

Co-analytic families of functions

Lukas Schembecker

University of Hamburg
Joint work with Julia Millhouse

23.01.2026

Combinatorial and descriptive set theory

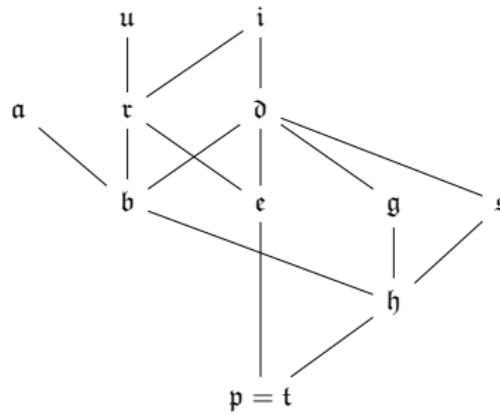
- ① In combinatorial set theory the possible sizes of certain special families of real numbers are studied.

Combinatorial and descriptive set theory

- ① In combinatorial set theory the possible sizes of certain special families of real numbers are studied.
- ② Usually special means maximal with respect to some combinatorial or topological property.

Combinatorial and descriptive set theory

- ① In combinatorial set theory the possible sizes of certain special families of real numbers are studied.
- ② Usually special means maximal with respect to some combinatorial or topological property.
- ③ The minimal sizes of such special families are called cardinal characteristics and their relations give rise to a very rich and complicated theory:

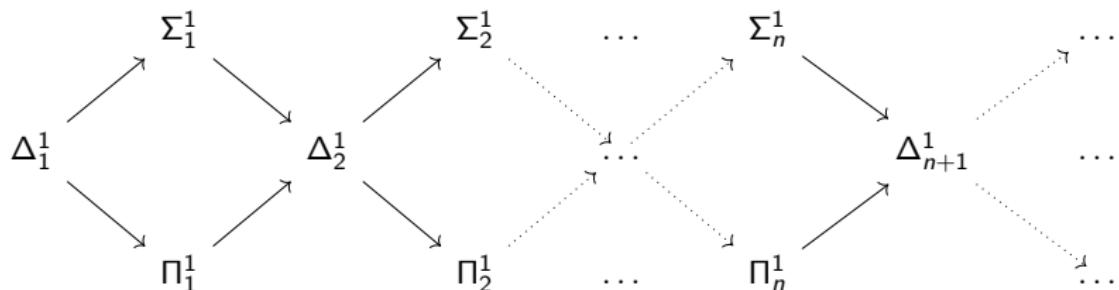


Combinatorial and descriptive set theory

- ① Descriptive set theory is the study of the complexity of subsets of Polish spaces.

Combinatorial and descriptive set theory

- ➊ Descriptive set theory is the study of the complexity of subsets of Polish spaces.
- ➋ Above the Borel hierarchy, we have the projective hierarchy:



Combinatorial and descriptive set theory

On the intersection of both fields we may study the following questions:

Combinatorial and descriptive set theory

On the intersection of both fields we may study the following questions:

- ① What is the minimal complexity of various special families of reals?

Combinatorial and descriptive set theory

On the intersection of both fields we may study the following questions:

- ➊ What is the minimal complexity of various special families of reals?
- ➋ In models separating cardinal characteristics $\mathfrak{x} < \mathfrak{y}$, can we additionally have witnesses for \mathfrak{x} and \mathfrak{y} of minimal complexity?

Combinatorial and descriptive set theory

On the intersection of both fields we may study the following questions:

- ① What is the minimal complexity of various special families of reals?
- ② In models separating cardinal characteristics $\mathfrak{x} < \mathfrak{y}$, can we additionally have witnesses for \mathfrak{x} and \mathfrak{y} of minimal complexity?
- ③ Given a special family of some complexity, can we construct a special family of lower complexity from it?

Example: Definability of mad families

Theorem (Mathias, 1977, [9])

There are no analytic (i.e. Σ_1^1) mad families.

Example: Definability of mad families

Theorem (Mathias, 1977, [9])

There are no analytic (i.e. Σ_1^1) mad families.

In L one may easily construct a Σ_2^1 mad family using the Δ_2^1 -definable well-order of the reals given by the structure of L .

Example: Definability of mad families

Theorem (Mathias, 1977, [9])

There are no analytic (i.e. Σ_1^1) mad families.

In L one may easily construct a Σ_2^1 mad family using the Δ_2^1 -definable well-order of the reals given by the structure of L .

Theorem (Miller, 1989, [10])

In L there is a co-analytic (i.e. Π_1^1) mad family.

Example: Definability of mad families

Theorem (Mathias, 1977, [9])

There are no analytic (i.e. Σ_1^1) mad families.

In L one may easily construct a Σ_2^1 mad family using the Δ_2^1 -definable well-order of the reals given by the structure of L .

Theorem (Miller, 1989, [10])

In L there is a co-analytic (i.e. Π_1^1) mad family.

This result was improved in many papers to obtain various co-analytic forcing indestructible mad families. In particular we have

Theorem (Bergfalk, Fischer, Switzer, 2022, [2])

In L there is a co-analytic tight mad family.

Example: Definability of mad families - a shortcut

For example this implies the following for the Miller model over \mathbb{L} :

Corollary (Bergfalk, Fischer, Switzer, 2022, [2])

Consistently, $\aleph_1 = \mathfrak{a} < \mathfrak{d} = \aleph_2$ and there is a Π_1^1 witness for $\mathfrak{a} = \aleph_1$.

Example: Definability of mad families - a shortcut

For example this implies the following for the Miller model over \mathbb{L} :

Corollary (Bergfalk, Fischer, Switzer, 2022, [2])

Consistently, $\aleph_1 = \mathfrak{a} < \mathfrak{d} = \aleph_2$ and there is a Π_1^1 witness for $\mathfrak{a} = \aleph_1$.

However, Törnquist discovered the following shortcut:

Theorem (Törnquist, 2013 [13])

If there is a Σ_2^1 mad family, then there is Π_1^1 mad family of the same size.

In particular, a Σ_2^1 witness for \mathfrak{a} immediately implies a Π_1^1 witness for \mathfrak{a} .

Example: Definability of mad families - a shortcut

For example this implies the following for the Miller model over \mathbb{L} :

Corollary (Bergfalk, Fischer, Switzer, 2022, [2])

Consistently, $\aleph_1 = \mathfrak{a} < \mathfrak{d} = \aleph_2$ and there is a Π_1^1 witness for $\mathfrak{a} = \aleph_1$.

However, Törnquist discovered the following shortcut:

Theorem (Törnquist, 2013 [13])

If there is a Σ_2^1 mad family, then there is Π_1^1 mad family of the same size.

In particular, a Σ_2^1 witness for \mathfrak{a} immediately implies a Π_1^1 witness for \mathfrak{a} . This gives an easier proof for the existence of a co-analytic mad family in \mathbb{L} , but also for forcing extensions over \mathbb{L} ...

Example: Definability of mad families - a shortcut

Let \mathbb{P} be a forcing, for which we know how to construct a \mathbb{P} -indestructible mad family (Sacks, Miller, Laver, random, etc.).

Example: Definability of mad families - a shortcut

Let \mathbb{P} be a forcing, for which we know how to construct a \mathbb{P} -indestructible mad family (Sacks, Miller, Laver, random, etc.).

- ① Start in L .

Example: Definability of mad families - a shortcut

Let \mathbb{P} be a forcing, for which we know how to construct a \mathbb{P} -indestructible mad family (Sacks, Miller, Laver, random, etc.).

- ① Start in L .
- ② Use the Δ_2^1 -wellorder to recursively construct a Σ_2^1 \mathbb{P} -indestructible mad family \mathcal{A} .

Example: Definability of mad families - a shortcut

Let \mathbb{P} be a forcing, for which we know how to construct a \mathbb{P} -indestructible mad family (Sacks, Miller, Laver, random, etc.).

- ① Start in L .
- ② Use the Δ_2^1 -wellorder to recursively construct a Σ_2^1 \mathbb{P} -indestructible mad family \mathcal{A} .
- ③ Force with \mathbb{P} .

Example: Definability of mad families - a shortcut

Let \mathbb{P} be a forcing, for which we know how to construct a \mathbb{P} -indestructible mad family (Sacks, Miller, Laver, random, etc.).

- ① Start in L .
- ② Use the Δ_2^1 -wellorder to recursively construct a Σ_2^1 \mathbb{P} -indestructible mad family \mathcal{A} .
- ③ Force with \mathbb{P} .
- ④ Then \mathcal{A} is still maximal in the generic extension and has the same Σ_2^1 -definition by the absoluteness of L .

Example: Definability of mad families - a shortcut

Let \mathbb{P} be a forcing, for which we know how to construct a \mathbb{P} -indestructible mad family (Sacks, Miller, Laver, random, etc.).

