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Combinatorial and descriptive set theory

1 In combinatorial set theory the possible sizes of certain special
families of real numbers are studied.

2 Usually special means maximal with respect to some combinatorial or
topological property.

3 The minimal sizes of such special families are called cardinal
characteristics and their relations give rise to a very rich and
complicated theory:
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Combinatorial and descriptive set theory

1 Descriptive set theory is the study of the complexity of subsets of
Polish spaces.

2 Above the Borel hierarchy, we have the projective hierarchy:

Σ1
1 Σ1

2 . . . Σ1
n . . .

∆1
1 ∆1

2 . . . ∆1
n+1 . . .

Π1
1 Π1

2 . . . Π1
n . . .
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Combinatorial and descriptive set theory

On the intersection of both fields we may study the following questions:

1 What is the minimal complexity of various special families of reals?

2 In models separating cardinal characteristics x < y, can we
additionally have witnesses for x and y of minimal complexity?

3 Given a special family of some complexity, can we construct a special
family of lower complexity from it?
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Example: Definability of mad families

Theorem (Mathias, 1977, [9])

There are no analytic (i.e. Σ1
1) mad families.

In L one may easily construct a Σ1
2 mad family using the ∆1

2-definable well-
order of the reals given by the structure of L.

Theorem (Miller, 1989, [10])

In L there is a co-analytic (i.e. Π1
1) mad family.

This result was improved in many papers to obtain various co-analytic forc-
ing indestructible mad families. In particular we have

Theorem (Bergfalk, Fischer, Switzer, 2022, [2])

In L there is a co-analytic tight mad family.
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Example: Definability of mad families - a shortcut

For example this implies the following for the Miller model over L:

Corollary (Bergfalk, Fischer, Switzer, 2022, [2])

Consistently, ℵ1 = a < d = ℵ2 and there is a Π1
1 witness for a = ℵ1.

However, Törnquist discovered the following shortcut:

Theorem (Törnquist, 2013 [13])

If there is a Σ1
2 mad family, then there is Π1

1 mad family of the same size.

In particular, a Σ1
2 witness for a immediately implies a Π1

1 witness for a.
This gives an easier proof for the existence of a co-analytic mad family in
L, but also for forcing extensions over L...
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Example: Definability of mad families - a shortcut

Let P be a forcing, for which we know how to construct a P-indestructible
mad family (Sacks, Miller, Laver, random, etc.).

1 Start in L.

2 Use the ∆1
2-wellorder to recursively construct a Σ1

2 P-indestructible
mad family A.

3 Force with P.

4 Then A is still maximal in the generic extension and has the same
Σ1

2-definition by the absoluteness of L.

5 Apply Törnquist’s result in the generic extension, to obtain a Π1
1 mad

family of size ℵ1.

Hence, in P-extensions over L there is a co-analytic witness for a = ℵ1.
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Shortcuts for other families

Analogous shortcuts of the form Σ1
2 =⇒ Π1

1 are now known for others
types of families, e.g.

1 maximal independent families - i
(Brendle, Fischer, Khomskii, 2018, [7]),

2 maximal eventually different families of functions - ae

(Fischer, Schrittesser, 2021, [4]),

3 towers - t
(Fischer, Schilhan, 2021, [3]),

4 Hausdorff gaps
(Millhouse, 2024, [11])

Our goal was to prove similar shortcuts for various relatives of ae and the
ideal-independence number smm.
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How does the shortcut work?

Theorem (Törnquist, 2013 [13])

If there is a Σ1
2 mad family, then there is Π1

1 mad family of the same size.

1 Let A be a Σ1
2 mad family.

2 By Π1
1-uniformization we may assume that A is the projection of a Π1

1

partial function H ⊆ [ω]ω × ω2 to the first component.

3 Basically, every member A ∈ A gets assigned a code H(A) ∈ ω2.

4 Come up with a continuous map Φ : [ω]ω × ω2→ [ω]ω which is
recursively invertible and such that B = Φ[H] is a mad family.

5 Basically, for every A ∈ [ω]ω and c ∈ ω2 we need to be able to
definably reconstruct A and c from Φ(A, c).

6 Finally, the Spector-Gandy-Theorem shows that B is in fact Π1
1:

B ∈ B ⇐⇒ ∃(A, c) ∈ ∆1
1(B) ((A, c) ∈ H and Φ(A, c) = B)
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How does the shortcut work?

