My Part III Essay Plans

Large Cardinals: Characterizations of Weakly Compact Cardinals

Friday, April 04, 2025

Vivian Szeto (she/her)

Trinity College, University of Cambridge

• Part III is a 9 month taught masters course.

Content of a Part III Essay

"The object of a typical essay is to give an exposition of a piece of mathematics which is scattered over several books or papers."

- Part III Essay Booklet: Guidelines and Titles 2024-25
 - "Essay title": Large Cardinals
 - My essay topic: Characterizations of Weakly Compact Cardinals
 - Due date: Thursday, May 08, 2025, at 12:00

Three main parts for my essay:

- A. Define characterizations of weakly compact cardinals
- B. Explain/show which characterizations imply inaccessibility
- C. Give implication proofs between characterizations (all will end up being equivalent)

Definition (Cofinality)

The cofinality of a cardinal κ , denoted cf(κ), is the cardinality of the least set $S\subset\kappa$ such that $\bigcup S=\kappa.$

Definition (Regular cardinal)

A cardinal κ is regular if $cf(\kappa) = \kappa$.

Definition (Strong limit)

A cardinal κ is a strong limit if for all $\lambda < \kappa, 2^\lambda < \kappa.$

Definition (Inaccessible cardinal)

For κ an uncountable cardinal:

- κ is weakly inaccessible if it is regular and a limit.
- κ is (strongly) inaccessible if it is regular and a strong limit.

Remark

 $ZFC \nvDash Con(ZFC) \rightarrow Con(ZFC + "there exists an inaccessible cardinal")$

List of characterizations

The following are equivalent, given κ an inaccessible cardinal. Weakly compact cardinals are normally defined by either WCT or PP.

- 1. (WCT) The infinitary language $\mathcal{L}_{\kappa,\kappa}$ satisfies the Weak Compactness Theorem.
- 2. (WCT2) The infinitary language $\mathcal{L}_{\kappa,\omega}$ satisfies the Weak Compactness Theorem.
- 3. (PP) The partition relation $\kappa \to (\kappa)_2^2$ holds.
- 4. (PP2) The partition relation $\kappa \to (\kappa)^n_{\lambda}$ holds for every $\lambda \in \kappa$, $n \in \omega$.
- 5. (TP) κ has the tree property.
- 6. (EP) κ has the (Keisler) Extension Property.
- 7. (ID) κ is Π_1^1 -indescribable.
- 8. (OP) κ has the "long total order property"/ κ is a "Hausdorff cardinal".
- 9. (FP) κ has the "filter extension property".

Definitions

Definitions: WCT, WCT2

Reminder (Language of first-order logic)

The language of first-order logic consists of:

- (Finitary) **non-logical symbols** (i.e. function and relation symbols), and associated arities.
- An infinite set of **variables** V.
- Terms defined recursively from non-logical symbols and variables.
- Formulas defined recursively from atomic formulas and logical connectives.

Definition (Infinitary logic $\mathcal{L}_{\kappa,\lambda}$)

The language of $\mathcal{L}_{\kappa,\lambda}$ is formed by adding two new rules for creating new formulas:

- Infinitary conjunctions and disjunctions: $\bigwedge_{\alpha < \mu}, \bigvee_{\alpha < \mu}$, for $\mu < \kappa$.
- Infinitary quantification: $\exists_{\alpha < \mu}, \forall_{\alpha < \mu}$, for $\mu < \lambda$.

Definitions: WCT, WCT2

Remark

 $\mathcal{L}_{\omega,\omega}$ is the usual language of first-order logic.

Definition (μ -satisfiable)

A set of sentences Σ is μ -satisfiable iff every subset of Σ of cardinality less than μ is satisfiable.

Compactness Theorem for $\mathcal{L}_{\varpi, \omega}$

Whenever Σ is a set of sentences,

 Σ is ω -satisfiable $\leftrightarrow \Sigma$ is satisfiable.

Definition (Weak Compactness Theorem)

For $\kappa \ge \lambda$, $\mathcal{L}_{\kappa,\lambda}$ satisfies the Weak Compactness Theorem iff whenever Σ is a set of sentences using at most κ non-logical symbols,

 Σ is $\kappa\text{-satisfiable}\leftrightarrow\Sigma$ is satisfiable.

