Determinacy of Long Games

Isabel Macenka and Allison Wang

University of Cambridge

8 April 2021
The Axiom of Determinacy (AD) states that all games of length ω with move set ω are determined.
Introduction

The Axiom of Determinacy (AD) states that all games of length ω with move set ω are determined.

We will be discussing determinacy axioms for long games — statements about games with move set ω played on countable ordinals greater than ω.
Introduction

The Axiom of Determinacy (AD) states that all games of length ω with move set ω are determined.

We will be discussing determinacy axioms for long games — statements about games with move set ω played on countable ordinals greater than ω.

In addition, we will discuss the relation between some of these determinacy axioms and the choice principle $\text{AC}_R(\mathbb{R})$.
Determinacy and $AC^R(\mathbb{R})$

\[
\begin{align*}
AD^R & \iff AD^{\omega^2} \implies AD^{\omega \cdot 2} \implies AD^{\omega + n} \iff AD \\
& \downarrow \\
& AC^R(\mathbb{R})
\end{align*}
\]
Table of Contents

1 Notation and Definitions

2 Determinacy of games of length $\leq \omega^2$

3 $\text{AD}_R \iff \text{AD}^{\omega^2}$

4 $\text{AC}_R(R)$ and $L(R)$

5 Games on countable ordinals
Notation

We will write \mathbb{R} for ω^ω and refer to elements of $\mathbb{R} = \omega^\omega$ as *reals*.
We will write \mathbb{R} for ω^ω and refer to elements of $\mathbb{R} = \omega^\omega$ as *reals*. For $x \in X^\alpha$ and $y \in X$, we will write $x \triangleleft y$ for the concatenation of x and y.
Notation

We will write \mathbb{R} for ω^ω and refer to elements of $\mathbb{R} = \omega^\omega$ as *reals*.

For $x \in X^\alpha$ and $y \in X$, we will write $x \sqcup y$ for the concatenation of x and y.

Choice principle $\text{AC}_X(Y)$

(AC$_X(Y)$) For every family $\{A_x \mid x \in X\}$ of non-empty sets $A_x \subseteq Y$, there is a choice function $c : X \to Y$ such that $c(x) \in A_x$ for all $x \in X$.
An \(\alpha\)-game (or a \textit{game of length} \(\alpha\)) on a non-empty set \(X\) with payoff set \(A\) is played as follows:

1. On turn 0, player I plays some \(x_0 \in X\).
2. Player I and player II take turns playing elements in \(X\).
3. For each limit ordinal \(\lambda < \alpha\), player I plays on turn \(\lambda\).
4. Define \(x \in X^\alpha\) by \(x(\beta) := x_\beta\) for all \(\beta < \alpha\). We call \(x\) a \textit{run} of the game.
5. Player I wins the run \(x\) iff \(x \in A\).
An α-game (or a game of length α) on a non-empty set X with payoff set A is played as follows:

- On turn 0, player I plays some $x_0 \in X$.

Define $x \in X^{\alpha}$ by $x(\beta) := x_{\beta}$ for all $\beta < \alpha$. We call x a run of the game.

Player I wins the run x iff $x \in A$.
Games

An α-game (or a game of length α) on a non-empty set X with payoff set A is played as follows:

- On turn 0, player I plays some $x_0 \in X$.
- Player I and player II take turns playing elements in X.

Define $x \in X^\alpha$ by $x(\beta) := x_\beta$ for all $\beta < \alpha$. We call x a run of the game.

Player I wins the run x iff $x \in A$.
Games

An α-game (or a game of length α) on a non-empty set X with payoff set A is played as follows:

- On turn 0, player I plays some $x_0 \in X$.
- Player I and player II take turns playing elements in X.
- For each limit ordinal $\lambda < \alpha$, player I plays on turn λ.

Define $x(\beta) := x_{\beta}$ for all $\beta < \alpha$. We call x a run of the game.

Player I wins the run x iff $x \in A$.

Macenka and Wang
Determinacy of Long Games
8 April 2021 6 / 26
An α-game (or a game of length α) on a non-empty set X with payoff set A is played as follows:

- On turn 0, player I plays some $x_0 \in X$.
- Player I and player II take turns playing elements in X.
- For each limit ordinal $\lambda < \alpha$, player I plays on turn λ.

