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Bases and downclasses
Given linear orders L1,L2, we write L1 ⪯ L2 if L1 embeds into L2.

Definition 1
Let C,B,D be classes of linear orders. We say that
B is a C-basis if B ⊆ C and (∀L ∈ C)(∃L′ ∈ B)(L′ ⪯ L),and
D is a C-downclass if D ⊆ C and (∀L′ ∈ D)(∀L ∈ C) (L ⪯ L′ ⇒ L ∈ D).

Proposition 2
If E is a C-downclass and B is a C-basis, then B ∩ E is an E-basis.
If E is a C-basis and B is an E-basis, then B is a C-basis.

Definition 3
For any E ⊆ C, let E⊥ denote the downclass {L ∈ C ∣ (∀L′ ∈ E)(L′ /⪯ L)}.

Proposition 4
For any E ⊆ C, E ∪ E⊥ is a C-basis.
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Infinite linear orders
Any class containing finite linear orders admits a singleton basis.

Question 5
Does the class C∞ of infinite linear orders admit a finite basis?

The class of linear orders with order-type ω is a downclass in C∞, so
any basis must contain (an isomorphic copy of) ω.
Similarly, any basis must also contain ω∗.

Proposition 6
{ω,ω∗} is a two-element basis for C∞.

Proof.
If L ∈ C∞ satisfies ω∗ /⪯ L, then L is an infinite ordinal, and therefore
contains an embedding of ω.
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Uncountable linear orders

Question 7
Does the class Cunc of uncountable linear orders admit a finite basis?

Any basis for Cunc must contain (isomorphic copies of) ω1, ω∗1 .
However, {ω1, ω∗1} is not a basis for Cunc. Consider R.

Definition 8
A linear order L is separable if it has a countable dense subset. Let Csep

unc
denote the class of uncountable separable linear orders.

Clearly, ω1 and ω∗1 are not separable, and separable linear orders are
closed under suborders.
So Csep

unc ⊆ {ω1, ω∗1}⊥ is a Cunc-downclass, and we must construct a
Csep

unc-basis.
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Questions
Question 9
Does the class Csep

unc of uncountable separable linear orders admit a finite
basis?

Question 10
Is ({ω1, ω∗1} ∪ C

sep
unc)⊥ ⊆ Cunc empty? Does it admit a finite basis?

An additional assumption is necessary to obtain positive answers to these
questions.

Theorem 11 (Sierpinski, 1950)
For any X ∈ [R]2ℵ0 , there exists Y ∈ [X]2ℵ0 such that X /⪯ Y.

Corollary 12
(CH) There is no finite basis for Csep

unc.
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Proper forcing axiom

Definition 13
The proper forcing axiom (PFA) is the following strengthening of MA(ω1):
If P is a proper forcing and D is a family of ℵ1-many dense subsets of P,
then there is a filter G ⊆ P that intersects each D ∈ D.

For this presentation, we need only know that
PFA is a reasonable assumption (it is equiconsistent with the
existence of a supercompact cardinal),
ccc and countably closed forcings are proper, and
properness is preserved under single-step iteration.
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PFA and the basis problem

Theorem 14 (Baumgartner)
(PFA) There exists a singleton basis for Csep

unc.

Theorem 15 (Moore, 2006)
(PFA) There exists a two-element basis for the class ({ω1, ω∗1} ∪ C

sep
unc)⊥.

Corollary 16
(PFA) There exists a five-element basis for Cunc.
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Uncountable separable linear orders

Definition 17
A linear order is ℵ1-dense if there are exactly ℵ1 points between any two
distinct points.

Proposition 18
Any uncountable separable linear order contains an ℵ1-dense suborder.

Theorem 19 (Baumgartner, 1973)
It is consistent that any two ℵ1-dense separable linear orders are
isomorphic.

Corollary 20
It is consistent that the class of uncountable separable linear orders has a
singleton basis.
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Baumgartner’s lemma
Let (Fn<(A,B),⊇) be the poset of finite, monotone f ∶ (A,<)→ (B,<).