- ① Start in L .
- ② Use the Δ_2^1 -wellorder to recursively construct a Σ_2^1 \mathbb{P} -indestructible mad family \mathcal{A} .
- ③ Force with \mathbb{P} .
- ④ Then \mathcal{A} is still maximal in the generic extension and has the same Σ_2^1 -definition by the absoluteness of L .
- ⑤ Apply Törnquist's result in the generic extension, to obtain a Π_1^1 mad family of size \aleph_1 .

Example: Definability of mad families - a shortcut

Let \mathbb{P} be a forcing, for which we know how to construct a \mathbb{P} -indestructible mad family (Sacks, Miller, Laver, random, etc.).

- ① Start in L .
- ② Use the Δ_2^1 -wellorder to recursively construct a Σ_2^1 \mathbb{P} -indestructible mad family \mathcal{A} .
- ③ Force with \mathbb{P} .
- ④ Then \mathcal{A} is still maximal in the generic extension and has the same Σ_2^1 -definition by the absoluteness of L .
- ⑤ Apply Törnquist's result in the generic extension, to obtain a Π_1^1 mad family of size \aleph_1 .

Hence, in \mathbb{P} -extensions over L there is a co-analytic witness for $\alpha = \aleph_1$.

Shortcuts for other families

Analogous shortcuts of the form $\Sigma_2^1 \implies \Pi_1^1$ are now known for other types of families, e.g.

- ① maximal independent families - ι
(Brendle, Fischer, Khomskii, 2018, [7]),
- ② maximal eventually different families of functions - α_e
(Fischer, Schrittesser, 2021, [4]),
- ③ towers - t
(Fischer, Schilhan, 2021, [3]),
- ④ Hausdorff gaps
(Millhouse, 2024, [11])

Our goal was to prove similar shortcuts for various relatives of α_e and the ideal-independence number \mathfrak{s}_{mm} .

How does the shortcut work?

Theorem (Törnquist, 2013 [13])

If there is a Σ_2^1 mad family, then there is Π_1^1 mad family of the same size.

- ① Let \mathcal{A} be a Σ_2^1 mad family.

How does the shortcut work?

Theorem (Törnquist, 2013 [13])

If there is a Σ_2^1 mad family, then there is Π_1^1 mad family of the same size.

- ① Let \mathcal{A} be a Σ_2^1 mad family.
- ② By Π_1^1 -uniformization we may assume that \mathcal{A} is the projection of a Π_1^1 partial function $H \subseteq [\omega]^\omega \times {}^\omega 2$ to the first component.

How does the shortcut work?

Theorem (Törnquist, 2013 [13])

If there is a Σ_2^1 mad family, then there is Π_1^1 mad family of the same size.

- ① Let \mathcal{A} be a Σ_2^1 mad family.
- ② By Π_1^1 -uniformization we may assume that \mathcal{A} is the projection of a Π_1^1 partial function $H \subseteq [\omega]^\omega \times {}^\omega 2$ to the first component.
- ③ Basically, every member $A \in \mathcal{A}$ gets assigned a code $H(A) \in {}^\omega 2$.

How does the shortcut work?

Theorem (Törnquist, 2013 [13])

If there is a Σ_2^1 mad family, then there is Π_1^1 mad family of the same size.

- ① Let \mathcal{A} be a Σ_2^1 mad family.
- ② By Π_1^1 -uniformization we may assume that \mathcal{A} is the projection of a Π_1^1 partial function $H \subseteq [\omega]^\omega \times {}^\omega 2$ to the first component.
- ③ Basically, every member $A \in \mathcal{A}$ gets assigned a code $H(A) \in {}^\omega 2$.
- ④ Come up with a continuous map $\Phi : [\omega]^\omega \times {}^\omega 2 \rightarrow [\omega]^\omega$ which is recursively invertible and such that $\mathcal{B} = \Phi[H]$ is a mad family.

How does the shortcut work?

Theorem (Törnquist, 2013 [13])

If there is a Σ_2^1 mad family, then there is Π_1^1 mad family of the same size.

- ① Let \mathcal{A} be a Σ_2^1 mad family.
- ② By Π_1^1 -uniformization we may assume that \mathcal{A} is the projection of a Π_1^1 partial function $H \subseteq [\omega]^\omega \times {}^\omega 2$ to the first component.
- ③ Basically, every member $A \in \mathcal{A}$ gets assigned a code $H(A) \in {}^\omega 2$.
- ④ Come up with a continuous map $\Phi : [\omega]^\omega \times {}^\omega 2 \rightarrow [\omega]^\omega$ which is recursively invertible and such that $\mathcal{B} = \Phi[H]$ is a mad family.
- ⑤ Basically, for every $A \in [\omega]^\omega$ and $c \in {}^\omega 2$ we need to be able to definably reconstruct A and c from $\Phi(A, c)$.

How does the shortcut work?

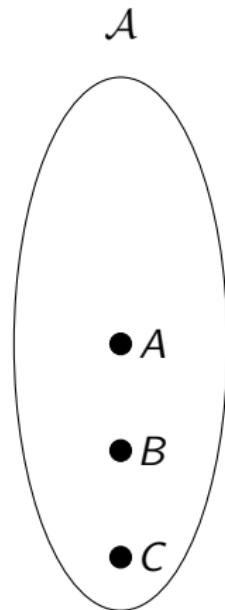
Theorem (Törnquist, 2013 [13])

If there is a Σ_2^1 mad family, then there is Π_1^1 mad family of the same size.

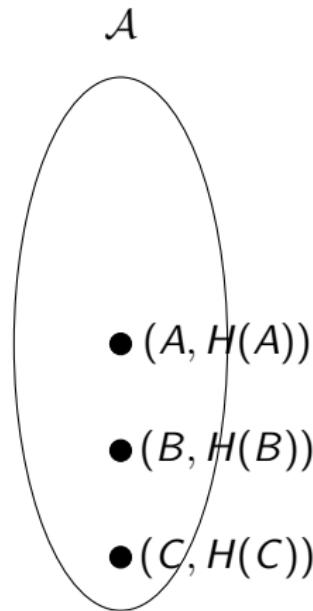
- ① Let \mathcal{A} be a Σ_2^1 mad family.
- ② By Π_1^1 -uniformization we may assume that \mathcal{A} is the projection of a Π_1^1 partial function $H \subseteq [\omega]^\omega \times {}^\omega 2$ to the first component.
- ③ Basically, every member $A \in \mathcal{A}$ gets assigned a code $H(A) \in {}^\omega 2$.
- ④ Come up with a continuous map $\Phi : [\omega]^\omega \times {}^\omega 2 \rightarrow [\omega]^\omega$ which is recursively invertible and such that $\mathcal{B} = \Phi[H]$ is a mad family.
- ⑤ Basically, for every $A \in [\omega]^\omega$ and $c \in {}^\omega 2$ we need to be able to definably reconstruct A and c from $\Phi(A, c)$.
- ⑥ Finally, the Spector-Gandy-Theorem shows that \mathcal{B} is in fact Π_1^1 :

$$B \in \mathcal{B} \iff \exists(A, c) \in \Delta_1^1(B) ((A, c) \in H \text{ and } \Phi(A, c) = B)$$

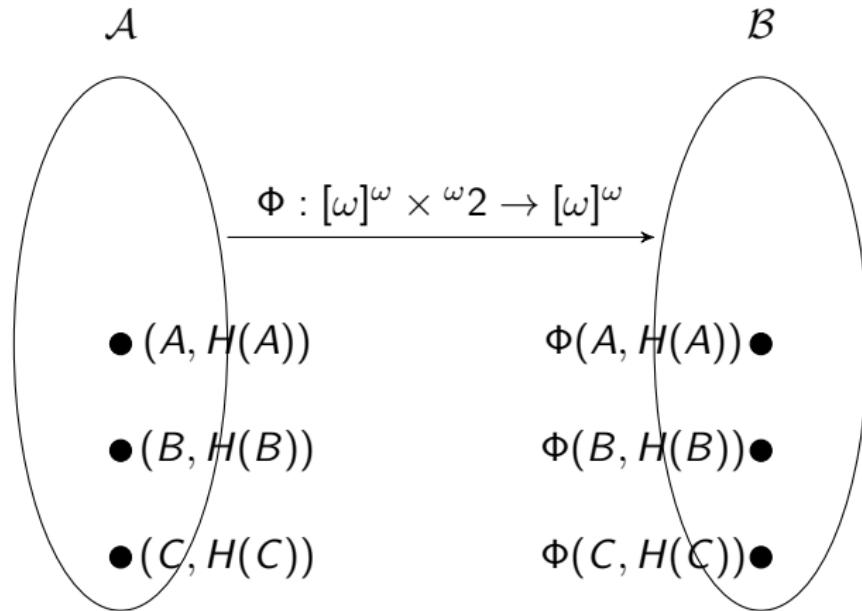
How does the shortcut work?



