Independence in Higher Baire Spaces

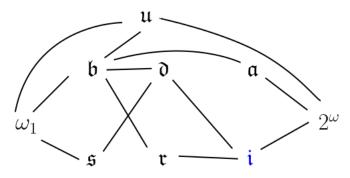
Anna Lenz
University of Hamburg
Vienna, Faculty of Mathematics

Supervisor: Assoz.-Professor Vera Fischer, Privatdoz., PhD.

November, 21th June, 18th 2025

Why are we interested?

- Understand models in which CH or GCH does not hold
- Many open questions



Goals

- $\bullet \ \textit{con}(\mathfrak{i}<\mathfrak{c}).$
- $con(i(\kappa) < 2^{\kappa})$

The countable independence number

Definition

A family $\mathcal{A} \subseteq [\omega]^{\omega}$ is called *independent* if for any two finite disjoint subfamilies $B, C \subseteq \mathcal{A}$ it holds that $|\bigcap_{A \in B} A \setminus (\bigcup_{A \in C} A)| = \omega$.

Example

 $\mathcal{A} = \{A_p : p \in \omega \text{ is a prime number}\} \text{ with } \\ A_p = \{n \in \omega : \exists k \text{ s.t } n = k \cdot p\} \text{ is a countable independent family.}$

The countable independence number

Definition

A family $\mathcal{A} \subseteq [\omega]^{\omega}$ is called *independent* if for any two finite disjoint subfamilies $B, C \subseteq \mathcal{A}$ it holds that $|\bigcap_{A \in B} A \setminus (\bigcup_{A \in C} A)| = \omega$.

Definition

- An independent family is called maximal if it is maximal under set inclusion.
- $i := \min\{|\mathcal{A}| : \mathcal{A} \subseteq [\omega]^{\omega} \text{ is maximal independent}\}$

Notation

If
$$A \subseteq \omega$$
, let $\underbrace{A^0 := A}$ and $\underbrace{A^1 := \omega \setminus A}$.

For $A \subseteq [\omega]^{\omega}$ let FF(A) consist of all partial functions h, such that

- $dom(h) \subseteq A$, finite
- $im(h) \subseteq \{0,1\}$

Then write A^h for $\bigcap \{A^{h(A)} \mid A \in dom(h)\}.$

Notation

If $A \subseteq \omega$, let $A^0 := A$ and $A^1 := \omega \setminus A$.

For $\mathcal{A}\subseteq [\omega]^\omega$ let $FF(\mathcal{A})$ consist of all partial functions h, such that

- $dom(h) \subseteq A$, finite
- $im(h) \subseteq \{0,1\}$

Then write A^h for $\bigcap \{A^{h(A)} \mid A \in dom(h)\}.$

Reformulation

A family A is independent if for all $h \in FF(A)$, $|A^h| = \omega$.

i is well defined!

Theorem

Every independent family is contained in a maximal independent family.

Proof

- Apply Zorn's Lemma
- Let $(A_i)_{i<\alpha}$ increasing chain of independent families.
- $A := \bigcup_{i < \alpha} A_i$
- Let $h \in FF(A)$ then $dom(h) \subseteq A_i$ for some $i < \alpha$
- Hence, $A^h = A_i^{h \upharpoonright A_i}$, which is infinite.

Some inequalities

Definition

- \bullet $\,\mathfrak d$ is the minimum cardinality of a dominating family
- t is the minimum cardinality of an unsplit family
- $\omega < \mathfrak{i}$
- $\mathfrak{d} \leq \mathfrak{i}$
- $\mathfrak{r} \leq \mathfrak{i}$
- \bullet $\mathfrak{i} \leq 2^{\omega}$ in fact there is a maximal independent family of size \mathfrak{c}

Motivation

Definition

An independent family \mathcal{A} is *densely maximal* if for every $X \subseteq \omega$ and every $h \in FF(\mathcal{A})$ there is $h' \supseteq h$, such that $|\mathcal{A}^{h'} \cap X| < \omega$ or $|\mathcal{A}^{h'} \setminus X| < \omega$.

Definition

An independent family \mathcal{A} is *densely maximal* if for every $X \subseteq \omega$ and every $h \in FF(\mathcal{A})$ there is $h' \supseteq h$, such that $|\mathcal{A}^{h'} \cap X| < \omega$ or $|\mathcal{A}^{h'} \setminus X| < \omega$.

Definition

Let \mathcal{A} be an independent family.