Define $x \in X^\alpha$ by $x(\beta) := x_\beta$ for all $\beta < \alpha$. We call x a run of the game. Player I wins the run x iff $x \in A$.
Determinacy

A strategy for this game is a function \(\sigma : X^{<\alpha} \rightarrow X \).
A strategy for this game is a function \(\sigma : X^{<\alpha} \rightarrow X \). If players I and II play according to strategies \(\sigma \) and \(\tau \), respectively, let \(\sigma \ast \tau \) denote the run of the game that results.
Determinacy

A strategy for this game is a function $\sigma : X^{<\alpha} \to X$. If players I and II play according to strategies σ and τ, respectively, let $\sigma \ast \tau$ denote the run of the game that results. We say σ is a winning strategy for player I if $\sigma \ast \tau \in A$ for all strategies τ, and similarly for player II.
A strategy for this game is a function $\sigma : \mathcal{X}^{<\alpha} \to \mathcal{X}$. If players I and II play according to strategies σ and τ, respectively, let $\sigma \ast \tau$ denote the run of the game that results. We say σ is a winning strategy for player I if $\sigma \ast \tau \in A$ for all strategies τ, and similarly for player II.

Clearly, at most one player has a winning strategy for any game. However, it need not be the case that either player has a winning strategy.

Determinacy axiom for α-games

($\text{AD}_{\mathcal{X}}^\alpha$) Every α-game on the move set \mathcal{X} is determined.
Table of Contents

1 Notation and Definitions

2 Determinacy of games of length $\leq \omega^2$

3 $\text{AD}_R \iff \text{AD}^{\omega^2}$

4 $\text{AC}_R(R)$ and $L(R)$

5 Games on countable ordinals
Zermelo’s Theorem

Theorem

All finite games are determined.
Zermelo’s Theorem

Theorem
All finite games are determined.

Proof Sketch: Consider the tree of all possible runs of the game. Starting from the n^{th} level, label the nodes according to who will win from that position using reverse induction.
AD^α for $\alpha \leq \omega^2$

Proposition

If $\alpha < \beta$, then $\text{AD}^\beta \implies \text{AD}^\alpha$
AD$^\alpha$ for $\alpha \leq \omega^2$

Proposition

If $\alpha < \beta$, then $AD^\beta \implies AD^\alpha$

Proof Sketch: Assume AD^β. Let $A \subseteq \omega^\alpha$. Want to show $G(A)$ is determined.
AD\(^\alpha\) for \(\alpha \leq \omega^2\)

Proposition

If \(\alpha < \beta\), then \(\text{AD}^\beta \implies \text{AD}^\alpha\)

Proof Sketch: Assume \(\text{AD}^\beta\). Let \(A \subseteq \omega^\alpha\). Want to show \(G(A)\) is determined.
Define \(A' \subseteq \omega^\beta\) as follows:

\[
A' = \{ x \in \omega^\beta \mid x \upharpoonright \alpha \in A \}
\]
Proposition

If $\alpha < \beta$, then $\text{AD}^\beta \implies \text{AD}^\alpha$

Proof Sketch: Assume AD^β. Let $A \subseteq \omega^\alpha$. Want to show $G(A)$ is determined.

Define $A' \subseteq \omega^\beta$ as follows:

$$A' = \{ x \in \omega^\beta \mid x \upharpoonright \alpha \in A \}$$

Player I (or II) wins the α–game $G(A)$ iff Player I (or II) wins the β–game $G(A')$. Thus $G(A)$ determined.
$\AD^{\omega + n}$ for $n \in \omega$

Proposition

$$\AD \implies \AD^{\omega + n}$$
AD^{\omega+n} \text{ for } n \in \omega

Proposition

\[AD \implies AD^{\omega+n} \]

Proof Sketch: Any game $G(A)$ of length $\omega + n$ can be thought of as two games played back to back: one of length ω, one of length n.
\(\text{AD}^{\omega+n} \) for \(n \in \omega \)

Proposition

\[
\text{AD} \implies \text{AD}^{\omega+n}
\]

Proof Sketch: Any game \(G(A) \) of length \(\omega + n \) can be thought of as two games played back to back: one of length \(\omega \), one of length \(n \). \(AD \) says the \(\omega \)-game is determined. *Zermelo* says the finite game is determined. Therefore \(G(A) \) is determined.
Table of Contents

1 Notation and Definitions

2 Determinacy of games of length $\leq \omega^2$

3 $\text{AD}_R \iff \text{AD}^{\omega^2}$

4 $\text{AC}_R(\mathbb{R})$ and $L(\mathbb{R})$

5 Games on countable ordinals
Blass’s theorem

Theorem

\[\text{AD}_R \iff \text{AD}^{\omega^2}. \]
Blass’s theorem

Theorem

$\text{AD}_R \iff \text{AD}^{\omega^2}$.