A

B

Φ : [ω]ω × ω2→ [ω]ω

C

(C ,H(C ))

B

(B,H(B))

A

(A,H(A))

Φ(C ,H(C ))

Φ(B,H(B))

Φ(A,H(A))

Lukas Schembecker (Uni Hamburg) Definability of families of functions 23.01.2026 10 / 35



How does the shortcut work?

A

B

Φ : [ω]ω × ω2→ [ω]ω

C

(C ,H(C ))

B

(B,H(B))

A

(A,H(A))

Φ(C ,H(C ))

Φ(B,H(B))

Φ(A,H(A))

Lukas Schembecker (Uni Hamburg) Definability of families of functions 23.01.2026 10 / 35



How does the shortcut work?

A B

Φ : [ω]ω × ω2→ [ω]ω

C

(C ,H(C ))

B

(B,H(B))

A

(A,H(A))

Φ(C ,H(C ))

Φ(B,H(B))

Φ(A,H(A))

Lukas Schembecker (Uni Hamburg) Definability of families of functions 23.01.2026 10 / 35



How does the shortcut work?

A B

Φ : [ω]ω × ω2→ [ω]ω

C

(C ,H(C ))

B

(B,H(B))

A

(A,H(A))

Φ(C ,H(C ))

Φ(B,H(B))

Φ(A,H(A))

Lukas Schembecker (Uni Hamburg) Definability of families of functions 23.01.2026 10 / 35



Eventually different families

Definition

Two functions f , g ∈ ωω are said to be eventually different if their
graphs have finite intersection.

A family F ⊆ ωω is eventually different if
all its members are pairwise eventually different. F is called maximal if F
is maximal with respect to inclusion.

Definition

ae := min {|F | | F is a maximal eventually different family}

Further, a maximal eventually different family of size ae is said to be a
witness for that cardinal characteristic.
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Eventually different families of permutations

Let Sω denote the set of all permutations on ω. This is a group together
with concatenation.

Similarly, we define

Definition

A family F ⊆ Sω is an eventually different family of permutations if all
its members are pairwise eventually different. F is called maximal if F is
maximal with respect to inclusion.

Definition

Again, we define the cardinal invariant:

ap := min{|F | |F is a maximal eventually different

family of permutations}
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Definability of eventually different families of permutations

Contrary to mad families there always is a maximal eventually different
family of permutations of low complexity.

Theorem (Horowitz, Shelah, 2016, [6])

There is a Borel maximal eventually different family of permutations.

The goal of this talk is to prove the following theorem:

Theorem (S., Millhouse, 2025)

If there is a Σ1
2 maximal eventually different family of permutations, then

there is a Π1
1 maximal eventually different family of permutations of the

same size.
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Proof of the Theorem

1 Fix a Σ1
2 maximal eventually different family F and a Π1

1 partial
function H ⊆ ωω × ω2 as before.

2 Remember, we have to construct a continuous map
Φ : ωω × ω2→ ωω which is recursively invertible and such that
G = Φ[H] is a maximal eventually different family of permutations.

3 We may visualize a permutation f as the union of chains and cycles:

. . . 2 42 5 . . .

1 9 37

4

0 6

38
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Visualization of the function Φ

For simplicity we just consider one chain

. . . n0 n1 n2 n3 . . .
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Visualization of the function Φ

First we duplicate both the domain and range of the function, but keep the
structure of f on both copies. (Thus, the new domain and range is ω × 2)

. . . n0 n1 n2 n3 . . .

. . . n0 n1 n2 n3 . . .
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Visualization of the function Φ

Next, we need to adapt this permutation, so that it codes a real c ∈ 2ω,
but still is a permutation and keeps the structure of f :

. . . n0 n1 n2 n3 . . .

. . . n0 n1 n2 n3 . . .
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Visualization of the function Φ

Key Idea: At place n flip both functions values iff c(n) = 1:

. . . n0 n1 n2 n3 . . .

. . . n0 n1 n2 n3 . . .
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Visualization of the function Φ

For example, if c(n0) = 1, c(n1) = 0 and c(n2) = 1 we get:

. . . n0 n1 n2 n3 . . .