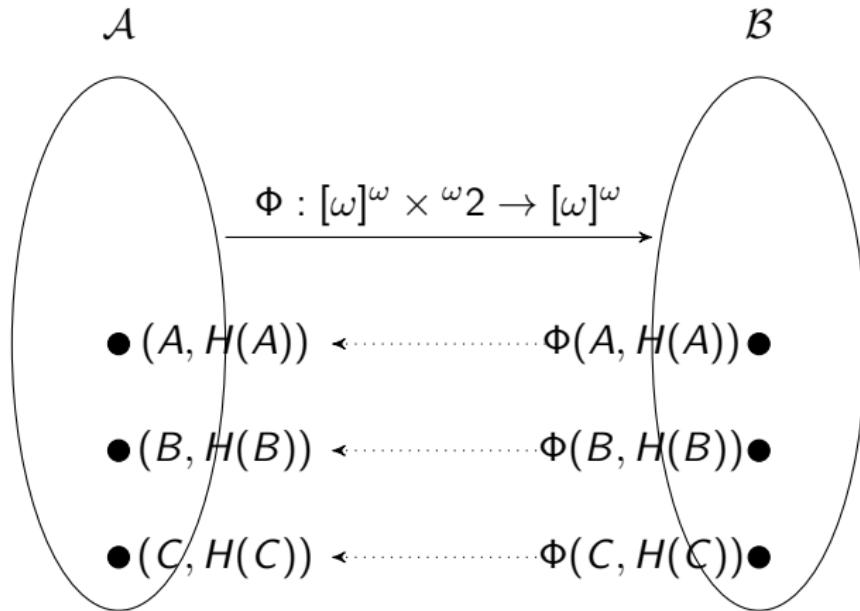
How does the shortcut work?



How does the shortcut work?



How does the shortcut work?



Eventually different families

Definition

Two functions $f, g \in \omega^\omega$ are said to be **eventually different** if their graphs have finite intersection.

Eventually different families

Definition

Two functions $f, g \in \omega^\omega$ are said to be **eventually different** if their graphs have finite intersection. A family $F \subseteq \omega^\omega$ is **eventually different** if all its members are pairwise eventually different.

Eventually different families

Definition

Two functions $f, g \in \omega^\omega$ are said to be **eventually different** if their graphs have finite intersection. A family $F \subseteq \omega^\omega$ is **eventually different** if all its members are pairwise eventually different. F is called **maximal** if F is maximal with respect to inclusion.

Eventually different families

Definition

Two functions $f, g \in \omega^\omega$ are said to be **eventually different** if their graphs have finite intersection. A family $F \subseteq \omega^\omega$ is **eventually different** if all its members are pairwise eventually different. F is called **maximal** if F is maximal with respect to inclusion.

Definition

$$\alpha_e := \min \{ |F| \mid F \text{ is a maximal eventually different family} \}$$

Further, a maximal eventually different family of size α_e is said to be a witness for that cardinal characteristic.

Eventually different families of permutations

Let S_ω denote the set of all permutations on ω . This is a group together with concatenation.

Eventually different families of permutations

Let S_ω denote the set of all permutations on ω . This is a group together with concatenation. Similarly, we define

Definition

A family $F \subseteq S_\omega$ is an **eventually different family of permutations** if all its members are pairwise eventually different.

Eventually different families of permutations

Let S_ω denote the set of all permutations on ω . This is a group together with concatenation. Similarly, we define

Definition

A family $F \subseteq S_\omega$ is an **eventually different family of permutations** if all its members are pairwise eventually different. F is called **maximal** if F is maximal with respect to inclusion.

Definition

Again, we define the cardinal invariant:

$$\alpha_p := \min\{|F| \mid F \text{ is a maximal eventually different family of permutations}\}$$

Definability of eventually different families of permutations

Contrary to mad families there always is a maximal eventually different family of permutations of low complexity.

Theorem (Horowitz, Shelah, 2016, [6])

There is a Borel maximal eventually different family of permutations.

Definability of eventually different families of permutations

Contrary to mad families there always is a maximal eventually different family of permutations of low complexity.

Theorem (Horowitz, Shelah, 2016, [6])

There is a Borel maximal eventually different family of permutations.

The goal of this talk is to prove the following theorem:

Theorem (S., Millhouse, 2025)

If there is a Σ_2^1 maximal eventually different family of permutations, then there is a Π_1^1 maximal eventually different family of permutations of the same size.

Proof of the Theorem

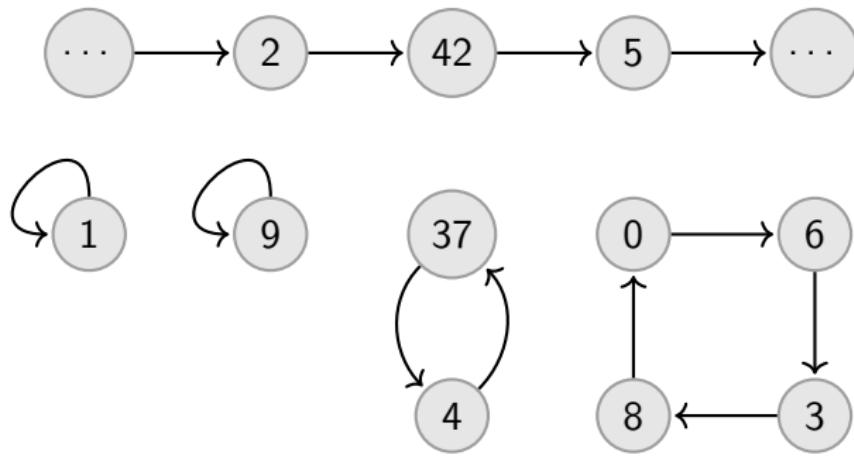
- ① Fix a Σ_2^1 maximal eventually different family F and a Π_1^1 partial function $H \subseteq {}^\omega\omega \times {}^\omega 2$ as before.

Proof of the Theorem

- ① Fix a Σ_2^1 maximal eventually different family F and a Π_1^1 partial function $H \subseteq {}^\omega\omega \times {}^\omega 2$ as before.
- ② Remember, we have to construct a continuous map $\Phi : {}^\omega\omega \times {}^\omega 2 \rightarrow {}^\omega\omega$ which is recursively invertible and such that $G = \Phi[H]$ is a maximal eventually different family of permutations.

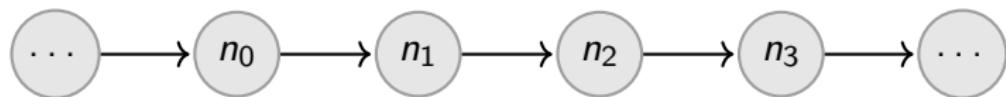
Proof of the Theorem

- ① Fix a Σ_2^1 maximal eventually different family F and a Π_1^1 partial function $H \subseteq {}^{\omega}\omega \times {}^{\omega}2$ as before.
- ② Remember, we have to construct a continuous map $\Phi : {}^{\omega}\omega \times {}^{\omega}2 \rightarrow {}^{\omega}\omega$ which is recursively invertible and such that $G = \Phi[H]$ is a maximal eventually different family of permutations.
- ③ We may visualize a permutation f as the union of chains and cycles:



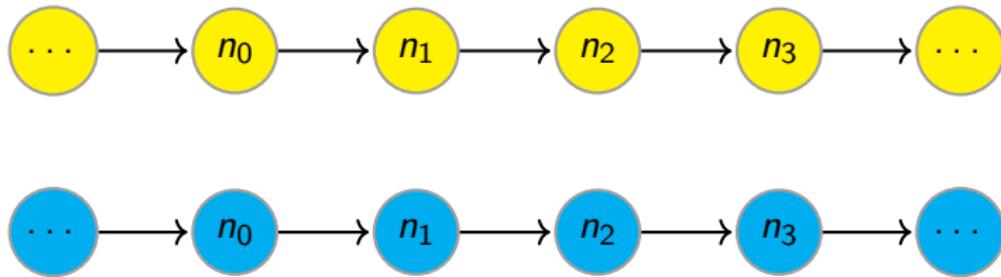
Visualization of the function Φ

For simplicity we just consider one chain



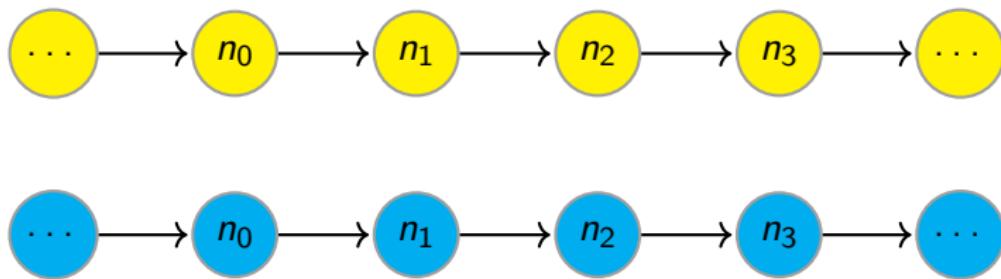
Visualization of the function Φ

First we duplicate both the domain and range of the function, but keep the structure of f on both copies. (Thus, the new domain and range is $\omega \times 2$)