We will use the following lemmas without proof:
Blass’s theorem

Theorem

\[\text{AD}_\mathbb{R} \iff \text{AD}^{\omega^2}. \]

We will use the following lemmas without proof:

Lemma 1

For any set \(X \), \(\text{AC}_X(X) \iff \text{AD}^2_X. \)
Blass’s theorem

Theorem

\[\text{AD}_R \iff \text{AD}^{\omega^2}. \]

We will use the following lemmas without proof:

Lemma 1

For any set \(X \), \(\text{AC}_X(X) \iff \text{AD}_X^{2}. \)

Lemma 2

For any ordinal \(\alpha \), \(\text{AD}^{\omega \cdot \alpha} \implies \text{AD}_R^{\alpha}. \)
Proof sketch

Theorem

\[\text{AD}_R \iff \text{AD}^{\omega^2}. \]

Proof sketch: Assume \(\text{AD}_R \). Let \(G \) be an arbitrary \(\omega^2 \)-game on \(\omega \). We think of \(G \) as being composed of \(\omega \)-many “blocks.”
Proof sketch

Theorem

\[\text{AD}_R \iff \text{AD}^{\omega^2} \]

Proof sketch: Assume \(\text{AD}_R \). Let \(G \) be an arbitrary \(\omega^2 \)-game on \(\omega \). We think of \(G \) as being composed of \(\omega \)-many “blocks.” Define the \(\omega \)-game \(G' \) on \(\mathbb{R} \) as follows:
Proof sketch

Theorem

$\text{AD}_\mathbb{R} \iff \text{AD}^{\omega^2}$.

Proof sketch: Assume $\text{AD}_\mathbb{R}$. Let G be an arbitrary ω^2-game on ω. We think of G as being composed of ω-many “blocks.” Define the ω-game G' on \mathbb{R} as follows:

<table>
<thead>
<tr>
<th>I</th>
<th>σ_0</th>
<th>σ_1</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>q_0</td>
<td>q_1</td>
<td>...</td>
</tr>
</tbody>
</table>

We can think of the move σ_n in G' as a strategy $\omega^{<\omega} \rightarrow \omega$ for player I in block n of G by fixing a bijection between ω and $\omega^{<\omega}$.
Proof sketch

Theorem

\[\text{AD}_R \iff \text{AD}^{\omega^2}. \]

Proof sketch: Assume \(\text{AD}_R \). Let \(G \) be an arbitrary \(\omega^2 \)-game on \(\omega \). We think of \(G \) as being composed of \(\omega \)-many “blocks.” Define the \(\omega \)-game \(G' \) on \(\mathbb{R} \) as follows:

\[
\begin{array}{c|ccc}
\text{I} & \sigma_0 & \sigma_1 & \ldots \\
\hline
\text{II} & q_0 & q_1 & \ldots \\
\end{array}
\]

We can think of the move \(\sigma_n \) in \(G' \) as a strategy \(\omega^{<\omega} \to \omega \) for player I in block \(n \) of \(G \) by fixing a bijection between \(\omega \) and \(\omega^{<\omega} \). We think of \(q_n \) as being a list of player II’s moves in block \(n \) of \(G \).
Theorem
\[\text{AD}_\mathbb{R} \iff \text{AD}^{\omega^2}. \]

Proof sketch: Assume \(\text{AD}_\mathbb{R} \). Let \(G \) be an arbitrary \(\omega^2 \)-game on \(\omega \). We think of \(G \) as being composed of \(\omega \)-many “blocks.” Define the \(\omega \)-game \(G' \) on \(\mathbb{R} \) as follows:

<table>
<thead>
<tr>
<th>I</th>
<th>(\sigma_0)</th>
<th>(\sigma_1)</th>
<th>(\ldots)</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>(q_0)</td>
<td>(q_1)</td>
<td>(\ldots)</td>
</tr>
</tbody>
</table>

We can think of the move \(\sigma_n \) in \(G' \) as a strategy \(\omega^{<\omega} \rightarrow \omega \) for player I in block \(n \) of \(G \) by fixing a bijection between \(\omega \) and \(\omega^{<\omega} \). We think of \(q_n \) as being a list of player II’s moves in block \(n \) of \(G \).