. . . n0 n1 n2 n3 . . .
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Visualization of the function Φ

This gives us Φ(f , c) from which we can clearly decode f and c again. It is
also easy to see that Φ[H] will still be eventually different.

. . . n0 n1 n2 n3 . . .

. . . n0 n1 n2 n3 . . .

Lukas Schembecker (Uni Hamburg) Definability of families of functions 23.01.2026 14 / 35



Visualization of the function Φ

The more difficult part of the proof is the maximality of Φ[H]. In fact, Φ[H]
will NOT be maximal!

. . . n0 n1 n2 n3 . . .

. . . n0 n1 n2 n3 . . .
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Visualization of the function Φ

Note that Φ(f , 1− c) is everywhere different from Φ(f , c):

. . . n0 n1 n2 n3 . . .

. . . n0 n1 n2 n3 . . .
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Definition of G

1 So instead we define G := Φ[H] ∪ Φ∗[H], where
Φ∗(f , c) := Φ(f , 1− c) = is the flipped version of Φ.

2 A short argument shows that G is an eventually different family of
permutations on ω × 2 and G is Π1

1 as the union of two Π1
1-sets.

3 It remains to prove maximality of G , so fix h : ω × 2→ ω × 2, then
we will show the following

G (on ω × 2) h

F (on ω)
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Φ∗(f , c) := Φ(f , 1− c) = is the flipped version of Φ.

2 A short argument shows that G is an eventually different family of
permutations on ω × 2 and G is Π1

1 as the union of two Π1
1-sets.

3 It remains to prove maximality of G , so fix h : ω × 2→ ω × 2, then
we will show the following

G (on ω × 2) h

F (on ω) h̃

We will define a certain permutation h̃ on ω from h.
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Definition of G

1 So instead we define G := Φ[H] ∪ Φ∗[H], where
Φ∗(f , c) := Φ(f , 1− c) = is the flipped version of Φ.

2 A short argument shows that G is an eventually different family of
permutations on ω × 2 and G is Π1

1 as the union of two Π1
1-sets.

3 It remains to prove maximality of G , so fix h : ω × 2→ ω × 2, then
we will show the following

G (on ω × 2) h

F (on ω) h̃ f

By maximality of F choose f ∈ F with h̃ =∞ f .
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Definition of G

1 So instead we define G := Φ[H] ∪ Φ∗[H], where
Φ∗(f , c) := Φ(f , 1− c) = is the flipped version of Φ.

2 A short argument shows that G is an eventually different family of
permutations on ω × 2 and G is Π1

1 as the union of two Π1
1-sets.

3 It remains to prove maximality of G , so fix h : ω × 2→ ω × 2, then
we will show the following

G (on ω × 2) h Φ(f ,H(f )) or Φ∗(f ,H(f ))

F (on ω) h̃ f

Finally, we will either have h =∞ Φ(f ,H(f )) or h =∞ Φ∗(f ,H(f )).
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How to define h̃ from h?

1 Note that the function h will in general not have a nice symmetric
structure like the elements of G .

2 Nevertheless, in some sense we want the map h 7→ h̃ to behave
roughly like an inverse to Φ.

3 Naively, one could try to define h̃(n) := p0(h(n, 0)), however there is
no reason why this should define a permutation.

4 Instead we will find a function i : ω → 2, such that
h̃(n) := p0(h(n, i(n))) defines a permutation.

5 To this end, note that the function g : ω × 2→ ω defined by
g(n, i) := p0(h(n, i)) is 2-to-1, i.e. every n ∈ ω has exactly two
preimages.
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Crucial lemma

Lemma

Assume that g : ω × 2→ ω is 2-to-1. Then there is a function i : ω → 2,
such that h̃(n) := g(n, i(n)) is a permutation.

Proof.

We define a bipartite graph with possible multi-edges:

1 We have countably many left {Ln | n ∈ ω} and right {Rn | n ∈ ω}
nodes.

2 For each n ∈ ω and i ∈ 2 we have an edge en,i between Ln and Rg(n,i).

By construction, every Ln has degree 2. Since g is 2-to-1, also every Rn

has degree 2, i.e. the graph is 2-regular.
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Crucial lemma

Reminder: For n ∈ ω and i ∈ 2 we have an edge en,i between Ln and Rg(n,i).

Proof.

Choose a perfect matching P of our graph and define

i(n) := i iff en,i ∈ P.

