle L, < \rangle \not\rightarrow (\eta)^{\eta}$, but the set L injecting into some $^{\alpha}2$ does not imply the existence of such an order-embedding.

Proof sketch

We prove the contrapositive. Fix $\langle L, < \rangle$ a linear order, α an ordinal, and $i: L \hookrightarrow {}^{\alpha}2$ an injection; we build a colouring witnessing

 $\langle L, < \rangle \not\rightarrow (\eta)^{\eta},$

going by a series of five cases. For $A \in [\langle L, \langle \rangle]^{\eta}$, the colour c(A) will be determined by the properties of its image $i " A \subseteq {}^{\alpha}2$ and the properties of the images of $A' \in [A]^{\eta}$.

First, we split into cases according to the order-theoretic properties of $\{i \; " \; A' : A' \in [A]^{\eta}\}$, considered as sub-orders of $\langle {}^{\alpha}2, <_{\text{lex}} \rangle$; then we split into further cases according to the the topological properties of the *i* " *A'*.

Proof sketch

We prove the contrapositive. Fix $\langle L, < \rangle$ a linear order, α an ordinal, and $i: L \hookrightarrow {}^{\alpha}2$ an injection; we build a colouring witnessing

 $\langle L, < \rangle \not\rightarrow (\eta)^{\eta},$

going by a series of five cases. For $A \in [\langle L, \langle \rangle]^{\eta}$, the colour c(A) will be determined by the properties of its image $i " A \subseteq {}^{\alpha}2$ and the properties of the images of $A' \in [A]^{\eta}$.

First, we split into cases according to the order-theoretic properties of $\{i " A' : A' \in [A]^{\eta}\}$, considered as sub-orders of $\langle {}^{\alpha}2, <_{\mathsf{lex}} \rangle$; then we split into further cases according to the the topological properties of the *i* " *A'*.

Case 1

Case 1: There are $A' \in [A]^{\eta}$, $A'' \in [A]^{\eta}$ such that i " A' is ordered as η and i " A'' is not ordered as η in $\langle {}^{\alpha}2, <_{lex} \rangle$. Simply order according to whether i " A is ordered as η or not:

$$c(A) = \begin{cases} 0 & \text{if } i \text{ " } A \text{ is ordered as } \eta \text{ in } \langle^{\alpha} 2, <_{\text{lex}} \rangle; \\ 1 & \text{otherwise.} \end{cases}$$

Idea: if we remain in this case we can always change colour by reducing to a subset whose image has a different order type.

Case 2

Case 2: For every $A' \in [A]^{\eta}$, $i \, "A'$ is ordered as η in $\langle {}^{\alpha}2, <_{lex} \rangle$. Apply the colouring used in Proposition 1 to $i \, "A$ (the argument that there is no homogeneous set is more involved).

Case 1

Case 1: There are $A' \in [A]^{\eta}$, $A'' \in [A]^{\eta}$ such that i " A' is ordered as η and i " A'' is not ordered as η in $\langle {}^{\alpha}2, <_{lex} \rangle$. Simply order according to whether i " A is ordered as η or not:

$$c(A) = \begin{cases} 0 & \text{if } i \text{ "} A \text{ is ordered as } \eta \text{ in } \langle^{\alpha} 2, <_{\text{lex}} \rangle; \\ 1 & \text{otherwise.} \end{cases}$$

Idea: if we remain in this case we can always change colour by reducing to a subset whose image has a different order type.

Case 2

Case 2: For every $A' \in [A]^{\eta}$, i "A' is ordered as η in $\langle {}^{\alpha}2, <_{lex} \rangle$. Apply the colouring used in Proposition 1 to i "A (the argument that there is no homogeneous set is more involved).

A consistent relation with exponent η The failure of the Kinna-Wagner principle

The colouring

Cases 1 and 2 deal with the situation where some $A' \in [A]^{\eta}$ has i "A' ordered as η in $\langle {}^{\alpha}2, <_{\text{lex}} \rangle$, so for the rest of the proof we can assume that this is never the case.

We now consider the restrictions of the images i " A' to β_2 , where $\beta \leq \alpha$ is the minimal ordinal sufficient to distinguish the members of i " A.