Player I wins a run of \(G' \) iff player I wins the corresponding run of \(G \).
Proof sketch

By \(\text{AD}_R \), \(G' \) is determined.
Proof sketch

By $\mathsf{AD}_{\mathbb{R}}$, G' is determined. If player I has a winning strategy in G', then player I has a winning strategy in G.
Proof sketch

By $\text{AD}_{\mathbb{R}}$, G' is determined. If player I has a winning strategy in G', then player I has a winning strategy in G.

Suppose player II has a winning strategy τ in G'.
Proof sketch

By AD$_R$, G' is determined. If player I has a winning strategy in G', then player I has a winning strategy in G.

Suppose player II has a winning strategy τ in G'. Let P be the set of all positions or runs in G that correspond to positions or runs in G' arising when player II plays according to τ.
Proof sketch

By AD_R, G' is determined. If player I has a winning strategy in G', then player I has a winning strategy in G.

Suppose player II has a winning strategy τ in G'. Let P be the set of all positions or runs in G that correspond to positions or runs in G' arising when player II plays according to τ. We call elements of P possibilities.
Proof sketch

We say that a sequence $\langle \sigma_i \mid i < n \rangle$ leads to $y \in \omega^\omega \cdot n$ if y is the position in G corresponding to player I playing $\langle \sigma_i \mid i < n \rangle$ and player II playing according to τ in G'.

Observations:

1. For every $y \in \mathcal{P}$ at least one sequence $\langle \sigma_i \rangle$ leads to y.

2. If $\langle \sigma_i \mid i < n \rangle$ leads to $y \in \omega^\omega \cdot n$, then any extension $\langle \sigma_i \rangle \langle \sigma_n \rangle$ leads to an extension $y \langle y_n \rangle \in \omega^\omega \cdot (n + 1)$.
Proof sketch

We say that a sequence $\langle \sigma_i \mid i < n \rangle$ leads to $y \in \omega \cdot n$ if y is the position in G corresponding to player I playing $\langle \sigma_i \mid i < n \rangle$ and player II playing according to τ in G'.

Observations:

1. For every $y \in P$ at least one sequence $\langle \sigma_i \rangle$ leads to y.
Proof sketch

We say that a sequence $\langle \sigma_i \mid i < n \rangle$ leads to $y \in \omega^{\omega \cdot n}$ if y is the position in G corresponding to player I playing $\langle \sigma_i \mid i < n \rangle$ and player II playing according to τ in G'.

Observations:

1. For every $y \in P$ at least one sequence $\langle \sigma_i \rangle$ leads to y.
2. If $\langle \sigma_i \mid i < n \rangle$ leads to $y \in \omega^{\omega \cdot n}$, then any extension $\langle \sigma_i \mid i < n \rangle \upharpoonright \sigma_n$ leads to an extension $y \upharpoonright y_n \in \omega^{\omega \cdot (n+1)}$.
Proof sketch

We say that a sequence $\langle \sigma_i \mid i < n \rangle$ leads to $y \in \omega^{\omega \cdot n}$ if y is the position in G corresponding to player I playing $\langle \sigma_i \mid i < n \rangle$ and player II playing according to τ in G'.

Observations:

1. For every $y \in P$ at least one sequence $\langle \sigma_i \rangle$ leads to y.
2. If $\langle \sigma_i \mid i < n \rangle$ leads to $y \in \omega^{\omega \cdot n}$, then any extension $\langle \sigma_i \mid i < n \rangle \upharpoonright \sigma_n$ leads to an extension $y \upharpoonright y_n \in \omega^{\omega \cdot (n+1)}$.

For every $\langle \sigma_i \mid i < n \rangle$, $y \in \omega^{\omega \cdot n}$, and $y \upharpoonright y_n \in \omega^{\omega \cdot (n+1)}$ as in observation (2), fix some extension $\langle \sigma_i \mid i < n \rangle \upharpoonright \sigma_n$ leading to $y \upharpoonright y_n$.
Proof sketch

We say that a sequence $\langle \sigma_i \mid i < n \rangle$ leads to $y \in \omega^{\omega \cdot n}$ if y is the position in G corresponding to player I playing $\langle \sigma_i \mid i < n \rangle$ and player II playing according to τ in G'.

Observations:

1. For every $y \in P$ at least one sequence $\langle \sigma_i \rangle$ leads to y.
2. If $\langle \sigma_i \mid i < n \rangle$ leads to $y \in \omega^{\omega \cdot n}$, then any extension $\langle \sigma_i \mid i < n \rangle \overline{\sigma_n}$ leads to an extension $y \overline{y_n} \in \omega^{\omega \cdot (n+1)}$.