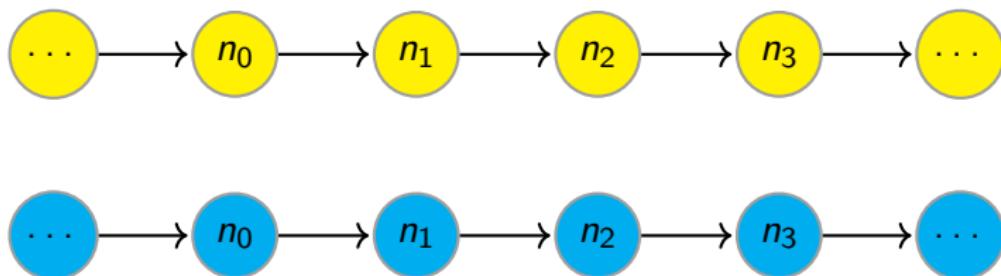
Visualization of the function Φ

Next, we need to adapt this permutation, so that it codes a real $c \in 2^\omega$, but still is a permutation and keeps the structure of f :



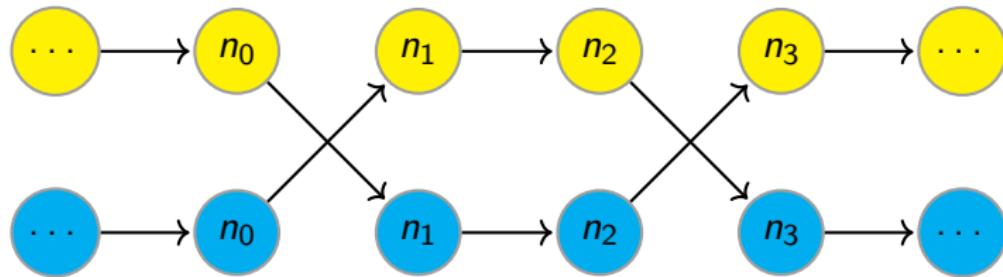
Visualization of the function Φ

Key Idea: At place n flip both functions values iff $c(n) = 1$:



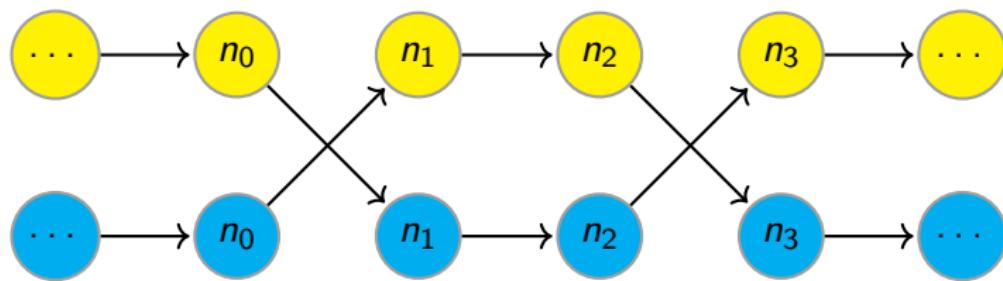
Visualization of the function Φ

For example, if $c(n_0) = 1$, $c(n_1) = 0$ and $c(n_2) = 1$ we get:



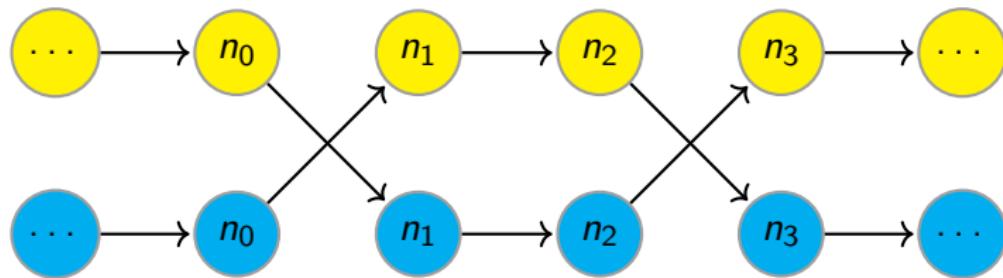
Visualization of the function Φ

This gives us $\Phi(f, c)$ from which we can clearly decode f and c again. It is also easy to see that $\Phi[H]$ will still be eventually different.



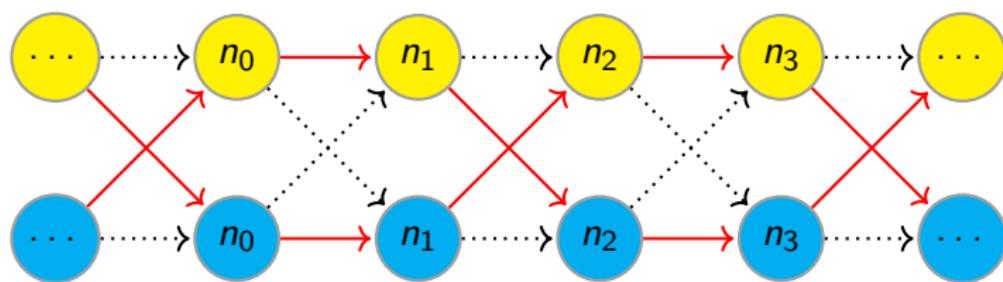
Visualization of the function Φ

The more difficult part of the proof is the maximality of $\Phi[H]$. In fact, $\Phi[H]$ will NOT be maximal!



Visualization of the function Φ

Note that $\Phi(f, 1 - c)$ is everywhere different from $\Phi(f, c)$:



Definition of G

- ① So instead we define $G := \Phi[H] \cup \Phi^*[H]$, where
 $\Phi^*(f, c) := \Phi(f, 1 - c)$ is the flipped version of Φ .

Definition of G

- ① So instead we define $G := \Phi[H] \cup \Phi^*[H]$, where $\Phi^*(f, c) := \Phi(f, 1 - c)$ is the flipped version of Φ .
- ② A short argument shows that G is an eventually different family of permutations on $\omega \times 2$ and G is Π_1^1 as the union of two Π_1^1 -sets.

Definition of G

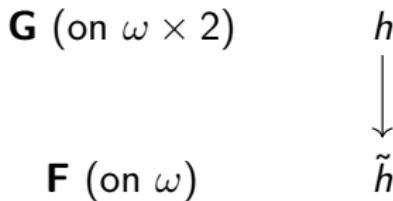
- ① So instead we define $G := \Phi[H] \cup \Phi^*[H]$, where $\Phi^*(f, c) := \Phi(f, 1 - c)$ is the flipped version of Φ .
- ② A short argument shows that G is an eventually different family of permutations on $\omega \times 2$ and G is Π_1^1 as the union of two Π_1^1 -sets.
- ③ It remains to prove maximality of G , so fix $h : \omega \times 2 \rightarrow \omega \times 2$, then we will show the following

G (on $\omega \times 2$) h

F (on ω)

Definition of G

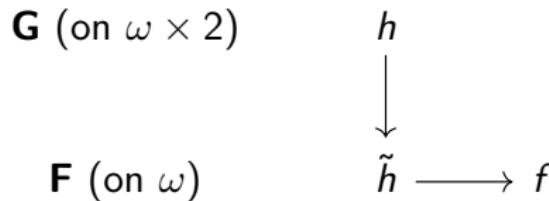
- ① So instead we define $G := \Phi[H] \cup \Phi^*[H]$, where $\Phi^*(f, c) := \Phi(f, 1 - c)$ is the flipped version of Φ .
- ② A short argument shows that G is an eventually different family of permutations on $\omega \times 2$ and G is Π_1^1 as the union of two Π_1^1 -sets.
- ③ It remains to prove maximality of G , so fix $h : \omega \times 2 \rightarrow \omega \times 2$, then we will show the following



We will define a certain permutation \tilde{h} on ω from h .

