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Combinatorial and descriptive set theory

© In combinatorial set theory the possible sizes of certain special
families of real numbers are studied.
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Combinatorial and descriptive set theory

© In combinatorial set theory the possible sizes of certain special
families of real numbers are studied.

@ Usually special means maximal with respect to some combinatorial or
topological property.

© The minimal sizes of such special families are called cardinal
characteristics and their relations give rise to a very rich and

complicated theory:
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Combinatorial and descriptive set theory

© Descriptive set theory is the study of the complexity of subsets of
Polish spaces.
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Combinatorial and descriptive set theory

© Descriptive set theory is the study of the complexity of subsets of
Polish spaces.

@ Above the Borel hierarchy we have the projective hierarchy:
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Combinatorial and descriptive set theory

On the intersection of both fields we may study the following questions:
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Combinatorial and descriptive set theory

On the intersection of both fields we may study the following questions:

@ What is the minimal complexity of various special families of reals?
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Combinatorial and descriptive set theory

On the intersection of both fields we may study the following questions:
@ What is the minimal complexity of various special families of reals?

@ In models separating cardinal characteristics ¢ < 1), can we
additionally have witnesses for r and ) of minimal complexity?
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Combinatorial and descriptive set theory

On the intersection of both fields we may study the following questions:
@ What is the minimal complexity of various special families of reals?

@ In models separating cardinal characteristics ¢ < 1), can we
additionally have witnesses for r and ) of minimal complexity?

© Given a special family of some complexity, can we construct a special
family of lower complexity from it?
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Example: Definability of mad families

Theorem (Mathias, 1977, [9])

There are no analytic (i.e. ¥3) mad families.
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Example: Definability of mad families

Theorem (Mathias, 1977, [9])

There are no analytic (i.e. ¥3) mad families.

In L one may easily construct a ¥1 mad family using the Al-definable well-
order of the reals given by the structure of L.
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Example: Definability of mad families

Theorem (Mathias, 1977, [9])

There are no analytic (i.e. ¥3) mad families.

In L one may easily construct a ¥1 mad family using the Al-definable well-
order of the reals given by the structure of L.

Theorem (Miller, 1989, [10])

In L there is a co-analytic (i.e. M}) mad family.
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Example: Definability of mad families

Theorem (Mathias, 1977, [9])

There are no analytic (i.e. ¥3) mad families.

In L one may easily construct a ¥1 mad family using the Al-definable well-
order of the reals given by the structure of L.

Theorem (Miller, 1989, [10])

In L there is a co-analytic (i.e. M}) mad family.

This result was improved in many papers to obtain various co-analytic forc-
ing indestructible mad families. In particular we have

Theorem (Bergfalk, Fischer, Switzer, 2022, [2])

In L there is a co-analytic tight mad family.
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Example: Definability of mad families - a shortcut

For example this implies the following for the Miller model over L.:

Corollary (Bergfalk, Fischer, Switzer, 2022, [2])

Consistently, N1 = a < 0 = Ny and there is a I'I% witness for a = Ny.
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Example: Definability of mad families - a shortcut

For example this implies the following for the Miller model over L.:

Corollary (Bergfalk, Fischer, Switzer, 2022, [2])

Consistently, N1 = a < 0 = Ny and there is a I'I} witness for a = Ny.

However, Tornquist discovered the following shortcut:

Theorem (Tornquist, 2013 [13])

If there is a ¥3 mad family, then there is N} mad family of the same size.

In particular, a X3 witness for a immediately implies a M} witness for a.

Lukas Schembecker (Uni Hamburg) Definability of families of functions 23.01.2026 6/35



Example: Definability of mad families - a shortcut

For example this implies the following for the Miller model over L.:

Corollary (Bergfalk, Fischer, Switzer, 2022, [2])

Consistently, N1 = a < 0 = Ny and there is a I'I} witness for a = Ny.

However, Tornquist discovered the following shortcut:

Theorem (Tornquist, 2013 [13])

If there is a ¥3 mad family, then there is N} mad family of the same size.

In particular, a X3 witness for a immediately implies a M} witness for a.
This gives an easier proof for the existence of a co-analytic mad family in
L, but also for forcing extensions over L...
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Example: Definability of mad families - a shortcut

Let P be a forcing, for which we know how to construct a P-indestructible
mad family (Sacks, Miller, Laver, random, etc.).
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Example: Definability of mad families - a shortcut

Let P be a forcing, for which we know how to construct a P-indestructible
mad family (Sacks, Miller, Laver, random, etc.).

@ Start in L.
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Example: Definability of mad families - a shortcut

Let P be a forcing, for which we know how to construct a P-indestructible
mad family (Sacks, Miller, Laver, random, etc.).

@ Start in L.

@ Use the Al-wellorder to recursively construct a £3 P-indestructible
mad family A.
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Example: Definability of mad families - a shortcut

Let P be a forcing, for which we know how to construct a P-indestructible
mad family (Sacks, Miller, Laver, random, etc.).