- The density filter is the set M for all $h \in FF(A)$.
- **2** The *density ideal* is the set $\{X \subseteq \omega \mid \omega \setminus X \in fil(A)\}$.

Lemma (STST 2024)

Let $\mathcal A$ be a (maximal) independent family. The following are equivalent:

- $oldsymbol{0}$ \mathcal{A} is densely maximal.
- For every $h \in FF(A)$ and every $X \subseteq A^h$ either $A^h \setminus X$ is in the density ideal or there is $h' \supseteq h$ such that $A^{h'} \subseteq A^h \setminus X$.

Definition

Let $\mathcal{F} \subseteq \mathcal{P}(\omega)$ be a filter, then

- \mathcal{F} is a *p-set* if for every countable $\mathcal{H} \subseteq \mathcal{F}$ there is $F \in \mathcal{F}$ such that $F \subseteq^* H$ for all $H \in \mathcal{H}$.
- $\mathcal F$ is a q-set if for every partition $\mathcal E$ of ω into finite sets there is $F\in\mathcal F$ such that $|F\cap E|\leq 1$ for every $E\in\mathcal E$
- \bullet \mathcal{F} is Ramsey if it is a p-set and a q-set.

Definition

Let $\mathcal{F} \subseteq \mathcal{P}(\omega)$ be a filter, then

- \mathcal{F} is a *p-set* if for every countable $\mathcal{H} \subseteq \mathcal{F}$ there is $F \in \mathcal{F}$ such that $F \subseteq^* H$ for all $H \in \mathcal{H}$.
- \mathcal{F} is a *q-set* if for every partition \mathcal{E} of ω into finite sets there is $F \in \mathcal{F}$ such that $|F \cap E| \leq 1$ for every $E \in \mathcal{E}$
- \bullet \mathcal{F} is *Ramsey* if it is a p-set and a q-set.

Definition

An independent family $\mathcal A$ is called *selective* if it is densely maximal and $\mathit{fil}(\mathcal A)$ is Ramsey.

Theorem (Shelah, 1992)

Selective independent families exist under *CH*.

Questions

- Does ZFC prove the existence of selective independent families?
- What about densely maximal ones?
- Is there a densely maximal independent family which is not selective?

Construction of a selective independent family

Definition

- Let $M \models CH$ c.t.m
- $\mathbb{P} := \{ (\mathcal{A}, \mathcal{A}) \mid \mathcal{A} \text{ countable independent family, } \mathcal{A} \subseteq \omega$ 7 and $|\mathcal{A}^h \cap \mathcal{A}| = \omega$ for all $h \in FF(\mathcal{A}) \}$.
- Let G be \mathbb{P} -generic and

$$A_G := \bigcup \{A \mid \exists A \subseteq \omega \text{ s.t } (A, A) \in G\}.$$

Construction of a selective independent family

Definition

- Let $M \models CH$ c.t.m
- $\mathbb{P}:=\{(\mathcal{A},A)\mid \mathcal{A} \text{ countable independent family, } A\subset \omega$ and $|\mathcal{A}^h \cap A| = \omega$ for all $h \in FF(\mathcal{A})$.
- Let G be \mathbb{P} -generic and $\mathcal{A}_G := \bigcup \{ \mathcal{A} \mid \exists A \subseteq \omega \text{ s.t } (\mathcal{A}, A) \in G \}.$

To show

- \bullet \bullet A_G is an independent family \triangleright
- 2 AG is densely maximal > density + Socing
- \bigcirc fil(\mathcal{A}_G) is a q-set

$fil(\mathcal{A}_G)$ is a p-set!

Let
$$\mathcal{F}_G := \{A \mid \exists \mathcal{A} \text{ such that } (\mathcal{A}, A) \in G\}$$

Lemma

 $\mathit{fil}(\mathcal{A}_G)$ is generated by $\mathcal{F}_G \cup \mathit{Fr}$ in fact for every $A \in \mathit{fil}(\mathcal{A}_G)$ exists $F \in \mathcal{F}_G$ such that $F \subseteq^* A$.

$fil(\mathcal{A}_G)$ is a p-set!

Let $\mathcal{F}_G := \{A \mid \exists A \text{ such that } (A, A) \in G\}$

Lemma

 $\mathit{fil}(\mathcal{A}_G)$ is generated by $\mathcal{F}_G \cup \mathit{Fr}$, in fact for every $A \in \mathit{fil}(\mathcal{A}_G)$ exists $F \in \mathcal{F}_G$ such that $F \subseteq^* A$.