Definition of G

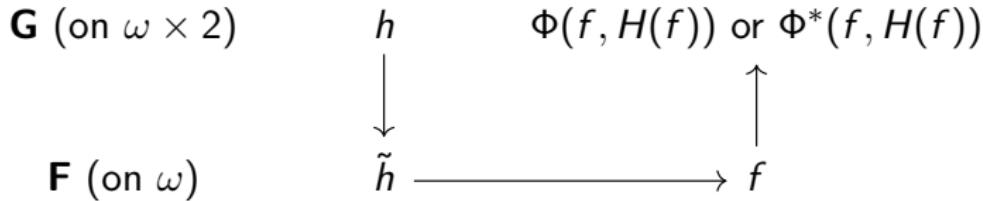
- ① So instead we define $G := \Phi[H] \cup \Phi^*[H]$, where $\Phi^*(f, c) := \Phi(f, 1 - c)$ is the flipped version of Φ .
- ② A short argument shows that G is an eventually different family of permutations on $\omega \times 2$ and G is Π_1^1 as the union of two Π_1^1 -sets.
- ③ It remains to prove maximality of G , so fix $h : \omega \times 2 \rightarrow \omega \times 2$, then we will show the following



By maximality of F choose $f \in F$ with $\tilde{h} =^\infty f$.

Definition of G

- ① So instead we define $G := \Phi[H] \cup \Phi^*[H]$, where $\Phi^*(f, c) := \Phi(f, 1 - c)$ is the flipped version of Φ .
- ② A short argument shows that G is an eventually different family of permutations on $\omega \times 2$ and G is Π_1^1 as the union of two Π_1^1 -sets.
- ③ It remains to prove maximality of G , so fix $h : \omega \times 2 \rightarrow \omega \times 2$, then we will show the following



Finally, we will either have $h =^\infty \Phi(f, H(f))$ or $h =^\infty \Phi^*(f, H(f))$.

How to define \tilde{h} from h ?

- ① Note that the function h will in general not have a nice symmetric structure like the elements of G .

How to define \tilde{h} from h ?

- ① Note that the function h will in general not have a nice symmetric structure like the elements of G .
- ② Nevertheless, in some sense we want the map $h \mapsto \tilde{h}$ to behave roughly like an inverse to Φ .

How to define \tilde{h} from h ?

- ① Note that the function h will in general not have a nice symmetric structure like the elements of G .
- ② Nevertheless, in some sense we want the map $h \mapsto \tilde{h}$ to behave roughly like an inverse to Φ .
- ③ Naively, one could try to define $\tilde{h}(n) := p_0(h(n, 0))$, however there is no reason why this should define a permutation.

How to define \tilde{h} from h ?

- ① Note that the function h will in general not have a nice symmetric structure like the elements of G .
- ② Nevertheless, in some sense we want the map $h \mapsto \tilde{h}$ to behave roughly like an inverse to Φ .
- ③ Naively, one could try to define $\tilde{h}(n) := p_0(h(n, 0))$, however there is no reason why this should define a permutation.
- ④ Instead we will find a function $i : \omega \rightarrow 2$, such that $\tilde{h}(n) := p_0(h(n, i(n)))$ defines a permutation.

How to define \tilde{h} from h ?

- ① Note that the function h will in general not have a nice symmetric structure like the elements of G .
- ② Nevertheless, in some sense we want the map $h \mapsto \tilde{h}$ to behave roughly like an inverse to Φ .
- ③ Naively, one could try to define $\tilde{h}(n) := p_0(h(n, 0))$, however there is no reason why this should define a permutation.
- ④ Instead we will find a function $i : \omega \rightarrow 2$, such that $\tilde{h}(n) := p_0(h(n, i(n)))$ defines a permutation.
- ⑤ To this end, note that the function $g : \omega \times 2 \rightarrow \omega$ defined by $g(n, i) := p_0(h(n, i))$ is 2-to-1, i.e. every $n \in \omega$ has exactly two preimages.

Crucial lemma

Lemma

Assume that $g : \omega \times 2 \rightarrow \omega$ is 2-to-1. Then there is a function $i : \omega \rightarrow 2$, such that $\tilde{h}(n) := g(n, i(n))$ is a permutation.

Proof.

We define a bipartite graph with possible multi-edges:

Crucial lemma

Lemma

Assume that $g : \omega \times 2 \rightarrow \omega$ is 2-to-1. Then there is a function $i : \omega \rightarrow 2$, such that $\tilde{h}(n) := g(n, i(n))$ is a permutation.

Proof.

We define a bipartite graph with possible multi-edges:

- ① We have countably many left $\{L_n \mid n \in \omega\}$ and right $\{R_n \mid n \in \omega\}$ nodes.

Crucial lemma

Lemma

Assume that $g : \omega \times 2 \rightarrow \omega$ is 2-to-1. Then there is a function $i : \omega \rightarrow 2$, such that $\tilde{h}(n) := g(n, i(n))$ is a permutation.

Proof.

We define a bipartite graph with possible multi-edges:

- ① We have countably many left $\{L_n \mid n \in \omega\}$ and right $\{R_n \mid n \in \omega\}$ nodes.
- ② For each $n \in \omega$ and $i \in 2$ we have an edge $e_{n,i}$ between L_n and $R_{g(n,i)}$.

Crucial lemma

Lemma

Assume that $g : \omega \times 2 \rightarrow \omega$ is 2-to-1. Then there is a function $i : \omega \rightarrow 2$, such that $\tilde{h}(n) := g(n, i(n))$ is a permutation.

Proof.

We define a bipartite graph with possible multi-edges:

- ① We have countably many left $\{L_n \mid n \in \omega\}$ and right $\{R_n \mid n \in \omega\}$ nodes.
- ② For each $n \in \omega$ and $i \in 2$ we have an edge $e_{n,i}$ between L_n and $R_{g(n,i)}$.

By construction, every L_n has degree 2.

Crucial lemma

Lemma

Assume that $g : \omega \times 2 \rightarrow \omega$ is 2-to-1. Then there is a function $i : \omega \rightarrow 2$, such that $\tilde{h}(n) := g(n, i(n))$ is a permutation.

Proof.

We define a bipartite graph with possible multi-edges:

- ① We have countably many left $\{L_n \mid n \in \omega\}$ and right $\{R_n \mid n \in \omega\}$ nodes.
- ② For each $n \in \omega$ and $i \in 2$ we have an edge $e_{n,i}$ between L_n and $R_{g(n,i)}$.

By construction, every L_n has degree 2. Since g is 2-to-1, also every R_n has degree 2, i.e. the graph is 2-regular.

Crucial lemma

Reminder: For $n \in \omega$ and $i \in 2$ we have an edge $e_{n,i}$ between L_n and $R_{g(n,i)}$.

Proof.

Choose a perfect matching P of our graph and define

$$i(n) := i \quad \text{iff} \quad e_{n,i} \in P.$$

Crucial lemma

Reminder: For $n \in \omega$ and $i \in 2$ we have an edge $e_{n,i}$ between L_n and $R_{g(n,i)}$.

Proof.

Choose a perfect matching P of our graph and define

$$i(n) := i \quad \text{iff} \quad e_{n,i} \in P.$$

Note that $e_{n,0}$ and $e_{n,1}$ are the only edges incident to L_n . Hence, exactly one of them is in P and $i(n)$ is well-defined.

Crucial lemma

Reminder: For $n \in \omega$ and $i \in 2$ we have an edge $e_{n,i}$ between L_n and $R_{g(n,i)}$.

Proof.

Choose a perfect matching P of our graph and define

$$i(n) := i \quad \text{iff} \quad e_{n,i} \in P.$$

Note that $e_{n,0}$ and $e_{n,1}$ are the only edges incident to L_n . Hence, exactly one of them is in P and $i(n)$ is well-defined.

Finally, it remains to see that $\tilde{h}(n) := g(n, i(n))$ is a permutation.

Crucial lemma

Reminder: For $n \in \omega$ and $i \in 2$ we have an edge $e_{n,i}$ between L_n and $R_{g(n,i)}$,
 $i(n) := i$ iff $e_{n,i} \in P$ and $\tilde{h}(n) = g(n, i(n))$.

Proof.

So assume $\tilde{h}(n) = g(n, i(n)) = g(m, i(m)) = \tilde{h}(m)$.

Crucial lemma

Reminder: For $n \in \omega$ and $i \in 2$ we have an edge $e_{n,i}$ between L_n and $R_{g(n,i)}$,
 $i(n) := i$ iff $e_{n,i} \in P$ and $\tilde{h}(n) = g(n, i(n))$.

Proof.

So assume $\tilde{h}(n) = g(n, i(n)) = g(m, i(m)) = \tilde{h}(m)$.

Then, by definition both $e_{n,i(n)}$ and $e_{m,i(m)}$ are in P .

Crucial lemma

Reminder: For $n \in \omega$ and $i \in 2$ we have an edge $e_{n,i}$ between L_n and $R_{g(n,i)}$,
 $i(n) := i$ iff $e_{n,i} \in P$ and $\tilde{h}(n) = g(n, i(n))$.

Proof.

So assume $\tilde{h}(n) = g(n, i(n)) = g(m, i(m)) = \tilde{h}(m)$.