@ Start in L.

@ Use the Al-wellorder to recursively construct a £3 P-indestructible
mad family A.

© Force with P.
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Example: Definability of mad families - a shortcut

Let P be a forcing, for which we know how to construct a P-indestructible
mad family (Sacks, Miller, Laver, random, etc.).

O Startin L.

@ Use the Al-wellorder to recursively construct a £3 P-indestructible
mad family A.

© Force with P.

@ Then A is still maximal in the generic extension and has the same
Z%—definition by the absoluteness of L.

Lukas Schembecker (Uni Hamburg) Definability of families of functions 23.01.2026 7/35



Example: Definability of mad families - a shortcut

Let P be a forcing, for which we know how to construct a P-indestructible
mad family (Sacks, Miller, Laver, random, etc.).
@ Start in L.
@ Use the Al-wellorder to recursively construct a £3 P-indestructible
mad family A.
© Force with P.
@ Then A is still maximal in the generic extension and has the same
Z%—definition by the absoluteness of L.

© Apply Tornquist’s result in the generic extension, to obtain a M} mad
family of size Nj.
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Example: Definability of mad families - a shortcut

Let P be a forcing, for which we know how to construct a P-indestructible
mad family (Sacks, Miller, Laver, random, etc.).
@ Start in L.
@ Use the Al-wellorder to recursively construct a £3 P-indestructible
mad family A.
© Force with P.
@ Then A is still maximal in the generic extension and has the same
Z%—definition by the absoluteness of L.
© Apply Tornquist’s result in the generic extension, to obtain a M} mad
family of size Nj.
Hence, in P-extensions over L there is a co-analytic witness for a = N;j.
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Shortcuts for other families

Analogous shortcuts of the form ¥3 == N} are now known for others
types of families, e.g.

@ maximal independent families - i
(Brendle, Fischer, Khomskii, 2018, [7]),

@ maximal eventually different families of functions - a.
(Fischer, Schrittesser, 2021, [4]),

© towers - t
(Fischer, Schilhan, 2021, [3]),

© Hausdorff gaps
(Millhouse, 2024, [11])

Our goal was to prove similar shortcuts for various relatives of a. and the
ideal-independence number §mm.
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How does the shortcut work?

Theorem (Tornquist, 2013 [13])

If there is a ¥4 mad family, then there is N1 mad family of the same size.

Q Let A be a ¥} mad family.
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How does the shortcut work?

Theorem (Tornquist, 2013 [13])

If there is a ¥4 mad family, then there is N1 mad family of the same size.

Q Let A be a ¥} mad family.

@ By Mi-uniformization we may assume that A is the projection of a M}
partial function H C [w]¥ x “2 to the first component.
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If there is a ¥4 mad family, then there is N1 mad family of the same size.

Q Let A be a ¥} mad family.

@ By Mi-uniformization we may assume that A is the projection of a M}
partial function H C [w]¥ x “2 to the first component.

© Basically, every member A € A gets assigned a code H(A) € “2.
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How does the shortcut work?

Theorem (Tornquist, 2013 [13])

If there is a ¥4 mad family, then there is N1 mad family of the same size.

Q Let A be a ¥} mad family.

@ By Mi-uniformization we may assume that A is the projection of a M}
partial function H C [w]¥ x “2 to the first component.

© Basically, every member A € A gets assigned a code H(A) € “2.

© Come up with a continuous map ¢ : [w]¥ x “2 — [w]* which is
recursively invertible and such that B = ®[H] is a mad family.
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How does the shortcut work?

Theorem (Tornquist, 2013 [13])

If there is a ¥4 mad family, then there is N1 mad family of the same size.

Q Let A be a ¥} mad family.

@ By Mi-uniformization we may assume that A is the projection of a M}
partial function H C [w]¥ x “2 to the first component.

© Basically, every member A € A gets assigned a code H(A) € “2.
© Come up with a continuous map ¢ : [w]¥ x “2 — [w]* which is
recursively invertible and such that B = ®[H] is a mad family.

@ Basically, for every A € [w]¥ and ¢ € “2 we need to be able to
definably reconstruct A and ¢ from ®(A, ¢).
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How does the shortcut work?

Theorem (Tornquist, 2013 [13])

If there is a ¥4 mad family, then there is N1 mad family of the same size.

Q Let A be a ¥} mad family.

@ By Mi-uniformization we may assume that A is the projection of a M}
partial function H C [w]¥ x “2 to the first component.

© Basically, every member A € A gets assigned a code H(A) € “2.

© Come up with a continuous map ¢ : [w]¥ x “2 — [w]* which is
recursively invertible and such that B = ®[H] is a mad family.

@ Basically, for every A € [w]¥ and ¢ € “2 we need to be able to
definably reconstruct A and ¢ from ®(A, ¢).

O Finally, the Spector-Gandy-Theorem shows that B is in fact I—I%:

BeB < 3(Ac) e Al(B)((A c) € Hand ®(A, c) = B)
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How does the shortcut work?