- Suffices to show any countable subset of \mathcal{F}_G has a pseudo-intersection (in M[G]!).
- Assume not and let $\mathcal{H} \subset \mathcal{F}_G$ be countable subset without pseudo-intersection.
- Then there is $p \in G$ s.t $p \Vdash \forall X \in \mathcal{F}_G(\exists H \in \mathcal{H}(X \nsubseteq^* H))$.
- Enumerate $\mathcal{H} = \{H_i \mid i < \omega\}$, for every $i < \omega$ there is A_i s.t $(A_i, H_i) \in G$. $q_0 \in (M_i, H_i)$, $q_0 \in (M_i, H_i)$
- Use that G is a filter and \mathbb{P} is $<\omega_1$ -closed to obtain $q\in\mathbb{P}$ s.t $q\leq (\mathcal{A}_i,H_i)$ for all $i<\omega$ and q< p.

$fil(\mathcal{A}_G)$ is a q-set!

- Let $\mathcal{B} = (B_n)_{n < \omega}$ be a partition of ω into finite sets.
- ullet We want to find a semiselector in $\mathcal{F}_{\mathcal{G}}$.
- $\mathcal{D}_{\mathcal{B}} := \{(\mathcal{A}, A) \in \mathbb{P} \mid A \text{ is a semiselector for } \mathcal{B}\}$
- (A,A) $\in \mathbb{R}^n$ want to have (C,C)=(A,A) $f(A,A) \in \mathbb{R}^n$ want to have (C,C)=(A,A) $f(A,C) \in \mathbb{R}^n$ want to have (C,C)=(A,A) $f(A,C) \in \mathbb{R}^n$ want to have (C,C)=(A,A)I,AhonAI = W Jmoch s.t MhonAnBmo XX [Ahn nA] = W Jm, > mo Ann An Bm, # p [Uhn+1, A] Jm, > m, Ann an Ann nAn Bm, # p C= Fan: ncwq (U,C)

An equivalent condition to the q-set property

Theorem (Cruz-Chapital, Fischer, Guzmán, Šupina)

A filter \mathcal{F} is a q-set if and only if for every strictly increasing function $f:\omega\to\omega$ there is $A\in\mathcal{F}$, such that if $\{a_n:n\in\omega\}$ is its enumeration, then $\underline{f}(a_n)< a_{n+1}$ for all $n\in\omega$.

An equivalent condition to the q-set property

Theorem (Cruz-Chapital, Fischer, Guzmán, Šupina)

A filter \mathcal{F} is a q-set if and only if for every strictly increasing function $f:\omega\to\omega$ there is $A\in\mathcal{F}$, such that if $\{a_n:n\in\omega\}$ is its enumeration, then $f(a_n)< a_{n+1}$ for all $n\in\omega$.

Caution

The original definition of a q-set does not generalise to higher Baire space!!!

$$f(n) \leq (f(a_n) < a_{n+n} e_A(n+n))$$

 $f(n) \leq a e_A(n)$

Sketch of proof of $con(\mathfrak{i} < 2^{\omega})$

- lacktriangledown Start in a ground model V in which CH holds
- ② Use the forcing poset $\mathbb{P} := \{ (\mathcal{A}, A) : \mathcal{A} \text{ is a countable independent family, } A \subseteq \omega \text{ and } |\mathcal{A}^h \cap A| = \omega \text{ for every } h \in FF(\mathcal{A}) \} \text{ with } (\mathcal{A}, A) \leq (\mathcal{B}, B) \text{ iff } \mathcal{A} \supseteq \mathcal{B} \text{ and } A \subseteq^* B.$
- **③** Let *G* be \mathbb{P} -generic and $\mathcal{A}_G := \bigcup \{\mathcal{A} \mid \exists A \subseteq \omega \text{ s.t } (\mathcal{A}, A) \in G\}.$
- **9** Show that A_G is selective in V[G].
- **5** Notice that $(2^{\omega} = \omega_1)^{V[G]}$
- Show that A_G remains densely maximal after ω_2 many iterations of the Sacks forcing S.

Independence in the higher Baire space

How can we define independent families of subsets of κ ?