Then, by definition both $e_{n,i(n)}$ and $e_{m,i(m)}$ are in P . But they are both incident to $R_{g(n,i(n))} = R_{g(m,i(m))}$ and thus have to be equal.

Crucial lemma

Reminder: For $n \in \omega$ and $i \in 2$ we have an edge $e_{n,i}$ between L_n and $R_{g(n,i)}$,
 $i(n) := i$ iff $e_{n,i} \in P$ and $\tilde{h}(n) = g(n, i(n))$.

Proof.

So assume $\tilde{h}(n) = g(n, i(n)) = g(m, i(m)) = \tilde{h}(m)$.

Then, by definition both $e_{n,i(n)}$ and $e_{m,i(m)}$ are in P . But they are both incident to $R_{g(n,i(n))} = R_{g(m,i(m))}$ and thus have to be equal. Hence, $n = m$ and \tilde{h} is injective.

Crucial lemma

Reminder: For $n \in \omega$ and $i \in 2$ we have an edge $e_{n,i}$ between L_n and $R_{g(n,i)}$,
 $i(n) := i$ iff $e_{n,i} \in P$ and $\tilde{h}(n) = g(n, i(n))$.

Proof.

So assume $\tilde{h}(n) = g(n, i(n)) = g(m, i(m)) = \tilde{h}(m)$.

Then, by definition both $e_{n,i(n)}$ and $e_{m,i(m)}$ are in P . But they are both incident to $R_{g(n,i(n))} = R_{g(m,i(m))}$ and thus have to be equal. Hence, $n = m$ and \tilde{h} is injective.

Now, let $m \in \omega$.

Crucial lemma

Reminder: For $n \in \omega$ and $i \in 2$ we have an edge $e_{n,i}$ between L_n and $R_{g(n,i)}$,
 $i(n) := i$ iff $e_{n,i} \in P$ and $\tilde{h}(n) = g(n, i(n))$.

Proof.

So assume $\tilde{h}(n) = g(n, i(n)) = g(m, i(m)) = \tilde{h}(m)$.

Then, by definition both $e_{n,i(n)}$ and $e_{m,i(m)}$ are in P . But they are both incident to $R_{g(n,i(n))} = R_{g(m,i(m))}$ and thus have to be equal. Hence, $n = m$ and \tilde{h} is injective.

Now, let $m \in \omega$. Since, P is perfect there is an edge $e_{n,i}$ incident to R_m in P .

Crucial lemma

Reminder: For $n \in \omega$ and $i \in 2$ we have an edge $e_{n,i}$ between L_n and $R_{g(n,i)}$,
 $i(n) := i$ iff $e_{n,i} \in P$ and $\tilde{h}(n) = g(n, i(n))$.

Proof.

So assume $\tilde{h}(n) = g(n, i(n)) = g(m, i(m)) = \tilde{h}(m)$.

Then, by definition both $e_{n,i(n)}$ and $e_{m,i(m)}$ are in P . But they are both incident to $R_{g(n,i(n))} = R_{g(m,i(m))}$ and thus have to be equal. Hence, $n = m$ and \tilde{h} is injective.

Now, let $m \in \omega$. Since, P is perfect there is an edge $e_{n,i}$ incident to R_m in P . But $e_{n,i}$ is incident $R_{g(n,i)}$, so we have $g(n, i(n)) = m$.

Crucial lemma

Reminder: For $n \in \omega$ and $i \in 2$ we have an edge $e_{n,i}$ between L_n and $R_{g(n,i)}$,
 $i(n) := i$ iff $e_{n,i} \in P$ and $\tilde{h}(n) = g(n, i(n))$.

Proof.

So assume $\tilde{h}(n) = g(n, i(n)) = g(m, i(m)) = \tilde{h}(m)$.

Then, by definition both $e_{n,i(n)}$ and $e_{m,i(m)}$ are in P . But they are both incident to $R_{g(n,i(n))} = R_{g(m,i(m))}$ and thus have to be equal. Hence, $n = m$ and \tilde{h} is injective.

Now, let $m \in \omega$. Since, P is perfect there is an edge $e_{n,i}$ incident to R_m in P . But $e_{n,i}$ is incident $R_{g(n,i)}$, so we have $g(n, i(n)) = m$. Hence, $\tilde{h}(n) = m$ and \tilde{h} is surjective. □

Continuation of maximality

- ① Reminder: We started with a permutation $h : \omega \times 2 \rightarrow \omega \times 2$.

Continuation of maximality

- ① Reminder: We started with a permutation $h : \omega \times 2 \rightarrow \omega \times 2$.
- ② By the previous lemma we may choose $i : \omega \rightarrow 2$ such that $\tilde{h}(n) := p_0(h(n, i(n)))$ is a permutation on ω .

Continuation of maximality

- ① Reminder: We started with a permutation $h : \omega \times 2 \rightarrow \omega \times 2$.
- ② By the previous lemma we may choose $i : \omega \rightarrow 2$ such that $\tilde{h}(n) := p_0(h(n, i(n)))$ is a permutation on ω .
- ③ By maximality of F choose $f \in F$ and $A \in [\omega]^\omega$ with $f \upharpoonright A = \tilde{h} \upharpoonright A$.

Continuation of maximality

- ① Reminder: We started with a permutation $h : \omega \times 2 \rightarrow \omega \times 2$.
- ② By the previous lemma we may choose $i : \omega \rightarrow 2$ such that $\tilde{h}(n) := p_0(h(n, i(n)))$ is a permutation on ω .
- ③ By maximality of F choose $f \in F$ and $A \in [\omega]^\omega$ with $f \upharpoonright A = \tilde{h} \upharpoonright A$.
- ④ Let $c := H(f)$. It remains to show that either $\Phi(f, c) =^\infty h$ or $\Phi^*(f, c) = \Phi(f, 1 - c) =^\infty h$.

Continuation of maximality

- ① Reminder: We started with a permutation $h : \omega \times 2 \rightarrow \omega \times 2$.
- ② By the previous lemma we may choose $i : \omega \rightarrow 2$ such that $\tilde{h}(n) := p_0(h(n, i(n)))$ is a permutation on ω .
- ③ By maximality of F choose $f \in F$ and $A \in [\omega]^\omega$ with $f \upharpoonright A = \tilde{h} \upharpoonright A$.
- ④ Let $c := H(f)$. It remains to show that either $\Phi(f, c) =^\infty h$ or $\Phi^*(f, c) = \Phi(f, 1 - c) =^\infty h$.
- ⑤ Let $n \in A$, then there is a $j \in 2$ with

$$h(n, i(n)) = (p_0(h(n, i(n)))), j) = (\tilde{h}(n), j) = (f(n), j).$$

Continuation of maximality

- ① Reminder: We started with a permutation $h : \omega \times 2 \rightarrow \omega \times 2$.
- ② By the previous lemma we may choose $i : \omega \rightarrow 2$ such that $\tilde{h}(n) := p_0(h(n, i(n)))$ is a permutation on ω .
- ③ By maximality of F choose $f \in F$ and $A \in [\omega]^\omega$ with $f \upharpoonright A = \tilde{h} \upharpoonright A$.
- ④ Let $c := H(f)$. It remains to show that either $\Phi(f, c) =^\infty h$ or $\Phi^*(f, c) = \Phi(f, 1 - c) =^\infty h$.
- ⑤ Let $n \in A$, then there is a $j \in 2$ with

$$h(n, i(n)) = (p_0(h(n, i(n))), j) = (\tilde{h}(n), j) = (f(n), j).$$

- ⑥ Hence, either

$$h(n, i(n)) = \Phi(f, c)(n, i(n)) \quad \text{or} \quad h(n, i(n)) = \Phi^*(f, c)(n, i(n)).$$

Reduction theorem for cofinitary groups

This finishes the proof of our theorem:

Theorem (S., Millhouse, 2025)

If there is a Σ_2^1 maximal eventually different family of permutations, then there is a Π_1^1 maximal eventually different family of permutations of the same size.

Reduction theorem for cofinitary groups

This finishes the proof of our theorem:

Theorem (S., Millhouse, 2025)

If there is a Σ_2^1 maximal eventually different family of permutations, then there is a Π_1^1 maximal eventually different family of permutations of the same size.

We also came up with other ideas to obtain similar results for

- ① Van Douwen families,
- ② free generating sets of (strongly) maximal cofinitary groups,
- ③ maximal ideal independent families.

Definition

An eventually different family of functions $F \subseteq {}^\omega\omega$ is called **Van Douwen** iff for every infinite partial function $h : \omega \xrightarrow{\text{partial}} \omega$ there is an $f \in F$ with $h =^\infty f$.

Definition

An eventually different family of functions $F \subseteq {}^\omega\omega$ is called **Van Douwen** iff for every infinite partial function $h : \omega \xrightarrow{\text{partial}} \omega$ there is an $f \in F$ with $h =^\infty f$.