Lemma 21 (Baumgartner)
(CH) If A and B are ℵ1-dense subsets of R, then there is a ccc poset
P(A,B) ⊆ Fn<(A,B) such that ⊩P(A,B) A ≅ B.

We will recursively construct A = ⟨Aα ∣ α < ω1⟩, B = ⟨Bα ∣ α < ω1⟩ with
1 ⋃α<ω1 Aα = A and ⋃α<ω1 Bα = B,

and obtain P(A,B) as the poset Fn<(A,B) of finite, monotone,
partition-preserving functions.
To avoid obvious antichains and to ensure ⊩Fn<(A,B) A ≅ B:

2 Each Aα, Bα is countable and dense in R.
To avoid the other antichains, we will diagonalize:

3 For each uncountable antichain U ⊆ Fn<(A,B), there is β < ω1, such
that we avoid U while constructing Aα,Bα whenever α > β.
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Outline of the construction

Requirements 1 and 2 are easy to satisfy.
Too many antichains to diagonalize individually against!
Instead, we will diagonalize against closures of antichains under a
natural topology.
Separability and CH imply that such closures can be enumerated
⟨cβ ∣ β < ω1⟩.
At stage α, we will construct Aα,Bα while avoiding cβ for every β < α.
We may fail sometimes, but this does not create uncountable
antichains, because of a minimality argument.
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The construction
Fix a well-ordering ≺ on R with (R,≺) ≅ (ω1, ∈) and an enumeration
⟨In ∣ n < ω⟩ of the rational intervals.
Stage α. Assume α is even (the odd case is symmetrical).
We will obtain Aα,Bα as {an ∣ n < ω},{bn ∣ n < ω} respectively, after
constructing a0,b0, a1,b1, a2,b2, . . . inductively as follows.

Let a0 be the ≺-least element of A ∖⋃β<α Aβ.
Having constructed a0,b0, . . . , an for some n < ω, let bn be any
element in

A ∩ In ∖ [ ⋃
q,a,β

Xq,a,β ∪ ⋃
β<α

Bβ],

where, for any q in the already constructed part of Fn<(A,B),
a ∈ A, β < α,

Xq,a,β ∶=
⎧⎪⎪⎨⎪⎪⎩

{b ∈ B ∣ q ∪ {(a,b)} ∈ cβ} if countable
∅ otherwise

.

Construction of an+1 is symmetrical, using Xq,b,β ’s and Aβ’s.
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Checking ccc
Definition 22
Say that an uncountable antichain U ⊆ Fn<(A,B) is minimal if for some
n ∈ N, for every p,q ∈ U

dom(p) ∩ dom(q) = rng(p) ∩ rng(q) = ∅,
∣p∣ = ∣q∣ = n (i.e., U ⊆ Fn<(A,B) ∩ [A ×B]n), and
there is no uncountable antichain in Fn<(A,B) ∩ [A ×B]<n (i.e., n is
minimal).

Proposition 23
Suppose U ⊆ Fn<(A,B) is a minimal uncountable antichain, with closure
cβ. There exists q ∪ {(a,b)} ∈ U such that:

(a,b) was constructed later than anything in q, and at a stage later
than β, and
Xq,a,β and Xq,b,β are countable.
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Baumgartner’s theorem using iterated forcing

Corollary 24
If M ⊧ ZFC + CH + “A,B are ℵ1-dense subsets of R”, G is P(A,B)-generic
over M, then M[G] ⊧ ZFC+CH+“A,B are ℵ1-dense subsets of R”+A ≅ B.

We wish to repeat this for all A,B.
There are ℵ2 such pairs in M, so we will construct a ⊆-increasing sequence
⟨Mα ∣ α ≤ ω2⟩ such that for every α < ω2,

1 Mα+1 =Mα[G] for some G that is P(Aα,Bα)-generic over Mα for
some (Aα,Bα ℵ1-dense in R)Mα , and

2 Mα ⊧ ZFC + 2ℵ0 = ℵ1 + 2ℵ1 = ℵ2,
3 for every (A,B ℵ1-dense in R)Mω2 , there is α < ω2 with
(A,B) = (Aα,Bα) ∈Mα.
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Outline of the iteration
We use a forcing iteration ⟨Pα ∣ α ≤ ω2⟩ where

1 Pα+1 = Pα ∗
○
Qα, ⊩Pα ”

○
Qα is P(

○
Aα,

○
Bα) for some

○
Aα,

○
Bα ℵ1-dense in

R”.
2 Limits stages use finite support.