A
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How does the shortcut work?

A B

O [w]Y x“2 = [w]¥
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How does the shortcut work?

A B

O [w]Y x“2 = [w]¥
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Eventually different families

Definition

Two functions f, g € w* are said to be eventually different if their
graphs have finite intersection.
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Two functions f, g € w* are said to be eventually different if their
graphs have finite intersection. A family F C w* is eventually different if
all its members are pairwise eventually different.
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Eventually different families

Definition

Two functions f, g € w* are said to be eventually different if their
graphs have finite intersection. A family F C w* is eventually different if
all its members are pairwise eventually different. F is called maximal if F
is maximal with respect to inclusion.
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Eventually different families

Definition

Two functions f, g € w* are said to be eventually different if their
graphs have finite intersection. A family F C w* is eventually different if
all its members are pairwise eventually different. F is called maximal if F
is maximal with respect to inclusion.

| A

Definition
ae := min {|F| | F is a maximal eventually different family}

Further, a maximal eventually different family of size ae is said to be a
witness for that cardinal characteristic.
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Eventually different families of permutations

Let S, denote the set of all permutations on w. This is a group together
with concatenation.
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Eventually different families of permutations

Let S, denote the set of all permutations on w. This is a group together
with concatenation. Similarly, we define

Definition

A family F C S, is an eventually different family of permutations if all
its members are pairwise eventually different.
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Eventually different families of permutations

Let S, denote the set of all permutations on w. This is a group together
with concatenation. Similarly, we define

Definition

A family F C S, is an eventually different family of permutations if all
its members are pairwise eventually different. F is called maximal if F is
maximal with respect to inclusion.

Definition

Again, we define the cardinal invariant:

ap := min{|F| |F is a maximal eventually different

family of permutations}
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Definability of eventually different families of permutations

Contrary to mad families there always is a maximal eventually different
family of permutations of low complexity.

Theorem (Horowitz, Shelah, 2016, [6])

There is a Borel maximal eventually different family of permutations.
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Definability of eventually different families of permutations

Contrary to mad families there always is a maximal eventually different
family of permutations of low complexity.

Theorem (Horowitz, Shelah, 2016, [6])

There is a Borel maximal eventually different family of permutations.

The goal of this talk is to prove the following theorem:

Theorem (S., Millhouse, 2025)

If there is a Z% maximal eventually different family of permutations, then
there is a M1 maximal eventually different family of permutations of the
same size.
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Proof of the Theorem

@ Fix a X1 maximal eventually different family F and a M} partial
function H C Yw x “2 as before.
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Proof of the Theorem

@ Fix a X1 maximal eventually different family F and a M} partial
function H C Yw x “2 as before.

@ Remember, we have to construct a continuous map
® : w¥ x “2 — w" which is recursively invertible and such that
G = ®[H] is a maximal eventually different family of permutations.
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Proof of the Theorem

@ Fix a X1 maximal eventually different family F and a M} partial
function H C Yw x “2 as before.

@ Remember, we have to construct a continuous map
® : w¥ x “2 — w" which is recursively invertible and such that
G = ®[H] is a maximal eventually different family of permutations.

© We may visualize a permutation f as the union of chains and cycles:

~N-
N
~
S
N
~
(6]
~

‘o C® @
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Visualization of the function ¢

For simplicity we just consider one chain
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Visualization of the function ®

First we duplicate both the domain and range of the function, but keep the
structure of f on both copies. (Thus, the new domain and range is w x 2)

O OO O
®® 6 6 60
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Visualization of the function ®

Next, we need to adapt this permutation, so that it codes a real ¢ € 2%,
but still is a permutation and keeps the structure of f:

©e—-60-60-6—60-0
o-0-0-0-0-0
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Visualization of the function ®

Key Idea: At place n flip both functions values iff ¢(

0090 60
LR EEE
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Visualization of the function ®

For example, if c(ng) =1, c(n1) =0 and ¢c(mp) = 1 we get:

k% (m—()
-0
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Visualization of the function ®

This gives us ®(f, ¢) from which we can clearly decode f and ¢ again. It is
also easy to see that ®[H] will still be eventually different.

%% @—0O
o0 060 00
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Visualization of the function ®

The more difficult part of the proof is the maximality of ®[H]. In fact, ®[H]
will NOT be maximal!

%% (m—()
-0 060 -0
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Visualization of the function ®

Note that ®(f,1 — c) is everywhere different from ®(f, c):
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Definition of G

@ So instead we define G := ®[H] U ®*[H], where
®*(f,c) ;== ®(f,1 — c) = is the flipped version of ®.
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Definition of G

@ So instead we define G := ®[H] U ®*[H], where
®*(f,c) ;== ®(f,1 — c) = is the flipped version of ®.

@ A short argument shows that G is an eventually different family of
permutations on w x 2 and G is M1 as the union of two Mi-sets.
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Definition of G

@ So instead we define G := ®[H] U ®*[H], where
®*(f,c) ;== ®(f,1 — c) = is the flipped version of ®.

