Applications of Forcing: Baumgartner's Theorem

Suyash Srivastava Supervisor: Prof. Benedikt Löwe

04 April 2025

Bases and downclasses

Given linear orders L_1, L_2 , we write $L_1 \leq L_2$ if L_1 embeds into L_2 .

Definition 1

Let $C, \mathcal{B}, \mathcal{D}$ be classes of linear orders. We say that \mathcal{B} is a C-basis if $\mathcal{B} \subseteq C$ and $(\forall L \in C)(\exists L' \in \mathcal{B})(L' \leq L)$, and \mathcal{D} is a C-downclass if $\mathcal{D} \subseteq C$ and $(\forall L' \in \mathcal{D})(\forall L \in C)$ $(L \leq L' \Rightarrow L \in \mathcal{D})$.

Proposition 2

If \mathcal{E} is a C-downclass and \mathcal{B} is a C-basis, then $\mathcal{B} \cap \mathcal{E}$ is an \mathcal{E} -basis. If \mathcal{E} is a C-basis and \mathcal{B} is an \mathcal{E} -basis, then \mathcal{B} is a C-basis.

Definition 3

For any $\mathcal{E} \subseteq \mathcal{C}$, let \mathcal{E}^{\perp} denote the downclass $\{L \in \mathcal{C} \mid (\forall L' \in \mathcal{E})(L' \nleq L)\}$.

Proposition 4

For any $\mathcal{E} \subseteq \mathcal{C}$, $\mathcal{E} \cup \mathcal{E}^{\perp}$ is a *C*-basis.

Infinite linear orders

Any class containing finite linear orders admits a singleton basis.

Question 5

Does the class C_{∞} of infinite linear orders admit a finite basis?

- The class of linear orders with order-type ω is a downclass in C_{∞} , so any basis must contain (an isomorphic copy of) ω .
- Similarly, any basis must also contain ω^* .

Proposition 6

 $\{\omega, \omega^*\}$ is a two-element basis for \mathcal{C}_{∞} .

Proof.

If $L \in C_{\infty}$ satisfies $\omega^* \nleq L$, then L is an infinite ordinal, and therefore contains an embedding of ω .

Uncountable linear orders

Question 7

Does the class C_{unc} of uncountable linear orders admit a finite basis?

- Any basis for C_{unc} must contain (isomorphic copies of) ω_1, ω_1^* .
- However, $\{\omega_1, \omega_1^*\}$ is not a basis for \mathcal{C}_{unc} . Consider \mathbb{R} .

Definition 8

A linear order L is separable if it has a countable dense subset. Let C_{unc}^{sep} denote the class of uncountable separable linear orders.

- Clearly, ω_1 and ω_1^* are not separable, and separable linear orders are closed under suborders.
- So $C_{unc}^{sep} \subseteq {\{\omega_1, \omega_1^*\}}^{\perp}$ is a C_{unc} -downclass, and we must construct a C_{unc}^{sep} -basis.

Questions

Question 9

Does the class C_{unc}^{sep} of uncountable separable linear orders admit a finite basis?

Question 10

Is $(\{\omega_1, \omega_1^*\} \cup \mathcal{C}_{unc}^{sep})^{\perp} \subseteq \mathcal{C}_{unc}$ empty? Does it admit a finite basis?

An additional assumption is necessary to obtain positive answers to these questions.

Theorem 11 (Sierpinski, 1950) For any $X \in [\mathbb{R}]^{2^{\aleph_0}}$, there exists $Y \in [X]^{2^{\aleph_0}}$ such that $X \nleq Y$.

Corollary 12

(CH) There is no finite basis for C_{unc}^{sep} .

Proper forcing axiom

Definition 13

The proper forcing axiom (PFA) is the following strengthening of $MA(\omega_1)$: If \mathbb{P} is a proper forcing and \mathcal{D} is a family of \aleph_1 -many dense subsets of \mathbb{P} , then there is a filter $G \subseteq \mathbb{P}$ that intersects each $D \in \mathcal{D}$.

For this presentation, we need only know that

- PFA is a reasonable assumption (it is equiconsistent with the existence of a supercompact cardinal),
- ccc and countably closed forcings are proper, and
- properness is preserved under single-step iteration.