Definition (Strong independence)

- A family $\mathcal{A} \subseteq [\kappa]^{\kappa}$ is called strongly κ -independent if for every two disjoint $B, C \subseteq \mathcal{A}$ of size $< \kappa$, $|\bigcap_{A \in B} A \setminus (\bigcup_{A \in C} A)| = \kappa$
- A strongly κ -independent family is called maximal if it is maximal with respect to set inclusion.
- $i_s(\kappa) = \min\{A \mid A \text{ is maximal strongly } \kappa\text{-independent}\}$

Independence in the higher Baire space

How can we define independent families of subsets of κ ?

Definition (Strong independence)

- A family $\mathcal{A} \subseteq [\kappa]^{\kappa}$ is called strongly κ -independent if for every two disjoint $B, C \subseteq \mathcal{A}$ of size $< \kappa$, $|\bigcap_{A \in B} A \setminus (\bigcup_{A \in C} A)| = \kappa$
- A strongly κ -independent family is called maximal if it is maximal with respect to set inclusion.
- $i_s(\kappa) = \min\{A \mid A \text{ is maximal strongly } \kappa\text{-independent}\}$

Caution

 $i_s(\kappa)$ is not necessarily well-defined!!

i is well defined!

Theorem

Every independent family is contained in a maximal independent family.

Proof

- Apply Zorn's Lemma
- **2** Let $(A_i)_{i<\alpha}$ increasing chain of independent families.
- $\bullet \ \mathcal{A} := \bigcup_{i < \alpha} \mathcal{A}_i$
- Let $h \in FF(A)$ then $dom(h) \subseteq A_i$ for some $i < \alpha$
- **5** Hence, $A^h = A_i^{h \uparrow A_i}$, which is infinite.

Independence in the higher Baire space

Definition

- A family $\mathcal{A} \subseteq [\kappa]^{\kappa}$ is called κ -independent if for every two **finite**, disjoint $B, C \subseteq \mathcal{A}, |\bigcap_{A \in B} A \setminus (\bigcup_{A \in C} A)| = \kappa$
- A κ -independent family is called maximal if it is maximal with respect to set inclusion.
- $i(\kappa) = \min\{A \mid A \text{ is maximal } \kappa\text{-independent}\}$

Independence in the higher Baire space

Definition

- A family $\mathcal{A} \subseteq [\kappa]^{\kappa}$ is called κ -independent if for every two **finite**, disjoint $B, C \subseteq \mathcal{A}, \mid \bigcap_{A \in B} A \setminus (\bigcup_{A \in C} A) \mid = \kappa$
- A κ -independent family is called maximal if it is maximal with respect to set inclusion.
- $i(\kappa) = \min\{A \mid A \text{ is maximal } \kappa\text{-independent}\}$

Notation

Write FF(A) for all finite partial functions $A \to \{0,1\}$. With $A^0 =: A$ and $A^1 =: \kappa \setminus A$ define A^h as before.

Facts

- ullet Every κ -independent family is contained in a maximal one
- ullet There is a maximal independent family of size 2^{κ}
- $\kappa^+ \leq \mathfrak{i}(\kappa)$
- $\mathfrak{r}(\kappa) \leq \mathfrak{i}(\kappa)$

Questions

- Is $\mathfrak{d}(\kappa) \leq \mathfrak{i}(\kappa)$?
- Is there a relation between $i(\kappa)$ and $i_s(\kappa)$?

Facts

- ullet Every κ -independent family is contained in a maximal one
- ullet There is a maximal independent family of size 2^{κ}
- $\kappa^+ \leq \mathfrak{i}(\kappa)$
- $\mathfrak{r}(\kappa) \leq \mathfrak{i}(\kappa)$

Questions

- Is $\mathfrak{d}(\kappa) \leq \mathfrak{i}(\kappa)$?
- Is there a relation between $i(\kappa)$ and $i_s(\kappa)$?

Definition

An independent family \mathcal{A} is *densely maximal* if for every $X \subseteq \kappa$ and every $h \in FF(\mathcal{A})$ there is $h' \supseteq h$, such that $\mathcal{A}^{h'} \cap X = \emptyset$ or $\mathcal{A}^{h'} \setminus X = \emptyset$.

Outline

Goal: prove $con(\mathfrak{i}(\kappa) < 2^{\kappa})$

• Assume that $\underline{\kappa}$ is measurable in our ground model V_0 and $2^{\kappa} = \kappa^+$ and let \mathcal{U} be a (non-principal) normal measure on κ .