@ A short argument shows that G is an eventually different family of
permutations on w x 2 and G is M1 as the union of two Mi-sets.

© It remains to prove maximality of G, so fix h: w X 2 — w X 2, then
we will show the following

G (on w x 2) h

F (on w)
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Definition of G

@ So instead we define G := ®[H] U ¢*[H], where
®*(f,c) := ®(f,1 — c) = is the flipped version of .

@ A short argument shows that G is an eventually different family of
permutations on w x 2 and G is M} as the union of two Mi-sets.

© It remains to prove maximality of G, so fix h: w X 2 — w x 2, then
we will show the following

G (on w x 2)

S/ >

F (on w)

We will define a certain permutation h on w from h.
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Definition of G

@ So instead we define G := ®[H] U ¢*[H], where
®*(f,c) := ®(f,1 — c) = is the flipped version of .

@ A short argument shows that G is an eventually different family of
permutations on w x 2 and G is M} as the union of two Mi-sets.

© It remains to prove maximality of G, so fix h: w X 2 — w x 2, then
we will show the following

G (on w x 2) h
F (on w) h—— f

By maximality of F choose f € F with h = f.
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Definition of G

@ So instead we define G := ®[H] U ¢*[H], where
o*(f,c) ;== ®(f,1 — c) = is the flipped version of ®.

@ A short argument shows that G is an eventually different family of
permutations on w x 2 and G is M} as the union of two Mi-sets.

© It remains to prove maximality of G, so fix h: w X 2 — w X 2, then
we will show the following

G (on w x 2) h O(f, H(f)) or ®*(f, H(f))
F (on w) h f

Finally, we will either have h = &(f, H(f)) or h =" &*(f, H(f)).
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How to define h from h?

@ Note that the function h will in general not have a nice symmetric
structure like the elements of G.
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How to define h from h?

@ Note that the function h will in general not have a nice symmetric
structure like the elements of G.

@ Nevertheless, in some sense we want the map h — h to behave
roughly like an inverse to ®.
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How to define h from h?

@ Note that the function h will in general not have a nice symmetric
structure like the elements of G.

@ Nevertheless, in some sense we want the map h — h to behave
roughly like an inverse to ®.

© Naively, one could try to define h(n) := pg(h(n,0)), however there is
no reason why this should define a permutation.
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How to define h from h?

@ Note that the function h will in general not have a nice symmetric
structure like the elements of G.

@ Nevertheless, in some sense we want the map h — h to behave
roughly like an inverse to ®.

© Naively, one could try to define h(n) := pg(h(n,0)), however there is
no reason why this should define a permutation.

Q Instead we will find a function i : w — 2, such that
h(n) := po(h(n,i(n))) defines a permutation.
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How to define h from h?

@ Note that the function h will in general not have a nice symmetric
structure like the elements of G.

@ Nevertheless, in some sense we want the map h — h to behave
roughly like an inverse to ®.

© Naively, one could try to define h(n) := pg(h(n,0)), however there is
no reason why this should define a permutation.

Q Instead we will find a function i : w — 2, such that
h(n) := po(h(n,i(n))) defines a permutation.

© To this end, note that the function g : w x 2 — w defined by
g(n, i) := po(h(n,i)) is 2-to-1, i.e. every n € w has exactly two
preimages.

Lukas Schembecker (Uni Hamburg) Definability of families of functions 23.01.2026 16 /35



Crucial lemma

Lemma

Assume that g : w X 2 — w is 2-to-1. Then there is a function i : w — 2,
such that h(n) := g(n,i(n)) is a permutation.

We define a bipartite graph with possible multi-edges:
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Crucial lemma

Lemma

Assume that g : w X 2 — w is 2-to-1. Then there is a function i : w — 2,
such that h(n) := g(n,i(n)) is a permutation.

| \

Proof.
We define a bipartite graph with possible multi-edges:

© We have countably many left {L, | n € w} and right {R, | n € w}
nodes.
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Crucial lemma

Lemma

Assume that g : w X 2 — w is 2-to-1. Then there is a function i : w — 2,
such that h(n) := g(n,i(n)) is a permutation.

| \

Proof.
We define a bipartite graph with possible multi-edges:
© We have countably many left {L, | n € w} and right {R, | n € w}
nodes.
@ Foreach n € wand i € 2 we have an edge e, ; between L, and Rg(,,yi).
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Crucial lemma

Lemma

Assume that g : w X 2 — w is 2-to-1. Then there is a function i : w — 2,
such that h(n) := g(n,i(n)) is a permutation.

Proof.
We define a bipartite graph with possible multi-edges:

© We have countably many left {L, | n € w} and right {R, | n € w}
nodes.

| \

@ Foreach n € wand i € 2 we have an edge e, ; between L, and Rg(,,yi).