Definition (Weak Compactness Theorem)

 $\mathcal{L}_{\kappa,\lambda}$, $\kappa \ge \lambda$ satisfies the Weak Compactness Theorem iff whenever Σ is a set of sentences, using at most κ non-logical symbols,

(Any $< \kappa$ -sized subset of Σ is satisfiable) $\Rightarrow \Sigma$ is satisfiable.

(c.f. Compactness Theorem for first-order logic)

- 1. (WCT) The infinitary language $\mathcal{L}_{\kappa,\kappa}$ satisfies the Weak Compactness Theorem.
- 2. (WCT2) The infinitary language $\mathcal{L}_{\kappa,\omega}$ satisfies the Weak Compactness Theorem.

Ramsey's Theorem

For r, k positive naturals: Whenever the r-sets (i.e. r-sized subsets) of ω are k-coloured, then there is a monochromatic ω -set (i.e. an infinite set in which all r-sets are coloured the same).

Definition (Partition relation)

Let α , β , γ , δ be cardinals. Then the partition relation

$$\beta \longrightarrow (\alpha)^{\gamma}_{\delta}$$

holds iff "whenever the γ -sets of β are δ -coloured, there is a monochromatic α -set".

Remark Ramsey's Theorem: $\omega \longrightarrow (\omega)_k^r$ for all $r, k \in \omega$.

- 3. (PP) The partition relation $\kappa \to (\kappa)_2^2$ holds.
- 4. (PP2) The partition relation $\kappa \to (\kappa)^n_{\lambda}$ holds for every $\lambda \in \kappa$, $n \in \omega$.

Definition (Trees)

- A tree is a partially ordered set $(T, <_T)$ such that for any $t \in T$ the set $u \in T$; $u <_T T$ of $<_T$ -predecessors of t is well-ordered by $<_T$.
- For the sake of simplicity all trees are assumed to have a minimal element, called the *root*.
- The α th level of a tree T consists of every $t \in T$ such that $\{x \in T; x <_T y\}$ has order type α .
- The *height* of T is the least α such that the α th level of T is empty.
- A branch of T is a maximal chain in T.
- A *cofinal branch* of *T* is a branch with elements at every non-empty level of *T*.

Definition (K-trees)

A $\kappa\text{-tree}$ is a tree of height $\kappa,$ each of whose levels has cardinality less than $\kappa.$

Definition (K-Aronszajn trees)

A κ -Aronszajn tree is a κ -tree with no cofinal branch.

Definition (The tree property)

Let κ be a cardinal.

 κ has the *tree property* iff every κ -tree has a cofinal branch (i.e. there are no κ -Aronszajn trees).

5. (TP) κ has the Tree Property.

Definition (The Extension Property)

Let κ be a cardinal. κ satisfies the (Keisler) Extension Property if for any $R \subset V_{\kappa}$, there is a transitive set $X \supseteq V_{\kappa}$, and a subset $S \subset X$, such that $(V_{\kappa}, \in, R) \preceq (X, \in, S)$.

6. (EP) κ has the (Keisler) Extension Property.

Reminder (Variables in first order logic)

Let M be a structure, and let ϕ be a formula. Variables which appear in ϕ are interpreted as *elements of M*.

Definition (Language of higher-order logic) In *n*th order predicate logic:

- Variables each have an "order", from 1 to *n*. Our set of variables has infinitely many variables of each order from 1 to *n*.
- Quantifiers may be applied to variables of any order.
- For each pair of variables X, z, of orders k + 1, k respectively, have a **new atomic formula** X(z).
- Formulas are defined inductively from atomic formulas and logical connectives as usual.

In nth order (finitary) logic:

- Variables each have an "order", from 1 to *n*. Our set of variables has infinitely many variables of each order from 1 to *n*.
- Quantifiers may be applied to variables of any order.
- For each pair of variables X, z, of orders k + 1, k respectively, have a **new atomic formula** X(z).
- Formulas are defined inductively from atomic formulas and logical connectives as usual.

Definition (Interpretation in higher-order logic)

In *n*th order logic:

- *n*th order variables are interpreted as elements of $\mathbb{P}^{n-1}(M)$.
- The new atomic formula X(z) is interpreted as " $z \in X$ ".

Definitions: ID

Reminder (Σ_n , Π_n formulas in first-order logic)

Let n > 0 be a natural number, and let φ be a formula.