6/19

PFA and the basis problem

Theorem 14 (Baumgartner)

(PFA) There exists a singleton basis for C_{unc}^{sep} .

Theorem 15 (Moore, 2006)

(PFA) There exists a two-element basis for the class $(\{\omega_1, \omega_1^*\} \cup C_{unc}^{sep})^{\perp}$.

Corollary 16

(PFA) There exists a five-element basis for C_{unc} .

Uncountable separable linear orders

Definition 17

A linear order is \aleph_1 -dense if there are exactly \aleph_1 points between any two distinct points.

Proposition 18

Any uncountable separable linear order contains an \aleph_1 -dense suborder.

Theorem 19 (Baumgartner, 1973)

It is consistent that any two \aleph_1 -dense separable linear orders are isomorphic.

Corollary 20

It is consistent that the class of uncountable separable linear orders has a singleton basis.

Baumgartner's lemma

Let $(Fn_{<}(A, B), \supseteq)$ be the poset of finite, monotone $f: (A, <) \rightarrow (B, <)$.

Lemma 21 (Baumgartner)

(CH) If A and B are \aleph_1 -dense subsets of \mathbb{R} , then there is a ccc poset $\mathbb{P}(A, B) \subseteq Fn_{\leq}(A, B)$ such that $\Vdash_{\mathbb{P}(A, B)} A \cong B$.

We will recursively construct $\mathcal{A} = \langle A_{\alpha} \mid \alpha < \omega_1 \rangle$, $\mathcal{B} = \langle B_{\alpha} \mid \alpha < \omega_1 \rangle$ with

$$\bigcup_{\alpha < \omega_1} A_\alpha = A \text{ and } \bigcup_{\alpha < \omega_1} B_\alpha = B,$$

and obtain $\mathbb{P}(A, B)$ as the poset $Fn_{<}(A, B)$ of finite, monotone, partition-preserving functions.

To avoid obvious antichains and to ensure $\Vdash_{Fn<(\mathcal{A},\mathcal{B})} A \cong B$:

2 Each A_{α} , B_{α} is countable and dense in \mathbb{R} .

To avoid the other antichains, we will diagonalize:

③ For each uncountable antichain $U ⊆ Fn_<(A, B)$, there is $β < ω_1$, such that we avoid *U* while constructing $A_α, B_α$ whenever α > β.

Outline of the construction

- Requirements 1 and 2 are easy to satisfy.
- Too many antichains to diagonalize individually against!
- Instead, we will diagonalize against closures of antichains under a natural topology.
- Separability and CH imply that such closures can be enumerated $\langle c_{\beta} \mid \beta < \omega_1 \rangle$.
- At stage α , we will construct A_{α}, B_{α} while avoiding c_{β} for every $\beta < \alpha$.
- We may fail sometimes, but this does not create uncountable antichains, because of a minimality argument.

The construction

Fix a well-ordering < on \mathbb{R} with $(\mathbb{R}, <) \cong (\omega_1, \epsilon)$ and an enumeration $\langle I_n \mid n < \omega \rangle$ of the rational intervals.

Stage α . Assume α is even (the odd case is symmetrical). We will obtain A_{α} , B_{α} as $\{a_n \mid n < \omega\}$, $\{b_n \mid n < \omega\}$ respectively, after constructing a_0 , b_0 , a_1 , b_1 , a_2 , b_2 , ... inductively as follows.

- Let a_0 be the \prec -least element of $A \setminus \bigcup_{\beta < \alpha} A_{\beta}$.
- Having constructed a_0, b_0, \ldots, a_n for some $n < \omega$, let b_n be any element in

$$A \cap I_n \setminus [\bigcup_{q,a,\beta} X_{q,a,\beta} \cup \bigcup_{\beta < \alpha} B_\beta],$$

where, for any q in the already constructed part of $Fn_{<}(\mathcal{A}, \mathcal{B})$, $a \in A, \beta < \alpha$, $X_{q,a,\beta} \coloneqq \begin{cases} \{b \in B \mid q \cup \{(a,b)\} \in c_{\beta}\} & \text{if countable} \\ \emptyset & \text{otherwise} \end{cases}$.