Outline

Goal: prove $con(i(\kappa) < 2^{\kappa})$

- Assume that κ is measurable in our ground model V_0 and $2^{\kappa} = \kappa^+$ and let $\mathcal U$ be a (non-principal) normal measure on κ .
- ② Define a poset $\mathbb{P}_{\mathcal{U}}$, let G be $\mathbb{P}_{\mathcal{U}}$ -generic and construct $\mathcal{A} = \mathcal{A}_G$ in the generic extension $V := V_0[G]$.
- § Show that $\mathbb{P}_{\mathcal{U}}$ preserves cardinals, \mathcal{A} is densely maximal, and "similar to selective".
- Find an equivalent condition to being densely maximal.
- **1** Introduce the Sacks Forcing \mathbb{S}_{κ} and the κ -support product $\mathbb{S}_{\kappa}^{\lambda}$.
- Opening preprocessed conditions and the outer hull.
- **3** Assume by contradiction that \mathcal{A} is not densely maximal in $V^{\mathbb{S}^{\lambda}_{\kappa}}$. Let X be a witness to the violation of (4) and $p \in \mathbb{S}(\kappa)$ forcing that.
- ① Use the "similar to selective" properties and outer hulls to find $q \le p$ forcing the opposite of (4).

Construction of V

• Let $\mathbb{P}_{\mathcal{U}} := \{ (\mathcal{B}, \underline{\mathcal{B}}) : \mathcal{B} \text{ is an independent family of size } \kappa, \mathcal{B} \in \underline{\mathcal{U}} \text{ and } |\mathcal{B}^h \cap \mathcal{B}| = \kappa \text{ for all } h \in FF(\mathcal{B}) \}.$ $(\mathcal{A}, \mathcal{A}) \stackrel{\boldsymbol{\longleftarrow}}{=} \mathbb{P}_{\mathcal{U}}(\mathcal{B}, \mathcal{B}) \quad \text{if } \mathcal{A} \supseteq \mathcal{B}$ $\mathcal{A} \subseteq {}^*\mathcal{B}$

Construction of V

- Let $\mathbb{P}_{\mathcal{U}} := \{ (\mathcal{B}, B) : \mathcal{B} \text{ is an independent family of size } \kappa, B \in \mathcal{U} \text{ and } |\mathcal{B}^h \cap B| = \kappa \text{ for all } h \in FF(\mathcal{B}) \}.$
- $\mathbb{P}_{\mathcal{U}}$ is κ -closed and κ^{++} -cc.
- For G a $\mathbb{P}_{\mathcal{U}}$ -generic filter define $\mathcal{A} := \bigcup \{\mathcal{B} : \exists B \in \mathcal{U} \text{ s.t } (\mathcal{B}, B) \in G\}.$
- ullet Then ${\cal A}$ is an independent family!

Properties of A

Definition

- The *density ideal* of \mathcal{A} is the set $id(\mathcal{A}) := \{X \in \underline{\mathcal{U}}^* \mid \forall h \in FF(\mathcal{A}) \exists h' \supseteq h \text{ s.t } \mathcal{A}^{h'} \cap X = \emptyset\}.$
- The density filter fil(A) is the dual filter of id(A).

Properties of A

Definition

- The *density ideal* of \mathcal{A} is the set $id(\mathcal{A}) := \{X \in \mathcal{U}^* \mid \forall h \in FF(\mathcal{A}) \exists h' \supseteq h \text{ s.t } \mathcal{A}^{h'} \cap X = \emptyset\}.$
- The density filter fil(A) is the dual filter of id(A).

Equivalent condition

An independent family $\mathcal A$ is densely maximal if and only if for all $h\in FF(\mathcal A)$ and all $X\subseteq \mathcal A^h$

- Either there is $B \in id(A)$, such that $A^h \setminus X \subseteq B$
- ② or there is $h' \supseteq h$ such that $\underline{\mathcal{A}^{h'}} \subseteq \underline{\mathcal{A}^h} \setminus X$.

Properties of A

Definition

- The *density ideal* of \mathcal{A} is the set $id(\mathcal{A}) := \{X \in \mathcal{U}^* \mid \forall h \in FF(\mathcal{A}) \exists h' \supseteq h \text{ s.t } \mathcal{A}^{h'} \cap X = \emptyset\}.$
- The density filter fil(A) is the dual filter of id(A).