Theorem (Raghavan, 2010, [12])

There always is a Van Douwen family, but never an analytic one.

Definition

An eventually different family of functions $F \subseteq {}^\omega\omega$ is called **Van Douwen** iff for every infinite partial function $h : \omega \xrightarrow{\text{partial}} \omega$ there is an $f \in F$ with $h =^\infty f$.

Theorem (Raghavan, 2010, [12])

There always is a Van Douwen family, but never an analytic one.

Theorem (S., Millhouse, 2025)

If there is a Σ_2^1 Van Douwen family, then there is a Π_1^1 Van Douwen family of the same size.

Cofinitary groups

Let $G \subseteq S_\omega$ be an eventually different family of permutations. Then, G need not be a group. It may fail to be closed under inverses or concatenation.

Cofinitary groups

Let $G \subseteq S_\omega$ be an eventually different family of permutations. Then, G need not be a group. It may fail to be closed under inverses or concatenation.

Definition

If G is additionally a group (with concatenation) we say that G is a **cofinitary group**.

Cofinitary groups

Let $G \subseteq S_\omega$ be an eventually different family of permutations. Then, G need not be a group. It may fail to be closed under inverses or concatenation.

Definition

If G is additionally a group (with concatenation) we say that G is a **cofinitary group**. G is called **maximal** if G is maximal with respect to inclusion.

Definition

$$\alpha_g := \min \{ |G| \mid G \text{ is a maximal cofinitary group} \}$$

Cofinitary groups

Let $G \subseteq S_\omega$ be an eventually different family of permutations. Then, G need not be a group. It may fail to be closed under inverses or concatenation.

Definition

If G is additionally a group (with concatenation) we say that G is a **cofinitary group**. G is called **maximal** if G is maximal with respect to inclusion.

Definition

$$\alpha_g := \min \{ |G| \mid G \text{ is a maximal cofinitary group} \}$$

Observation

A group $G \subseteq S_\omega$ is cofinitary iff every element is either the identity or only has finitely many fixpoints.

Definition

Let $G \subseteq S_\omega$ be a group and $G_0 \subseteq G$. Then G is a **generating set** if $G = \langle G_0 \rangle$, where $\langle G_0 \rangle$, is the group generated by G_0 .

Definability of cofinitary groups

Definition

Let $G \subseteq S_\omega$ be a group and $G_0 \subseteq G$. Then G is a **generating set** if $G = \langle G_0 \rangle$, where $\langle G_0 \rangle$, is the group generated by G_0 .

For cofinitary groups its often easier to provide a definable generating set instead of the whole group. If G_0 is definable, also G is definable from G_0 , however its complexity may be higher.

Definability of cofinitary groups

Definition

Let $G \subseteq S_\omega$ be a group and $G_0 \subseteq G$. Then G is a **generating set** if $G = \langle G_0 \rangle$, where $\langle G_0 \rangle$, is the group generated by G_0 .

For cofinitary groups its often easier to provide a definable generating set instead of the whole group. If G_0 is definable, also G is definable from G_0 , however its complexity may be higher.

Observation

Recursively, it is easy to construct a Σ_2^1 generating set for a maximal cofinitary group in L using the Δ_2^1 well-order.

Definability of cofinitary groups

Theorem (Gao, Zhang, 2008 [5])

In \mathbb{L} there is a Π_1^1 generating set for a maximal cofinitary group.

Definability of cofinitary groups

Theorem (Gao, Zhang, 2008 [5])

In \mathbb{L} there is a Π_1^1 generating set for a maximal cofinitary group.

Theorem (Kastermans, 2009 [8])

In \mathbb{L} there is a Π_1^1 maximal cofinitary group. Furthermore, no K_σ cofinitary group can be maximal.

Definability of cofinitary groups

Theorem (Gao, Zhang, 2008 [5])

In L there is a Π_1^1 generating set for a maximal cofinitary group.

Theorem (Kastermans, 2009 [8])

In L there is a Π_1^1 maximal cofinitary group. Furthermore, no K_σ cofinitary group can be maximal.

Theorem (Horowitz, Shelah, 2016 [6])

In ZF there is a Borel maximal cofinitary group (and a Borel maximal eventually different family).

Reduction theorem for cofinitary groups

Theorem (S., Millhouse, 2025)

If there is a Σ_2^1 generating set for a free maximal cofinitary group, which is also maximal as an eventually different family of permutations, then there also is a Π_1^1 generating set for a maximal cofinitary group of the same size, which is also maximal as an eventually different family of permutations.

Reduction theorem for cofinitary groups

Theorem (S., Millhouse, 2025)

If there is a Σ_2^1 generating set for a free maximal cofinitary group, which is also maximal as an eventually different family of permutations, then there also is a Π_1^1 generating set for a maximal cofinitary group of the same size, which is also maximal as an eventually different family of permutations.

Corollary

If there is a Σ_2^1 generating set for a free tight cofinitary group, then there is a Π_1^1 generating set for a maximal cofinitary group of the same size.

Reduction theorem for cofinitary groups

Theorem (S., Millhouse, 2025)

If there is a Σ_2^1 generating set for a free maximal cofinitary group, which is also maximal as an eventually different family of permutations, then there also is a Π_1^1 generating set for a maximal cofinitary group of the same size, which is also maximal as an eventually different family of permutations.

Corollary

If there is a Σ_2^1 generating set for a free tight cofinitary group, then there is a Π_1^1 generating set for a maximal cofinitary group of the same size.

Question

If there is a Σ_2^1 maximal cofinitary group, is there is a Π_1^1 maximal cofinitary group of the same size?

Proof sketch

- ① Fix a Σ_2^1 generating set F for a free maximal cofinitary group $G = \langle F \rangle$, which is also maximal as an eventually different family of permutations and a Π_1^1 partial function $H \subseteq {}^\omega\omega \times {}^\omega 2$ as before.

Proof sketch

- ① Fix a Σ_2^1 generating set F for a free maximal cofinitary group $G = \langle F \rangle$, which is also maximal as an eventually different family of permutations and a Π_1^1 partial function $H \subseteq {}^\omega\omega \times {}^\omega 2$ as before.
- ② Again, we define $\hat{F} := \Phi[H] \cup \Phi^*[H]$ and let $\hat{G} = \langle \hat{F} \rangle$.

Proof sketch

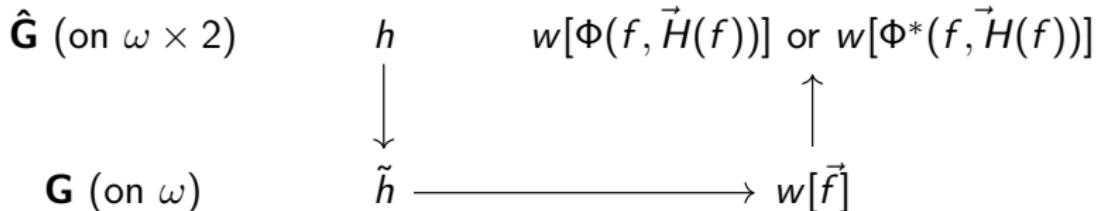
- ① Fix a Σ_2^1 generating set F for a free maximal cofinitary group $G = \langle F \rangle$, which is also maximal as an eventually different family of permutations and a Π_1^1 partial function $H \subseteq {}^\omega\omega \times {}^\omega 2$ as before.
- ② Again, we define $\hat{F} := \Phi[H] \cup \Phi^*[H]$ and let $\hat{G} = \langle \hat{F} \rangle$.
- ③ It remains to show that \hat{G} is cofinitary,

Proof sketch

- ① Fix a Σ_2^1 generating set F for a free maximal cofinitary group $G = \langle F \rangle$, which is also maximal as an eventually different family of permutations and a Π_1^1 partial function $H \subseteq {}^\omega\omega \times {}^\omega 2$ as before.
- ② Again, we define $\hat{F} := \Phi[H] \cup \Phi^*[H]$ and let $\hat{G} = \langle \hat{F} \rangle$.
- ③ It remains to show that \hat{G} is cofinitary,
- ④ ... and \hat{G} is maximal as an eventually different family of permutations.