Case 3

Case 3: There are $A' \in [A]^{\eta}$, $A'' \in [A]^{\eta}$ such that i "A' has no isolated points in ${}^{\beta}2$ and i "A'' does have isolated points in ${}^{\beta}2$. Similar to case 1; we colour according to whether i "A has isolated points or not:

$$c(A) = \begin{cases} 0 & \text{if } i \text{ "} A \text{ has no isolated points in } \beta_2; \\ 1 & \text{otherwise.} \end{cases}$$

Cases 1 and 2 deal with the situation where some $A' \in [A]^{\eta}$ has i " A' ordered as η in $\langle {}^{\alpha}2, <_{\text{lex}} \rangle$, so for the rest of the proof we can assume that this is never the case.

We now consider the restrictions of the images i " A' to β_2 , where $\beta \leq \alpha$ is the minimal ordinal sufficient to distinguish the members of i " A.

Case 3

Case 3: There are $A' \in [A]^{\eta}$, $A'' \in [A]^{\eta}$ such that i " A' has no isolated points in ${}^{\beta}2$ and i " A'' does have isolated points in ${}^{\beta}2$. Similar to case 1; we colour according to whether i " A has isolated points or not:

$$c(A) = \begin{cases} 0 & \text{if } i \text{ "} A \text{ has no isolated points in } \beta_2; \\ 1 & \text{otherwise.} \end{cases}$$

Cases 1 and 2 deal with the situation where some $A' \in [A]^{\eta}$ has i " A' ordered as η in $\langle {}^{\alpha}2, <_{\mathsf{lex}} \rangle$, so for the rest of the proof we can assume that this is never the case.

We now consider the restrictions of the images i " A' to β_2 , where $\beta \leq \alpha$ is the minimal ordinal sufficient to distinguish the members of i " A.

Case 3

Case 3: There are $A' \in [A]^{\eta}$, $A'' \in [A]^{\eta}$ such that i "A' has no isolated points in ${}^{\beta}2$ and i "A'' does have isolated points in ${}^{\beta}2$. Similar to case 1; we colour according to whether i "A has isolated points or not:

$$c(A) = \begin{cases} 0 & \text{if } i \text{ "} A \text{ has no isolated points in } \beta_2; \\ 1 & \text{otherwise.} \end{cases}$$

A consistent relation with exponent η The failure of the Kinna-Wagner principle

Case 4

Case 4: For all $A' \in [A]^{\eta}$, $i \, "A'$ has no isolated points in ${}^{\beta}2$. In this case, $i \, "A$ is non-scattered (bi-embeddable with η) and we can colour it with the colouring from Proposition 1. Again, the argument that there is no homogeneous set is more involved.

Case 5

Case 5: For all $A' \in [A]^{\eta}$, $i \, "A'$ has isolated points in ${}^{\beta}2$. Disregard A unless $i \, "A$ has two points which are "more isolated" than all others. Ask whether $\langle L, < \rangle$ and $\langle {}^{\alpha}2, <_{\text{lex}} \rangle$ agree on the ordering of these two points and colour according to that. Lots of WLOGing: we can assume that for any $x, y \in A$ there is some $A' \in [A]^{\eta}$ such that x and y are the two points picked out in this way. Now, since $i \, "A$ is not ordered as η , there are $x_0 < y_0$ with $i(x_0) <_{\text{lex}} i(y_0)$ and $x_1 < y_1$ with $i(x_0) >_{\text{lex}} i(y_0)$.

Case 4

Case 4: For all $A' \in [A]^{\eta}$, $i \, "A'$ has no isolated points in ${}^{\beta}2$. In this case, $i \, "A$ is non-scattered (bi-embeddable with η) and we can colour it with the colouring from Proposition 1. Again, the argument that there is no homogeneous set is more involved.

Case 5

Case 5: For all $A' \in [A]^{\eta}$, $i \, "A'$ has isolated points in ${}^{\beta}2$. Disregard A unless $i \, "A$ has two points which are "more isolated" than all others. Ask whether $\langle L, < \rangle$ and $\langle {}^{\alpha}2, <_{\text{lex}} \rangle$ agree on the ordering of these two points and colour according to that. Lots of WLOGing: we can assume that for any $x, y \in A$ there is some $A' \in [A]^{\eta}$ such that x and y are the two points picked out in this way. Now, since $i \, "A$ is not ordered as η , there are $x_0 < y_0$ with $i(x_0) <_{\text{lex}} i(y_0)$ and $x_1 < y_1$ with $i(x_0) >_{\text{lex}} i(y_0)$.