Equivalent condition

An independent family $\mathcal A$ is densely maximal if and only if for all $h\in FF(\mathcal A)$ and all $X\subseteq \mathcal A^h$

- **①** Either there is $B \in id(A)$, such that $A^h \setminus X \subseteq B$
- ② or there is $h' \supseteq h$ such that $A^{h'} \subseteq A^h \setminus X$.

First success

 \mathcal{A} is densely maximal!

Properties of A

Definition

A filter \mathcal{F} is a κ -p-set if for every $\mathcal{H} \subseteq \mathcal{F}$ of size $\leq \kappa$ there is $F \in \mathcal{F}$ such that $F \subseteq^* H$ for all $H \in \mathcal{H}$.

Properties of A

Definition

A filter \mathcal{F} is a κ -p-set if for every $\mathcal{H} \subseteq \mathcal{F}$ of size $\leq \kappa$ there is $F \in \mathcal{F}$ such that $F \subseteq^* H$ for all $H \in \mathcal{H}$.

Next property

 $fil(\mathcal{A})$ is a κ -p-set!

Difficult part

For every $f : \kappa \to \kappa$ which is strictly increasing there is $\underline{A} \in fil(\underline{A})$ with increasing enumeration $\{a_n\}_{n < \kappa}$, such that $\underline{f(a_n)} < a_{n+1}$.

The Sacks forcing

Definition

- A set $T \subseteq {}^{<\kappa}2$ which is closed under initial segments is called a *tree*.
- A string $s \in T$ splits in T if both $s \cap 0$ and $s \cap 1$ are in T.
- A tree T is called *perfect* if for every $s \in T$ there is $s' \supseteq s$ which splits in T and if $(s_n)_{n < \alpha}$ is a sequence of splitting nodes, then there is $s \supseteq s_n$ which splits in T.
- The κ -Sacks forcing \mathbb{S}_{κ} consists of all perfect trees with $p \leq_{\mathbb{S}_{\kappa}} q$ iff $p \subseteq q$.
- $\mathbb{S}^{\lambda}_{\kappa}$ is the κ -support product of λ many copies of \mathbb{S}_{κ} .

Measurable => inac + Dx

The Sacks forcing

Definition

- A set $T \subseteq {}^{<\kappa}2$ which is closed under initial segments is called a *tree*.
- A string $s \in T$ splits in T if both $s \cap 0$ and $s \cap 1$ are in T.
- A tree T is called *perfect* if for every $s \in T$ there is $s' \supseteq s$ which splits in T and if $(s_n)_{n < \alpha}$ is a sequence of splitting nodes, then there is $s \supseteq s_n$ which splits in T.
- The κ -Sacks forcing \mathbb{S}_{κ} consists of all perfect trees with $p \leq_{\mathbb{S}_{\kappa}} q$ iff $p \subseteq q$.
- $\mathbb{S}^{\lambda}_{\kappa}$ is the κ -support product of λ many copies of \mathbb{S}_{κ} .

Caution

We need κ to be inaccessible in order to not collapse cardinals $\geq \kappa^{++}$. Also both \mathbb{S}_{κ} and $\mathbb{S}_{\kappa}^{\lambda}$ are not κ -closed! \Longrightarrow Use fusion orderings!

Preprocessed conditions and the outer hull

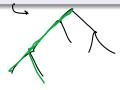
Definition

- For a condition $p \in \mathbb{S}_{\kappa}$ let $split_{\alpha}(p)$ be the set of all splitting nodes in the α -th splitting level of p.
- For $p \in \mathbb{S}^{\lambda}_{\kappa}$, $F \in supp(p)$, $|F| < \kappa$ let $\Lambda^{F}_{\alpha} := \{\overline{\sigma} = (\sigma_{i}) : i \in F, \sigma_{i} \in split_{\alpha}(p_{i})\}.$
- Let \dot{X} be an $\mathbb{S}^{\lambda}_{\kappa}$ -name for a set, $p \in S^{\lambda}_{\kappa}$, $F \subseteq supp(p)$ with $|F| < \kappa$. Then p is preprocessed for (F, \dot{X}) if for every $\overline{\sigma} \in \Lambda^{F}_{\alpha}(p)$ there are $F' \subseteq supp(p)$, $|F'| < \kappa$, $F' \supseteq F$, $x \in {}^{\alpha}2$ and $\overline{\tau} \supseteq \overline{\sigma}$ with $\overline{\tau} \in \Lambda^{F'}_{\alpha}(p)$, such that $p_{\overline{\tau}} \Vdash \chi_{\dot{X}} \upharpoonright \alpha = \check{X}$
- p is preprocessed for \dot{X} if it is preprocessed for every pair (F, \dot{X}) .