- ϕ is Σ_0 or Π_0 iff it is quantifier-free, i.e. Δ_0 .
- φ is Σ_n (resp. Π_n) if it is of the form $\exists x_0 \dots \exists x_k \dots \forall x_k \dots \forall x_k)$ (resp. $\forall x_0 \dots \forall x_k \dots \psi(x_0, \dots, x_k)$), where ψ is a Π_{n-1} (resp. Σ_{n-1}) formula, x_0, \dots, x_k are variables.

Remark

Complexity is measured in terms of first-order quantification.

Definition (Σ_m^n , Π_m^n formulas)

"Measure complexity in terms of (n + 1)th order quantification". Let m > 0 be a natural number, and let φ be a formula.

- φ is Σ_0^n or Π_0^n iff all its quantified variables are of order at most *n*.
- φ is Σ_m^n iff it is of the form $\exists X_0, \dots, \exists X_k, \psi(X_0, \dots, X_k)$, where ψ is a $\prod_{m=1}^n$ formula, and X_0, \dots, X_k are variables of order (n + 1).
- Similarly define Π_m^n .

Definition (Indescribable cardinals)

A cardinal κ is Π_m^n -indescribable if whenever $U \subset V_{\kappa}$ and φ is a Π_m^n sentence such that $(V_{\kappa}, \in, U) \vDash \varphi$, then for some $\alpha < \kappa$, $(V_{\alpha}, \in, U \cap V_{\alpha}) \vDash \varphi$. Similarly can define Σ_m^n -indescribability.

Remark

Motto: "Can't describe with a \prod_{m}^{n} formula how big κ is".

```
7. (ID) \kappa is \Pi_1^1-indescribable.
```

Definition (Long total order property)

A cardinal κ satisfies the *long total order property* if for any total order of cardinality κ , there is some sub-order which is a strictly monotone sequence (i.e. well-order or reverse of well-order), of order type κ .

8. (0P) κ has the "long total order property".

Definition (Filter)

A filter on a set S is a set F of subsets of S such that:

- *F* is **closed under intersections**: If *A*, $B \in F$, then $A \cap B \in F$.
- *F* is **closed under supersets**: If $A \in F$, $B \supset A$, then $B \in F$.
- *F* is **non-empty, non-trivial**: $\emptyset \notin F$, $S \in F$.

An ultrafilter is a maximal filter on S (wrt inclusion).

Definition (Algebra of sets)

An algebra over a set S is a collection G of subsets of S such that:

- *G* is **closed under intersections**: If *A*, $B \in G$, then $A \cap B \in G$.
- *G* is **closed under complements**: If $A \in G$, then $S \setminus A \in G$.
- *F* is **non-empty**: *S* ∈ *G*

Definition (k-complete)

A filter or algebra X is κ -complete if it is closed under interesections of size $<\kappa.$

That is, for any $\lambda < \kappa$, $\{X_{\alpha}; \alpha \in \lambda\} \subset X$, we have $\bigcap_{\alpha \in \lambda} X_{\alpha} \in X$.

Remark

A σ -algebra is exactly a ω -complete algebra.

Definition (Filter extension property)

A cardinal κ satisfies the "filter extension property" iff for any algebra of sets *B* over κ , with $|B| = \kappa$, any κ -complete filter over *B* is contained in a κ -complete ultrafilter over *B*.

9. (FP) κ has the "filter extension property".

Which characterizations imply inaccessibility?

Which characterizations imply inaccessibility?

Assuming κ is uncountable, (1-4, 6, 7, 8) imply inaccessibility:

- 1. (WCT) The infinitary language $\mathcal{L}_{\kappa,\kappa}$ satisfies the Weak Compactness Theorem.
- 2. (WCT2) The infinitary language $\mathcal{L}_{\kappa,\omega}$ satisfies the Weak Compactness Theorem.
- 3. (PP) The partition relation $\kappa \to (\kappa)_2^2$ holds.
- 4. (PP2) The partition relation $\kappa \to (\kappa)^n_{\lambda}$ holds for every $\lambda \in \kappa$, $n \in \omega$.
- 5. (TP) κ has the Tree Property. [Independent of ZFC*]
- 6. (EP) κ has the (Keisler) Extension Property.
- 7. (ID) κ is Π_1^1 -indescribable.
- 8. (0P) κ has the "long total order property".
- 9. (FP) κ has the "filter extension property". [I don't know]

*Assuming weakly compact cardinals are consistent.

$\mathsf{TP}(\kappa) \to \mathtt{IC}(\kappa)?$

Reminder (The tree property)

 κ has the tree property iff every κ -tree has a cofinal branch, i.e. there are no κ -Aronszajn trees.