• Construction of a_{n+1} is symmetrical, using $X^{q,b,\beta}$'s and A_{β} 's.

Checking ccc

Definition 22

Say that an uncountable antichain $U \subseteq Fn_{\leq}(\mathcal{A}, \mathcal{B})$ is minimal if for some $n \in \mathbb{N}$, for every $p, q \in U$

- $dom(p) \cap dom(q) = rng(p) \cap rng(q) = \emptyset$,
- |p| = |q| = n (i.e., $U \subseteq Fn_{<}(\mathcal{A}, \mathcal{B}) \cap [\mathcal{A} \times \mathcal{B}]^{n}$), and
- there is no uncountable antichain in Fn_<(A, B) ∩ [A × B]^{<n} (i.e., n is minimal).

Proposition 23

Suppose $U \subseteq Fn_{<}(\mathcal{A}, \mathcal{B})$ is a minimal uncountable antichain, with closure c_{β} . There exists $q \cup \{(a, b)\} \in U$ such that:

- (a, b) was constructed later than anything in q, and at a stage later than $\beta,$ and
- $X_{q,a,\beta}$ and $X^{q,b,\beta}$ are countable.

Baumgartner's theorem using iterated forcing

Corollary 24

If $M \models ZFC + CH + "A, B$ are \aleph_1 -dense subsets of \mathbb{R} ", G is $\mathbb{P}(A, B)$ -generic over M, then $M[G] \models ZFC + CH + "A, B$ are \aleph_1 -dense subsets of \mathbb{R} " + $A \cong B$.

We wish to repeat this for all A, B.

There are \aleph_2 such pairs in M, so we will construct a \subseteq -increasing sequence $\langle M_{\alpha} \mid \alpha \leq \omega_2 \rangle$ such that for every $\alpha < \omega_2$,

• $M_{\alpha+1} = M_{\alpha}[G]$ for some G that is $\mathbb{P}(A_{\alpha}, B_{\alpha})$ -generic over M_{α} for some $(A_{\alpha}, B_{\alpha} \approx_{1}$ -dense in $\mathbb{R})^{M_{\alpha}}$, and

• for every
$$(A, B \rtimes_1$$
-dense in $\mathbb{R})^{M_{\omega_2}}$, there is $\alpha < \omega_2$ with $(A, B) = (A_{\alpha}, B_{\alpha}) \in M_{\alpha}$.

Outline of the iteration

We use a forcing iteration $\langle \mathbb{P}_{\alpha} \mid \alpha \leq \omega_2 \rangle$ where

 $\begin{array}{l} \bullet \quad \mathbb{P}_{\alpha+1} = \mathbb{P}_{\alpha} \ast \overset{\circ}{\mathbb{Q}}_{\alpha}, \Vdash_{\mathbb{P}_{\alpha}} \overset{\circ}{"} \overset{\circ}{\mathbb{Q}}_{\alpha} \text{ is } \mathbb{P}(\overset{\circ}{A}_{\alpha}, \overset{\circ}{B}_{\alpha}) \text{ for some } \overset{\circ}{A}_{\alpha}, \overset{\circ}{B}_{\alpha} \approx_{1} \text{-dense in } \mathbb{R}^{"}. \end{array}$

Limits stages use finite support.

Then each \mathbb{P}_{α} is ccc, 1 and 2 are satisfied, and $(|[\mathbb{R}]^{\aleph_1}| = \aleph_2)^{M_{\alpha}}$.

To satisfy 3, we choose A_{α}, B_{α} carefully.

So Fix a bijection $b: \omega_2 \to \omega_2 \times \omega_2$ such that for every $\alpha < \omega_2$, there is $\beta \le \alpha$ with $b(\alpha) = (\beta, \gamma)$.

At stage α ,

- Fix a \mathbb{P}_{α} -name $\overset{\circ}{f}_{\alpha}$ such that $\Vdash_{\mathbb{P}_{\alpha}}$ " $\overset{\circ}{f}_{\alpha}$ enumerates all pairs of \aleph_1 -dense subsets of \mathbb{R} in order type ω_2 ".
- Let $b(\alpha) = (\beta, \gamma)$ and (A_{α}, B_{α}) be the pair $f_{\beta}(\gamma)$.