Preprocessed conditions and the outer hull

Definition

Let X be a name for a set, p preprocessed for \dot{X} and $\overline{\sigma} \in \Lambda_{\alpha}^{F}$ for some suitable α , F. Then the outer hull of \dot{X} below $p_{\overline{\sigma}}$ is the set $Y_{\overline{\sigma}} := \{ \beta \in \kappa \mid \exists \tau \supseteq \sigma \text{ s.t. } p_{\overline{\tau}} \Vdash \check{\beta} \in \dot{X} \}.$



Preprocessed conditions and the outer hull

Definition

Let X be a name for a set, p preprocessed for \dot{X} and $\overline{\sigma} \in \Lambda_{\alpha}^{F}$ for some suitable α , F. Then the outer hull of \dot{X} below $p_{\overline{\sigma}}$ is the set $Y_{\overline{\sigma}} := \{ \beta \in \kappa \mid \exists \tau \supseteq \sigma \text{ s.t. } p_{\overline{\tau}} \Vdash \check{\beta} \in \dot{X} \}.$

Observation

One can choose $\overline{\tau} \in \Lambda_{\alpha'}^{F'}(p)$ for some α' which is bounded depending on α and β . Also note that $|\Lambda_{\alpha}^{F}(p)| < \kappa$ for all α , F.

Proof of $con(i(\kappa) < 2^{\kappa})$

Claim

 ${\mathcal A}$ is densely maximal in $V^{{\mathbb S}^\lambda_\kappa}.$

Proof by contradiction

Assume not. Then there is $h \in FF(\mathcal{A})$ and $X \subseteq \mathcal{A}^h$, such that there is no $B \in id(\mathcal{A})$ with $A^h \setminus X \subseteq B$, and $\forall h' \supseteq h$ it holds that $A^{h'} \cap X \neq \emptyset$.

Forcing theorem

Fix such h, let \dot{X} be a name for such a set and $p \in \mathbb{S}^{\lambda}_{\kappa}$ preprocessed forcing the statement above.

Proof of $con(\mathfrak{i}(\kappa) < 2^{\kappa})$

Goal

Want to find $q \leq p$ and $C \in fil(A)$, such that $q \Vdash \check{C} \subseteq \dot{X}$.

This leads to a contradiction because then $\mathcal{A}^h \setminus X \subseteq \mathcal{A}^h \setminus C \subseteq \kappa \setminus C \in id(\mathcal{A})$.

Proof of $con(i(\kappa) < 2^{\kappa})$

Goal

Want to find $q \leq p$ and $C \in fil(A)$, such that $q \Vdash \check{C} \subseteq \dot{X}$.

This leads to a contradiction because then $\mathcal{A}^h \setminus X \subseteq \mathcal{A}^h \setminus C \subseteq \kappa \setminus C \in id(\mathcal{A})$.

How to find such a set and condition?

- Use outer hulls, p-set and "nearly q-set" property
- Enumerate $C = \{c_{\alpha}\}_{{\alpha} < \kappa}$
- Have a fusion sequence $(q_{\alpha})_{\alpha<\kappa}$, such that $q_{\alpha+1}\Vdash \check{c}_{\alpha}\in \dot{X}$
- There is q, such that $q \leq q_{\alpha}$ for all $\alpha < \kappa$ as desired. \square

Some Sources

- [1] V. Fischer and D. C. Montoya, "Higher independence," Journal of Symbolic Logic, vol. 87, no. 4, pp. 1606–1630, 2022. DOI: 10.1017/jsl.2022.33.
- [2] A. Kanamori, "Perfect-set forcing for uncountable cardinals," *Annals of Mathematical Logic*, vol. 19, no. 1-2, pp. 97–114, 1980. DOI: 10.1016/0003-4843(80)90021-2.
- [3] S. Shelah, "Con(u>i)," Archive for Mathematical Logic, vol. 31, no. 6, pp. 433–443, 1992. DOI: 10.1007/bf01277485.
- [4] L. K. Gregor Michailowitsch Fichtenholz, "Sur les opérations linéaires dans l'espace des fonctions bornées," Studia Mathematica, vol. 5, pp. 69–98, 1935.

Thanks for your Attention!

Questions?