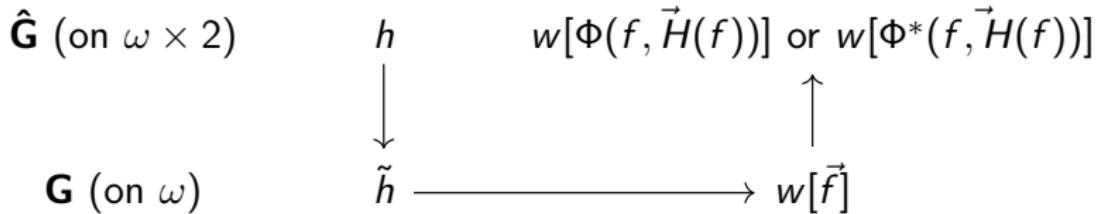
Proof sketch

- ① Fix a Σ_2^1 generating set F for a free maximal cofinitary group $G = \langle F \rangle$, which is also maximal as an eventually different family of permutations and a Π_1^1 partial function $H \subseteq {}^\omega\omega \times {}^\omega 2$ as before.
- ② Again, we define $\hat{F} := \Phi[H] \cup \Phi^*[H]$ and let $\hat{G} = \langle \hat{F} \rangle$.
- ③ It remains to show that \hat{G} is cofinitary,
- ④ ... and \hat{G} is maximal as an eventually different family of permutations.



Proof sketch

- ① Fix a Σ_2^1 generating set F for a free maximal cofinitary group $G = \langle F \rangle$, which is also maximal as an eventually different family of permutations and a Π_1^1 partial function $H \subseteq {}^\omega\omega \times {}^\omega 2$ as before.
- ② Again, we define $\hat{F} := \Phi[H] \cup \Phi^*[H]$ and let $\hat{G} = \langle \hat{F} \rangle$.
- ③ It remains to show that \hat{G} is cofinitary,
- ④ ... and \hat{G} is maximal as an eventually different family of permutations.



Crucially, we can find a natural surjective group homomorphism $\Psi : \hat{G} \rightarrow G$ and compute its kernel as $\{\text{id}, \tau\}$, where $\tau(n, i) := (n, 1 - i)$ is the flip map. This also implies that $\hat{G} \cong G \times \mathbb{Z}/2$.

Definition

A family $\mathcal{I} \subseteq [\omega]^\omega$ is called ideal independent iff for every $A \in \mathcal{I}$ and $\mathcal{I}_0 \in [\mathcal{I}]^{<\omega}$ we have that $A \not\subseteq^* \bigcup \mathcal{I}_0$.

Definition

A family $\mathcal{I} \subseteq [\omega]^\omega$ is called ideal independent iff for every $A \in \mathcal{I}$ and $\mathcal{I}_0 \in [\mathcal{I}]^{<\omega}$ we have that $A \not\subseteq^* \bigcup \mathcal{I}_0$. \mathcal{I} is called **maximal** if \mathcal{I} is maximal with respect to inclusion.

Definition

Again, we define a cardinal invariant:

$$s_{mm} := \min \{ |\mathcal{I}| \mid \mathcal{I} \text{ is a maximal ideal independent family} \}$$

Observation

Mad families and maximal independent families are ideal independent, but neither have to be maximal as an ideal independent family.

Reduction theorem for ideal independent families

Theorem (Bardyla, Cancino, Fischer, Switzer, 2025, [1])

(CH) *There is a maximal ideal independent family indestructible by any proper, ω^ω -bounding, p -point preserving forcing.*

Reduction theorem for ideal independent families

Theorem (Bardyla, Cancino, Fischer, Switzer, 2025, [1])

(CH) *There is a maximal ideal independent family indestructible by any proper, ${}^{\omega}\omega$ -bounding, p -point preserving forcing.*

Theorem (S., Millhouse, 2025)

If there is a Σ_2^1 maximal ideal independent family, then there also is a Π_1^1 maximal ideal independent family of the same size.

Reduction theorem for ideal independent families

Theorem (Bardyla, Cancino, Fischer, Switzer, 2025, [1])

(CH) *There is a maximal ideal independent family indestructible by any proper, ω^ω -bounding, p -point preserving forcing.*

Theorem (S., Millhouse, 2025)

If there is a Σ_2^1 maximal ideal independent family, then there also is a Π_1^1 maximal ideal independent family of the same size.

Corollary

Consistently, $\aleph_1 = \mathfrak{s}_{mm} < \mathfrak{c}$ with a Π_1^1 witness for \mathfrak{s}_{mm} .

Proof sketch

- ① Fix a Σ_2^1 maximal ideal independent family \mathcal{I} and a Π_1^1 partial function $H \subseteq [\omega]^\omega \times [\omega]^\omega$ as before.

Proof sketch

- ① Fix a Σ_2^1 maximal ideal independent family \mathcal{I} and a Π_1^1 partial function $H \subseteq [\omega]^\omega \times [\omega]^\omega$ as before.
- ② Define a function $\Psi : [\omega]^\omega \times [\omega]^\omega \rightarrow [\omega]^\omega$ and $z \in [\omega]^\omega$ by

$$\begin{aligned}\Psi(x, c) &:= 3x \cup (3c + 1) \\ z &:= (3\omega + 1) \cup (3\omega + 2)\end{aligned}$$

Proof sketch

- ① Fix a Σ_2^1 maximal ideal independent family \mathcal{I} and a Π_1^1 partial function $H \subseteq [\omega]^\omega \times [\omega]^\omega$ as before.
- ② Define a function $\Psi : [\omega]^\omega \times [\omega]^\omega \rightarrow [\omega]^\omega$ and $z \in [\omega]^\omega$ by

$$\begin{aligned}\Psi(x, c) &:= 3x \cup (3c + 1) \\ z &:= (3\omega + 1) \cup (3\omega + 2)\end{aligned}$$

- ③ Define $\mathcal{J} := \Psi[H] \cup \{z\}$.

Proof sketch

- ① Fix a Σ_2^1 maximal ideal independent family \mathcal{I} and a Π_1^1 partial function $H \subseteq [\omega]^\omega \times [\omega]^\omega$ as before.
- ② Define a function $\Psi : [\omega]^\omega \times [\omega]^\omega \rightarrow [\omega]^\omega$ and $z \in [\omega]^\omega$ by

$$\begin{aligned}\Psi(x, c) &:= 3x \cup (3c + 1) \\ z &:= (3\omega + 1) \cup (3\omega + 2)\end{aligned}$$

- ① Define $\mathcal{J} := \Psi[H] \cup \{z\}$.
- ② It is not too difficult to show that \mathcal{J} is maximal ideal independent and Π_1^1 .

Summary

Invariant	Borel	$\Pi_1^1 + \neg \mathbf{CH}$	$\Sigma_2^1 \Rightarrow \Pi_1^1$
a	No	Yes	Yes
a_v	No	Yes	?
a_e	Yes	Yes	Yes
a_p	Yes	Yes	?
a_g	Yes	Yes	?
s_{mm}	?	?	?

Summary

Invariant	Borel	$\Pi_1^1 + \neg \text{CH}$	$\Sigma_2^1 \Rightarrow \Pi_1^1$
a	No	Yes	Yes
a_v	No	Yes	Yes
a_e	Yes	Yes	Yes
a_p	Yes	Yes	Yes
a_g	Yes	Yes	Yes*
s_{mm}	?	Yes	Yes

*under extra assumptions and only for the generators

References I

Serhii Bardyla, Jonathan Cancino-Manríquez, Vera Fischer, and Corey Bacal Switzer.
Filters, ideal independence and ideal Mrówka spaces.
Transactions of the American Mathematical Society, 378(8):5423–5439, 2025.

Jeffrey Bergfalk, Vera Fischer, and Corey B. Switzer.
Projective well orders and coanalytic witnesses.
Annals of Pure and Applied Logic, 173(8):103–135, 2022.

Vera Fischer and Jonathan Schilhan.
Definable towers.
Fundamenta Mathematicae, 256, 01 2021.

Vera Fischer and David Schrittesser.
A Sacks indestructible co-analytic maximal eventually different family.
Fundamenta Mathematicae, 252:179–201, 2021.

Su Gao and Yi Zhang.
Definable sets of generators in maximal cofinitary groups.
Advances in Mathematics, 217(2):814–832, 2008.

Haim Horowitz and Saharon Shelah.
A Borel maximal cofinitary group.
The Journal of Symbolic Logic, pages 1–14, 2023.

Jörg Brendle, Vera Fischer, Yurii, and Khomskii.
Definable maximal independent families.
Proceedings of the American Mathematical Society, 147:1, 12 2018.

Bart Kastermans.
The Complexity of Maximal Cofinitary Groups.
Proceedings of the American Mathematical Society, 137(1):307–316, 2009.

References II

A.R.D. Mathias.

Happy families.

Annals of Mathematical Logic, 12(1):59–111, 1977.

Arnold W. Miller.

Infinite combinatorics and definability.

Annals of Pure and Applied Logic, 41(2):179–203, 1989.

Julia Millhouse.

Reducing projective complexity: an overview.

RIMS Kôkyûroku, 2315, 10 2024.

Dilip Raghavan.

There is a Van Douwen family.

Transactions of the American Mathematical Society, 362(11):5879–5891, 2010.

Asger Törnquist.

Σ^1_2 and Π^1_3 mad families.

Journal of Symbolic Logic, 78(4):1181–1182, 2013.

Thank you for your attention!