The following observation completes the proof.

Proposition 25

Every \aleph_1 -dense subset of \mathbb{R} in M_{ω_2} appears in M_{α} for some stage $\alpha < \omega_2$.

14/19

Baumgartner's theorem using PFA

Suppose $M \vDash ZFC + PFA$, and $A, B \in M$ are \aleph_1 -dense suborders of \mathbb{R} .

Let $\mathbb{Q} := Coll(\omega_1, 2^{\aleph_0})$ and $(\mathbb{P}(A, B))^\circ$ be a \mathbb{Q} -name such that $\Vdash_{\mathbb{Q}} "(\mathbb{P}(A, B))^\circ$ is as in Baumgartner's Lemma". Since \mathbb{Q} is countably closed & $\Vdash_{\mathbb{Q}} (\mathbb{P}(A, B))^\circ$ is ccc, $\mathbb{P} := \mathbb{Q} * (\mathbb{P}(A, B))^\circ$ is proper.

Fix a \mathbb{P} -name $\overset{\circ}{f}$ such that $\Vdash_{\mathbb{P}} \overset{\circ}{f}: A \to B$ is an isomorphism. For each $a \in A$, $b \in B$, we have dense sets $D_a := \{p \in \mathbb{P} \mid p \Vdash \check{a} \in \text{dom}(\check{f})\}$ and $D^b := \{p \in \mathbb{P} \mid p \Vdash \check{b} \in \text{rng}(\check{f})\}$ in M.

By PFA, there is a filter $H \in M$ intersecting each D_a, D^b . Then $F := \{(a, b) \mid a \in A, b \in B, (\exists p \in H)(p \Vdash_{\mathbb{P}} \overset{\circ}{f}(\check{a}) = \check{b})\} \in M$ is an isomorphism $A \rightarrow B$.

Aronszajn lines

We now turn to constructing a finite basis for the remainder, $(\{\omega_1, \omega_1^*\} \cup C_{unc}^{sep})^{\perp}$.

Definition 26

A linear order with cardinality \aleph_1 is called an Aronszajn line if it has no suborders isomorphic to ω_1, ω_1^* or any uncountable separable linear order. Let C_{unc}^A denote the class of Aronszajn lines.

 C_{unc}^{A} is both a basis and a downclass of $(\{\omega_1, \omega_1^*\} \cup C_{unc}^{sep})^{\perp}$, so it is both sufficient and necessary to construct basis for C_{unc}^{A} .

Theorem 27 (Kurepa, 1936)

Aronszajn lines exist.

Countryman lines

Definition 28

A linear order L with cardinality \aleph_1 is called a Countryman line if L × L can be partitioned into countably many chains. Let C_{unc}^C be the class of Countryman lines.

- Suborders of Countryman lines are Countryman.
- Neither ω_1 nor ω_1^* are Countryman. No uncountable separable linear order is Countryman.
- Countryman lines are Aronszajn. Hence C_{unc}^{C} is a downclass of C_{unc}^{A} .
- If *L* is Countryman, then no uncountable linear order embeds into both *L* and *L*^{*}.

Theorem 29 (Shelah, 1976)

Countryman lines exist.

Corollary 30

Aronszajn lines do not have a singleton basis.

Applications of Forcing

Shelah's conjectures

Conjecture 31 (Shelah, 1976)

• Any Aronszajn line contains a Countryman suborder.

If L₁, L₂ are Countryman, then there is L'₁ ∈ {L₁, L^{*}₁} such that some uncountable linear order embeds into both L'₁ and L₂.

Theorem 32 (Moore, 2006)

(PFA) Whenever L_1 is Countryman and L_2 is Aronszajn, there is some $L'_1 \in \{L_1, L^*_1\}$ that embeds into L_2 .

Corollary 33

(PFA) The set $\{\omega_1, \omega_1^*, X, C, C^*\}$, where X is subset of \mathbb{R} with cardinality \aleph_1 , and C is any Countryman line, is a basis for the class of uncountable linear orders.

THANK YOU!