Then each Pα is ccc, 1 and 2 are satisfied, and (∣[R]ℵ1 ∣ = ℵ2)Mα .
To satisfy 3, we choose Aα,Bα carefully.

3 Fix a bijection b ∶ ω2 → ω2 × ω2 such that for every α < ω2, there is
β ≤ α with b(α) = (β, γ).
At stage α,

▸ Fix a Pα-name
○
fα such that ⊩Pα ”

○
fα enumerates all pairs of ℵ1-dense

subsets of R in order type ω2”.
▸ Let b(α) = (β, γ) and (Aα,Bα) be the pair fβ(γ).

The following observation completes the proof.

Proposition 25
Every ℵ1-dense subset of R in Mω2 appears in Mα for some stage α < ω2.
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Baumgartner’s theorem using PFA

Suppose M ⊧ ZFC + PFA, and A,B ∈M are ℵ1-dense suborders of R.

Let Q ∶= Coll(ω1,2ℵ0) and (P(A,B))○ be a Q-name such that
⊩Q ”(P(A,B))○ is as in Baumgartner’s Lemma”. Since Q is countably
closed & ⊩Q (P(A,B))○ is ccc, P ∶= Q ∗ (P(A,B))○ is proper.

Fix a P-name
○
f such that ⊩P

○
f ∶ A→ B is an isomorphism. For each a ∈ A,

b ∈ B, we have dense sets Da ∶= {p ∈ P ∣ p ⊩ ǎ ∈ dom(
○
f)} and

Db ∶= {p ∈ P ∣ p ⊩ b̌ ∈ rng(
○
f)} in M.

By PFA, there is a filter H ∈M intersecting each Da,Db. Then
F ∶= {(a,b) ∣ a ∈ A,b ∈ B, (∃p ∈ H)(p ⊩P

○
f(ǎ) = b̌)} ∈M is an isomorphism

A→ B.
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Aronszajn lines

We now turn to constructing a finite basis for the remainder,
({ω1, ω∗1} ∪ C

sep
unc)⊥.

Definition 26
A linear order with cardinality ℵ1 is called an Aronszajn line if it has no
suborders isomorphic to ω1, ω∗1 or any uncountable separable linear order.
Let CA

unc denote the class of Aronszajn lines.

CA
unc is both a basis and a downclass of ({ω1, ω∗1} ∪ C

sep
unc)⊥, so it is both

sufficient and necessary to construct basis for CA
unc.

Theorem 27 (Kurepa, 1936)
Aronszajn lines exist.
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Countryman lines
Definition 28
A linear order L with cardinality ℵ1 is called a Countryman line if L× L can
be partitioned into countably many chains. Let CC

unc be the class of
Countryman lines.

Suborders of Countryman lines are Countryman.
Neither ω1 nor ω∗1 are Countryman. No uncountable separable linear
order is Countryman.
Countryman lines are Aronszajn. Hence CC

unc is a downclass of CA
unc.

If L is Countryman, then no uncountable linear order embeds into
both L and L∗.

Theorem 29 (Shelah, 1976)
Countryman lines exist.

Corollary 30
Aronszajn lines do not have a singleton basis.
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Shelah’s conjectures

Conjecture 31 (Shelah, 1976)
Any Aronszajn line contains a Countryman suborder.
If L1, L2 are Countryman, then there is L′1 ∈ {L1,L∗1} such that some
uncountable linear order embeds into both L′1 and L2.

Theorem 32 (Moore, 2006)
(PFA) Whenever L1 is Countryman and L2 is Aronszajn, there is some
L′1 ∈ {L1,L∗1} that embeds into L2.

Corollary 33
(PFA) The set {ω1, ω∗1 ,X,C,C∗}, where X is subset of R with cardinality
ℵ1, and C is any Countryman line, is a basis for the class of uncountable
linear orders.
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Thank You!
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