Note that en,0 and en,1 are the only edges incident to Ln. Hence, exactly
one of them is in P and i(n) is well-defined.
Finally, it remains to see that h̃(n) := g(n, i(n)) is a permutation.
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Crucial lemma

Reminder: For n ∈ ω and i ∈ 2 we have an edge en,i between Ln and Rg(n,i),

i(n) := i iff en,i ∈ P and h̃(n) = g(n, i(n)).

Proof.

So assume h̃(n) = g(n, i(n)) = g(m, i(m)) = h̃(m).

Then, by definition both en,i(n) and em,i(m) are in P. But they are both
incident to Rg(n,i(n)) = Rg(m,i(m)) and thus have to be equal. Hence,

n = m and h̃ is injective.

Now, let m ∈ ω. Since, P is perfect there is an edge en,i incident to Rm in
P. But en,i is incident Rg(n,i), so we have g(n, i(n)) = m. Hence,

h̃(n) = m and h̃ is surjective.
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Continuation of maximality

1 Reminder: We started with a permutation h : ω × 2→ ω × 2.

2 By the previous lemma we may choose i : ω → 2 such that
h̃(n) := p0(h(n, i(n))) is a permutation on ω.

3 By maximality of F choose f ∈ F and A ∈ [ω]ω with f �A = h̃ �A.

4 Let c := H(f ). It remains to show that either Φ(f , c) =∞ h or
Φ∗(f , c) = Φ(f , 1− c) =∞ h.

5 Let n ∈ A, then there is a j ∈ 2 with

h(n, i(n)) = (p0(h(n, i(n))), j) = (h̃(n), j) = (f (n), j).

6 Hence, either

h(n, i(n)) = Φ(f , c)(n, i(n)) or h(n, i(n)) = Φ∗(f , c)(n, i(n)).
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Reduction theorem for cofinitary groups

This finishes the proof of our theorem:

Theorem (S., Millhouse, 2025)

If there is a Σ1
2 maximal eventually different family of permutations, then

there is a Π1
1 maximal eventually different family of permutations of the

same size.

We also came up with other ideas to obtain similar results for

1 Van Douwen families,

2 free generating sets of (strongly) maximal cofinitary groups,

3 maximal ideal independent families.
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Van Douwen families

Definition

An eventually different family of functions F ⊆ ωω is called Van Douwen

iff for every infinite partial function h : ω
partial−→ ω there is an f ∈ F with

h =∞ f .

Theorem (Raghavan, 2010, [12])

There always is a Van Douwen family, but never an analytic one.

Theorem (S., Millhouse, 2025)

If there is a Σ1
2 Van Douwen family, then there is a Π1

1 Van Douwen family
of the same size.
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Cofinitary groups

Let G ⊆ Sω be an eventually different family of permutations. Then, G need
not be a group. It may fail to be closed under inverses or concatenation.

Definition

If G is additionally a group (with concatenation) we say that G is a
cofinitary group. G is called maximal if G is maximal with respect to
inclusion.

Definition

ag := min {|G | | G is a maximal cofinitary group}

Observation

A group G ⊆ Sω is cofinitary iff every element is either the identity or only
has finitely many fixpoints.
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Definability of cofinitary groups

Definition

Let G ⊆ Sω be a group and G0 ⊆ G . Then G is a generating set if
G = 〈G0〉, where 〈G0〉, is the group generated by G0.

For cofinitary groups its often easier to provide a definable generating set
instead of the whole group. If G0 is definable, also G is definable from G0,
however its complexity may be higher.

Observation

Recursively, it is easy to construct a Σ1
2 generating set for a maximal

cofinitary group in L using the ∆1
2 well-order.
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Definability of cofinitary groups

Theorem (Gao, Zhang, 2008 [5])

In L there is a Π1
1 generating set for a maximal cofinitary group.

Theorem (Kastermans, 2009 [8])

In L there is a Π1
1 maximal cofinitary group. Furthermore, no Kσ cofinitary

group can be maximal.

Theorem (Horowitz, Shelah, 2016 [6])

In ZF there is a Borel maximal cofinitary group (and a Borel maximal
eventually different family).
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Reduction theorem for cofinitary groups

Theorem (S., Millhouse, 2025)

If there is a Σ1
2 generating set for a free maximal cofinitary group, which is

also maximal as an eventually different family of permutations, then there
also is a Π1

1 generating set for a maximal cofinitary group of the same size,
which is also maximal as an eventually different family of permutations.