By construction, every L, has degree 2.
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Crucial lemma

Lemma

Assume that g : w X 2 — w is 2-to-1. Then there is a function i : w — 2,
such that h(n) := g(n,i(n)) is a permutation.

Proof.
We define a bipartite graph with possible multi-edges:

© We have countably many left {L, | n € w} and right {R, | n € w}
nodes.

| \

@ Foreach n € wand i € 2 we have an edge e, ; between L, and Rg(,,yi).

By construction, every L, has degree 2. Since g is 2-to-1, also every R,
has degree 2, i.e. the graph is 2-regular.
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Crucial lemma

Reminder: For n € w and i € 2 we have an edge e, ; between L, and Rg(n,i)-

Proof.

Choose a perfect matching P of our graph and define

i(n):=i iff ey;€P.
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Crucial lemma

Reminder: For n € w and i € 2 we have an edge e, ; between L, and Rg(n,i)-

Proof.
Choose a perfect matching P of our graph and define

i(n):=i iff ey;€P.

Note that e, and e, 1 are the only edges incident to L,. Hence, exactly
one of them is in P and i(n) is well-defined.
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Crucial lemma

Reminder: For n € w and i € 2 we have an edge e, ; between L, and Rg(

Proof.

n,i)-

Choose a perfect matching P of our graph and define
i(n):=1i iff ey;€P.

Note that e, and e, 1 are the only edges incident to L,. Hence, exactly
one of them is in P and i(n) is well-defined.
Finally, it remains to see that h(n) := g(n, i(n)) is a permutation.
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Crucial lemma

Reminder: For n € w and i € 2 we have an edge e, ; between L, and Rg(n,i)v
i(n) := i iff e,; € P and h(n) = g(n, i(n)).

Proof.
So assume h(n) = g(n,i(n)) = g(m,i(m)) = h(m).

19/35
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Crucial lemma

Reminder: For n € w and i € 2 we have an edge e, ; between L, and Rg(n,i)v
i(n) := i iff e,; € P and h(n) = g(n, i(n)).

Proof.

So assume h(n) = g(n,i(n)) = g(m,i(m)) = h(m).
Then, by definition both e, ;) and e, j(m) are in P.
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Crucial lemma

Reminder: For n € w and i € 2 we have an edge e, ; between L, and Rg(n,i)v
i(n) := i iff e,; € P and h(n) = g(n, i(n)).

Proof.

So assume h(n) = g(n,i(n)) = g(m,i(m)) = h(m).
Then, by definition both e, ;) and e, j(m) are in P. But they are both
incident to Rg(5,i(n)) = Rg(m,i(m)) and thus have to be equal.
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Crucial lemma

Reminder: For n € w and i € 2 we have an edge e, ; between L, and Rg(n,i)v
i(n) := i iff e,; € P and h(n) = g(n, i(n)).

Proof.

So assume h(n) = g(n,i(n)) = g(m,i(m)) = h(m).

Then, by definition both e, ;) and e, j(m) are in P. But they are both
incident to Rg(,.i(n)) = Rg(m,i(m)) and thus have to be equal. Hence,
n=mand his injective.
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Crucial lemma

Reminder: For n € w and i € 2 we have an edge e, ; between L, and Rg(n,i)v
i(n) := i iff e,; € P and h(n) = g(n, i(n)).

Proof.

So assume h(n) = g(n,i(n)) = g(m,i(m)) = h(m).

Then, by definition both e, ;) and e, j(m) are in P. But they are both
incident to Rg(,.i(n)) = Rg(m,i(m)) and thus have to be equal. Hence,
n=mand his injective.

Now, let m € w.
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Crucial lemma

Reminder: For n € w and i € 2 we have an edge e, ; between L, and Rg(n,i)v
i(n) := i iff e,; € P and h(n) = g(n, i(n)).

Proof.

So assume h(n) = g(n,i(n)) = g(m,i(m)) = h(m).

Then, by definition both e, ;) and e, j(m) are in P. But they are both
incident to Rg(,.i(n)) = Rg(m,i(m)) and thus have to be equal. Hence,
n=mand his injective.

Now, let m € w. Since, P is perfect there is an edge e, ; incident to Ry, in
P.
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Crucial lemma

Reminder: For n € w and i € 2 we have an edge e, ; between L, and Rg(n,i)v
i(n) := i iff e,; € P and h(n) = g(n, i(n)).

Proof.

So assume h(n) = g(n,i(n)) = g(m,i(m)) = h(m).

Then, by definition both e, ;) and e, j(m) are in P. But they are both
incident to Rg(,.i(n)) = Rg(m,i(m)) and thus have to be equal. Hence,
n=mand his injective.

Now, let m € w. Since, P is perfect there is an edge e, ; incident to Ry, in
P. But e, is incident Ry, ), so we have g(n,i(n)) = m.
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Crucial lemma

Reminder: For n € w and i € 2 we have an edge e, ; between L, and Rg(n,i)v
i(n) := i iff e,; € P and h(n) = g(n, i(n)).