Facts

- $TP(\kappa)$ implies " κ is regular".
- ZFC proves ℵ₁ does not have the tree property.
- TP(X₂) is independent of ZFC:
 - CH implies $\neg TP(\aleph_2)$.
 - $\circ~$ Mitchell (1972) showed that TP($\aleph_2)$ is equiconsistent to the existence of weakly compact cardinals.
- Jensen (1972) showed that if V = L then there is a κ -Aronszajn (in fact, Suslin) tree for every infinite successor cardinal κ .
 - $\circ~$ This gives $\neg \mathsf{TP}(\kappa)$ for all successors $\kappa,$ so $\mathsf{TP}(\kappa)$ implies κ a limit.
 - V = L models GCH so all limits are strong limits, so
 - $L \models \mathsf{TP}(\kappa) \to \mathsf{IC}(\kappa) \text{, so ZFC} \not\models \mathsf{TP}(\kappa) \not\to \mathsf{IC}(\kappa).$

I don't know whether $\mathsf{FP}(\kappa)$ implies inaccessibility.

What I know

- Drake (1974) gives $TP(\kappa) \rightarrow FP(\kappa)$ and $FP(\kappa) \rightarrow WCT(\kappa)$ under the assumption $IC(\kappa)$, and this assumption is used in both proofs.
- Comfort, Negrepontis (1974) give κ weakly compact iff $FP(\kappa)$ and $\kappa = \kappa^{<\kappa} = \bigcup_{\lambda < \kappa} \kappa^{\lambda}$.
 - $\circ~\kappa^{<\kappa}$ implies κ is weakly inaccessible.

Implications between characterizations

Assuming K	maccessible, the	ionowing impli	Lations have un	ect proofs:
From WCT:	From PP:	From TP:	From EP:	From ID:
_	$ extsf{PP} ightarrow extsf{WCT}$	$\begin{array}{c} TP \rightarrow WCT \\ TP \rightarrow PP \end{array}$	$EP \to WCT$	
WCT o TP	$\rm PP \rightarrow TP$	-		${\tt ID} \to {\tt TP}$
WCT o EP		${\rm TP} \to {\rm EP}$	_	${\tt ID} \to {\tt EP}$
			$\texttt{EP} \to \texttt{ID}$	-
		${\rm TP} \rightarrow {\rm FP}$		
	$\rm PP \rightarrow 0P$			
	From 0P:		From FP:	
	0 P ightarrow P P		$\mathrm{FP} \rightarrow \mathrm{WCT}$	

Accuming wine secsible the following implications have "direct" are of

Next steps

My next steps

- Writing my essay: Definitions and proofs.
- Attempt the other implications "directly".

Priority questions

- Does FP imply inaccessibility?
- "Direct proofs" of related characterizations:
 - \circ WCT2 \rightarrow WCT
 - \circ PP \rightarrow PP2
- "Direct proofs" between WCT, PP, TP, EP:
 - \circ WCT \rightarrow PP
 - \circ PP \rightarrow EP
 - \circ EP \rightarrow PP
 - $\circ \ \mathsf{EP} \to \mathsf{TP}$

Thanks for listening!

Bibliography in the following slides.

Special thanks to Professor Benedikt Löwe, Suyash Srivastava, Ryan Tay.

Bibliography I

- W. Wistar Comfort and Stylianos Negrepontis. The Theory of Ultrafilters. Springer-Verlag, 1974.
- 📃 Frank R. Drake.

Set Theory: An Introduction to Large Cardinals. North-Holland, 1974.

Lorenzo Galeotti, Aymane Hanafi, and Benedikt Löwe. Relations between notions of gaplessness for non-archimedean fields.

Houston Journal of Mathematics, 46(4):1017–1031, 2020.

📃 Thomas Jech.

Set Theory.

Springer Monographs in Mathematics. Springer-Verlag, 3rd edition, 2003.

R. Björn Jensen.

The fine structure of the constructible hierarchy. Annals of Mathematical Logic, 4(3):229–308, 1972.

📃 Akihiro Kanamori.

The Higher Infinite.

Springer Monographs in Mathematics. Springer-Verlag, 2nd edition, 2003.

📃 William Mitchell.

Aronszajn trees and the independence of the transfer property. Annals of Mathematical Logic, 5(1):21–46, 1972.

Beamer theme: Seville by Fernando Muro

Font: Alegreya Sans by Huerta Tipográfica