Corollary

If there is a Σ1
2 generating set for a free tight cofinitary group, then there

is a Π1
1 generating set for a maximal cofinitary group of the same size.

Question

If there is a Σ1
2 maximal cofinitary group, is there is a Π1

1 maximal
cofinitary group of the same size?
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Proof sketch

1 Fix a Σ1
2 generating set F for a free maximal cofinitary group

G = 〈F 〉, which is also maximal as an eventually different family of
permutations and a Π1

1 partial function H ⊆ ωω × ω2 as before.

2 Again, we define F̂ := Φ[H] ∪ Φ∗[H] and let Ĝ = 〈F̂ 〉.
3 It remains to show that Ĝ is cofinitary,

4 . . . and Ĝ is maximal as an eventually different family of permutations.

Ĝ (on ω × 2) h w [ ~Φ(f ,H(f ))] or w [ ~Φ∗(f ,H(f ))]

G (on ω) h̃ w [~f ]

Crucially, we can find a natural surjective group homomorphism Ψ : Ĝ → G
and compute its kernel as {id, τ}, where τ(n, i) := (n, 1− i) is the flip map.
This also implies that Ĝ ∼= G × Z/2.
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Ĝ (on ω × 2) h w [ ~Φ(f ,H(f ))] or w [ ~Φ∗(f ,H(f ))]

G (on ω) h̃ w [~f ]

Crucially, we can find a natural surjective group homomorphism Ψ : Ĝ → G
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Ideal independent families

Definition

A family I ⊆ [ω]ω is called ideal independent iff for every A ∈ I and
I0 ∈ [I]<ω we have that A 6⊆∗

⋃
I0.

I is called maximal if I is maximal
with respect to inclusion.

Definition

Again, we define a cardinal invariant:

smm := min {|I| | I is a maximal ideal independent family}

Observation

Mad families and maximal independent families are ideal independent, but
neither have to be maximal as an ideal independent family.
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Reduction theorem for ideal independent families

Theorem (Bardyla, Cancino, Fischer, Switzer, 2025, [1])

(CH) There is a maximal ideal independent family indestructible by any
proper, ωω-bounding, p-point preserving forcing.

Theorem (S., Millhouse, 2025)

If there is a Σ1
2 maximal ideal independent family, then there also is a Π1

1

maximal ideal independent family of the same size.

Corollary

Consistently, ℵ1 = smm < c with a Π1
1 witness for smm.
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Proof sketch

1 Fix a Σ1
2 maximal ideal independent family I and a Π1

1 partial
function H ⊆ [ω]ω × [ω]ω as before.

2 Define a function Ψ : [ω]ω × [ω]ω → [ω]ω and z ∈ [ω]ω by

Ψ(x , c) := 3x ∪ (3c + 1)

z := (3ω + 1) ∪ (3ω + 2)

1 Define J := Ψ[H] ∪ {z}.
2 It is not too difficult to show that J is maximal ideal independent

and Π1
1.
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Proof sketch

1 Fix a Σ1
2 maximal ideal independent family I and a Π1

1 partial
function H ⊆ [ω]ω × [ω]ω as before.

2 Define a function Ψ : [ω]ω × [ω]ω → [ω]ω and z ∈ [ω]ω by

Ψ(x , c) := 3x ∪ (3c + 1)

z := (3ω + 1) ∪ (3ω + 2)

1 Define J := Ψ[H] ∪ {z}.
2 It is not too difficult to show that J is maximal ideal independent

and Π1
1.
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Summary

Invariant Borel Π1
1 + ¬CH Σ1

2 ⇒ Π1
1

a No Yes Yes

av No Yes ?

ae Yes Yes Yes

ap Yes Yes ?

ag Yes Yes ?

smm ? ? ?
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Summary

Invariant Borel Π1
1 + ¬CH Σ1

2 ⇒ Π1
1

a No Yes Yes

av No Yes Yes

ae Yes Yes Yes

ap Yes Yes Yes

ag Yes Yes Yes*

smm ? Yes Yes
*under extra assumptions and only for the generators
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Thank you for your attention!
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