Proof.

So assume h(n) = g(n,i(n)) = g(m,i(m)) = h(m).

Then, by definition both e, ;) and e, j(m) are in P. But they are both
incident to Rg(,.i(n)) = Rg(m,i(m)) and thus have to be equal. Hence,
n=m and h is injective.

Now, let m € w. Since, P is perfect there is an edge e, ; incident to Ry, in
{3. But e, is igcident Rg(n,iy, S0 we have g(n, i(n)) = m. Hence,

h(n) = m and h is surjective. O

v
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Continuation of maximality

© Reminder: We started with a permutation h:w X2 = w X 2.
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Continuation of maximality

© Reminder: We started with a permutation h:w X2 = w X 2.

@ By the previous lemma we may choose i : w — 2 such that
h(n) := po(h(n,i(n))) is a permutation on w.
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Continuation of maximality

© Reminder: We started with a permutation h:w X2 = w X 2.

Q I?y the previous lemma we may choose 7/ : w — 2 such that
h(n) := po(h(n,i(n))) is a permutation on w.
© By maximality of F choose f € F and A € [w]” with f A= h]A.
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Continuation of maximality

© Reminder: We started with a permutation h:w X2 = w X 2.
Q I?y the previous lemma we may choose 7/ : w — 2 such that
h(n) := po(h(n,i(n))) is a permutation on w.
© By maximality of F choose f € F and A € [w]” with f A= h]A.

Q Let ¢ := H(f). It remains to show that either ®(f,c) => h or
o*(f,c) =d(f,1—c) == h.
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Continuation of maximality

© Reminder: We started with a permutation h:w X2 = w X 2.

Q I?y the previous lemma we may choose 7/ : w — 2 such that
h(n) := po(h(n,i(n))) is a permutation on w.
© By maximality of F choose f € F and A € [w]” with f A= h]A.
Q Let ¢ := H(f). It remains to show that either ®(f,c) => h or
o*(f,c) =d(f,1—c) == h.
© Let n € A, then there is a j € 2 with

h(n,i(n)) = (po(h(n, i(n))),j) = (h(n).j) = (f(n).))-
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Continuation of maximality

© Reminder: We started with a permutation h:w X2 = w X 2.

Q I?y the previous lemma we may choose 7/ : w — 2 such that

h(n) := po(h(n,i(n))) is a permutation on w.
© By maximality of F choose f € F and A € [w]” with f A= h]A.
Q Let ¢ := H(f). It remains to show that either ®(f,c) => h or

®*(f,c) =d(f,1—c) == h.
© Let n € A, then there is a j € 2 with

h(n,i(n)) = (po(h(n, i(n))),j) = (h(n).j) = (f(n).))-

@ Hence, either

h(n,i(n)) = ®(f,c)(n,i(n)) or h(n,i(n)) = ®*(f,c)(n,i(n)).
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Reduction theorem for cofinitary groups

This finishes the proof of our theorem:

Theorem (S., Millhouse, 2025)

If there is a ¥4 maximal eventually different family of permutations, then

there is a I'I% maximal eventually different family of permutations of the
same size.
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Reduction theorem for cofinitary groups

This finishes the proof of our theorem:

Theorem (S., Millhouse, 2025)

If there is a ¥4 maximal eventually different family of permutations, then
there is a I'I% maximal eventually different family of permutations of the
same size.

We also came up with other ideas to obtain similar results for
@ Van Douwen families,
@ free generating sets of (strongly) maximal cofinitary groups,

© maximal ideal independent families.
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Van Douwen families

Definition

An eventually different family of functions F C “w is called Van Douwen

: . . . tial : .
iff for every infinite partial function h: w P2S W there is an f € F with

h==f.
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Van Douwen families

Definition

An eventually different family of functions F C “w is called Van Douwen

: . . . tial : .
iff for every infinite partial function h: w P2S W there is an f € F with

h==f.

Theorem (Raghavan, 2010, [12])

There always is a Van Douwen family, but never an analytic one.
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Van Douwen families

Definition

An eventually different family of functions F C “w is called Van Douwen

: . . . tial : .
iff for every infinite partial function h: w P2S W there is an f € F with

h==f.

Theorem (Raghavan, 2010, [12])

There always is a Van Douwen family, but never an analytic one.

Theorem (S., Millhouse, 2025)

If there is a ¥3 Van Douwen family, then there is a 1} Van Douwen family
of the same size.
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Cofinitary groups

Let G C S, be an eventually different family of permutations. Then, G need
not be a group. It may fail to be closed under inverses or concatenation.

Lukas Schembecker (Uni Hamburg) Definability of families of functions 23.01.2026 23/35



Cofinitary groups

Let G C S, be an eventually different family of permutations. Then, G need
not be a group. It may fail to be closed under inverses or concatenation.

Definition

If G is additionally a group (with concatenation) we say that G is a
cofinitary group.
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Cofinitary groups

Let G C S, be an eventually different family of permutations. Then, G need
not be a group. It may fail to be closed under inverses or concatenation.

Definition

If G is additionally a group (with concatenation) we say that G is a
cofinitary group. G is called maximal if G is maximal with respect to
inclusion.

Definition

| \

ag := min {|G| | G is a maximal cofinitary group}
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Cofinitary groups

Let G C S, be an eventually different family of permutations. Then, G need
not be a group. It may fail to be closed under inverses or concatenation.

Definition

If G is additionally a group (with concatenation) we say that G is a
cofinitary group. G is called maximal if G is maximal with respect to
inclusion.

Definition

| A

ag := min {|G| | G is a maximal cofinitary group}

| A

Observation
A group G C S, is cofinitary iff every element is either the identity or only
has finitely many fixpoints.

v
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Definability of cofinitary groups

Definition

Let G C S, be a group and Gy C G. Then G is a generating set if
G = (Gp), where (Gp), is the group generated by Gp.
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Definability of cofinitary groups

Definition

Let G C S, be a group and Gy C G. Then G is a generating set if
G = (Gp), where (Gp), is the group generated by Gp.

For cofinitary groups its often easier to provide a definable generating set
instead of the whole group. If Gy is definable, also G is definable from G,
however its complexity may be higher.
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Definability of cofinitary groups

Definition
Let G C S, be a group and Gy C G. Then G is a generating set if
G = (Gp), where (Gp), is the group generated by Gp.

For cofinitary groups its often easier to provide a definable generating set
instead of the whole group. If Gy is definable, also G is definable from G,
however its complexity may be higher.

Observation

Recursively, it is easy to construct a ¥3 generating set for a maximal
cofinitary group in L using the A% well-order.
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Definability of cofinitary groups

Theorem (Gao, Zhang, 2008 [5])

In L there is a T} generating set for a maximal cofinitary group.
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Definability of cofinitary groups

Theorem (Gao, Zhang, 2008 [5])

In L there is a T} generating set for a maximal cofinitary group.

Theorem (Kastermans, 2009 [8])

In L there is a M maximal cofinitary group. Furthermore, no K, cofinitary
group can be maximal.

Lukas Schembecker (Uni Hamburg) Definability of families of functions 23.01.2026 25/35



Definability of cofinitary groups

Theorem (Gao, Zhang, 2008 [5])

In L there is a T} generating set for a maximal cofinitary group.

Theorem (Kastermans, 2009 [8])

In L there is a M maximal cofinitary group. Furthermore, no K, cofinitary
group can be maximal.

Theorem (Horowitz, Shelah, 2016 [6])

In ZF there is a Borel maximal cofinitary group (and a Borel maximal
eventually different family).
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Reduction theorem for cofinitary groups

Theorem (S., Millhouse, 2025)

If there is a Y3 generating set for a free maximal cofinitary group, which is
also maximal as an eventually different family of permutations, then there
also is a M} generating set for a maximal cofinitary group of the same size,
which is also maximal as an eventually different family of permutations.
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Reduction theorem for cofinitary groups

Theorem (S., Millhouse, 2025)

If there is a Y3 generating set for a free maximal cofinitary group, which is
also maximal as an eventually different family of permutations, then there
also is a M} generating set for a maximal cofinitary group of the same size,
which is also maximal as an eventually different family of permutations.

Corollary

| A\,

If there is a Y1 generating set for a free tight cofinitary group, then there
is a M} generating set for a maximal cofinitary group of the same size.

A,
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Reduction theorem for cofinitary groups

Theorem (S., Millhouse, 2025)

If there is a Y3 generating set for a free maximal cofinitary group, which is
also maximal as an eventually different family of permutations, then there
also is a M} generating set for a maximal cofinitary group of the same size,
which is also maximal as an eventually different family of permutations.

| A\,

Corollary

If there is a Y1 generating set for a free tight cofinitary group, then there
is a I'I% generating set for a maximal cofinitary group of the same size.

Question

| A

If there is a Z% maximal cofinitary group, is there is a I'I% maximal
cofinitary group of the same size?

§
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Proof sketch

O Fixa Z% generating set F for a free maximal cofinitary group
G = (F), which is also maximal as an eventually different family of
permutations and a M} partial function H C “w x “2 as before.
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Proof sketch

O Fixa Z% generating set F for a free maximal cofinitary group
G = (F), which is also maximal as an eventually different family of
permutations and a M} partial function H C “w x “2 as before.

@ Again, we define F := ®[H] U ®*[H] and let G= <’3>
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Proof sketch

O Fixa Z% generating set F for a free maximal cofinitary group
G = (F), which is also maximal as an eventually different family of
permutations and a M} partial function H C “w x “2 as before.

@ Again, we define F := ®[H] U ®*[H] and let G= <’3>

O It remains to show that G is cofinitary,
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Proof sketch

© Fix a X} generating set F for a free maximal cofinitary group
G = (F), which is also maximal as an eventually different family of
permutations and a M} partial function H C “w x “2 as before.

Q@ Again, we define F := ®[H] U ®*[H] and let G = (F).
O It remains to show that G is cofinitary,

@ ...and G is maximal as an eventually different family of permutations.
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Proof sketch

© Fix a X} generating set F for a free maximal cofinitary group
G = (F), which is also maximal as an eventually different family of
permutations and a M} partial function H C “w x “2 as before.

Q@ Again, we define F := ®[H] U ®*[H] and let G = (F).
O It remains to show that G is cofinitary,

@ ...and G is maximal as an eventually different family of permutations.

G (on w x 2) I w[d(f, H(f))] or w[d*(f, H(f))]
G (onw) h wlf]
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Proof sketch

© Fix a X} generating set F for a free maximal cofinitary group
G = (F), which is also maximal as an eventually different family of
permutations and a M} partial function H C “w x “2 as before.

Q@ Again, we define F := ®[H] U ®*[H] and let G = (F).
O It remains to show that G is cofinitary,

@ ...and G is maximal as an eventually different family of permutations.

G (on w x 2) I w[d(f, H(f))] or w[d*(f, H(f))]
G (onw) h wlf]

Crucially, we can find a natural surjective group homomorphism W : GG
and compute its kernel as {id, 7}, where 7(n, i) := (n,1—1) is the flip map.
This also implies that G = G x Z/2.

Lukas Schembecker (Uni Hamburg) Definability of families of functions 23.01.2026 27/35



|deal independent families

Definition

A family Z C [w]“ is called ideal independent iff for every A € Z and
To € [Z]= we have that A Z* | JZo.
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|deal independent families

Definition

A family Z C [w]“ is called ideal independent iff for every A € Z and
To € [Z]<“ we have that A Z* |JZp. Z is called maximal if Z is maximal
with respect to inclusion.

Definition

| A

Again, we define a cardinal invariant:

Smm := min{|Z| | Z is a maximal ideal independent family}

Observation

Mad families and maximal independent families are ideal independent, but
neither have to be maximal as an ideal independent family.
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Reduction theorem for ideal independent families

Theorem (Bardyla, Cancino, Fischer, Switzer, 2025, [1])

(CH) There is a maximal ideal independent family indestructible by any
proper, “w-bounding, p-point preserving forcing.
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Reduction theorem for ideal independent families

Theorem (Bardyla, Cancino, Fischer, Switzer, 2025, [1])

(CH) There is a maximal ideal independent family indestructible by any
proper, “w-bounding, p-point preserving forcing.

.

Theorem (S., Millhouse, 2025)

If there is a ¥3 maximal ideal independent family, then there also is a M1
maximal ideal independent family of the same size.
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Reduction theorem for ideal independent families

Theorem (Bardyla, Cancino, Fischer, Switzer, 2025, [1])

(CH) There is a maximal ideal independent family indestructible by any
proper, “w-bounding, p-point preserving forcing.

.

Theorem (S., Millhouse, 2025)

If there is a ¥3 maximal ideal independent family, then there also is a M1
maximal ideal independent family of the same size.

Consistently, N1 = §mm < ¢ with a I'I% witness for $mm.
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Proof sketch

© Fix a } maximal ideal independent family Z and a M} partial
function H C [w]* X [w]® as before.
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Proof sketch

© Fix a } maximal ideal independent family Z and a M} partial
function H C [w]* X [w]® as before.

@ Define a function ¥ : [w]¥ X [w]¥ — [w]* and z € [w]¥ by

V(x,c):=3xU(3c+1)
z:= (Bw+ 1)U (3w + 2)
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Proof sketch

© Fix a } maximal ideal independent family Z and a M} partial
function H C [w]* X [w]® as before.

@ Define a function ¥ : [w]¥ X [w]¥ — [w]* and z € [w]¥ by

V(x,c):=3xU(3c+1)
(Bw+1)U (3w +2)

z

@ Define J := V[H| U {z}.
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Proof sketch

© Fix a } maximal ideal independent family Z and a M} partial
function H C [w]* X [w]® as before.

@ Define a function ¥ : [w]¥ X [w]¥ — [w]* and z € [w]¥ by

V(x,c):=3xU(3c+1)
z:= (Bw+ 1)U (3w + 2)

@ Define J := V[H| U {z}.

@ It is not too difficult to show that 7 is maximal ideal independent
and Mi.
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Invariant | Borel I'I% + -CH Z% = I'I%
a No Yes Yes
ay No Yes ?
ae Yes Yes Yes
ap Yes Yes ?
ag Yes Yes ?

Smm ? ? ?

Lukas Schembecker (Uni Hamburg) Definability of families of functions 23.01.2026 31/35



Summary

Invariant | Borel I'I% + -CH Z% = I'I%
a No Yes Yes
ay No Yes Yes
ae Yes Yes Yes
ap Yes Yes Yes
ag Yes Yes Yest

Smm 7 Yes Yes

*under extra assumptions and only for the generators
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