For every $\langle \sigma_i \mid i < n \rangle$, $y \in \omega^{\omega \cdot n}$, and $y \overline{y_n} \in \omega^{\omega \cdot (n+1)}$ as in observation (2), fix some extension $\langle \sigma_i \mid i < n \rangle \overline{\sigma_n}$ leading to $y \overline{y_n}$. Call this extension the standard extension.
Proof sketch

Define a partial function Σ on the possibilities inductively by:

1. $\Sigma(\emptyset) = \emptyset$
2. If $y \in \omega^{\omega \cdot n}$ and $\Sigma(y) \in \mathbb{R}^n$ is defined, and if $y' \in \omega^{\omega \cdot (n+1)}$ is an extension of y such that some extension of $\Sigma(y)$ leads to y', define $\Sigma(y')$ to be the corresponding standard extension.

Observations:

1. If $\Sigma(y)$ is defined, then $\Sigma(y)$ leads to y.
2. If $\Sigma(y)$ is defined and $z = y|_{(\omega \cdot n)}$ for some n, then $\Sigma(z)$ is defined and $\Sigma(z) = \Sigma(y)|_n$.
3. If $y \in \omega^{\omega \cdot 2}$ is such that $\Sigma(y|_{(\omega \cdot n)})$ is defined for all $n \in \omega$, then y is a possibility.

So it suffices to find a strategy for player II in G such that any run consistent with this strategy has the property described in observation (3).
Proof sketch

Define a partial function Σ on the possibilities inductively by:

1. $\Sigma(\emptyset) = \emptyset$

2. If $y \in \omega^{\omega \cdot n}$ and $\Sigma(y) \in \mathbb{R}^n$ is defined, and if $y' \in \omega^{\omega \cdot (n+1)}$ is an extension of y such that some extension of $\Sigma(y)$ leads to y', define $\Sigma(y')$ to be the corresponding standard extension.

Observations:

1. If $\Sigma(y)$ is defined, then $\Sigma(y)$ leads to y.

Macenka and Wang
Determinacy of Long Games
8 April 2021 17 / 26
Proof sketch

Define a partial function \(\Sigma \) on the possibilities inductively by:

1. \(\Sigma(\emptyset) = \emptyset \)
2. If \(y \in \omega^{\omega \cdot n} \) and \(\Sigma(y) \in \mathbb{R}^n \) is defined, and if \(y' \in \omega^{\omega \cdot (n+1)} \) is an extension of \(y \) such that some extension of \(\Sigma(y) \) leads to \(y' \), define \(\Sigma(y') \) to be the corresponding standard extension.

Observations:

1. If \(\Sigma(y) \) is defined, then \(\Sigma(y) \) leads to \(y \).
2. If \(\Sigma(y) \) is defined and \(z = y \upharpoonright (\omega \cdot n) \) for some \(n \), then \(\Sigma(z) \) is defined and \(\Sigma(z) = \Sigma(y) \upharpoonright n \).
Proof sketch

Define a partial function Σ on the possibilities inductively by:

1. $\Sigma(\emptyset) = \emptyset$
2. If $y \in \omega^{\omega \cdot n}$ and $\Sigma(y) \in \mathbb{R}^n$ is defined, and if $y' \in \omega^{\omega \cdot (n+1)}$ is an extension of y such that some extension of $\Sigma(y)$ leads to y', define $\Sigma(y')$ to be the corresponding standard extension.

Observations:

1. If $\Sigma(y)$ is defined, then $\Sigma(y)$ leads to y.
2. If $\Sigma(y)$ is defined and $z = y \upharpoonright (\omega \cdot n)$ for some n, then $\Sigma(z)$ is defined and $\Sigma(z) = \Sigma(y) \upharpoonright n$.
3. If $y \in \omega^{\omega^2}$ is such that $\Sigma(y \upharpoonright (\omega \cdot n))$ is defined for all $n \in \omega$, then y is a possibility.
Proof sketch

Define a partial function Σ on the possibilities inductively by:

1. $\Sigma(\emptyset) = \emptyset$
2. If $y \in \omega^{\cdot n}$ and $\Sigma(y) \in \mathbb{R}^n$ is defined, and if $y' \in \omega^{\cdot (n+1)}$ is an extension of y such that some extension of $\Sigma(y)$ leads to y', define $\Sigma(y')$ to be the corresponding standard extension.

Observations:

1. If $\Sigma(y)$ is defined, then $\Sigma(y)$ leads to y.
2. If $\Sigma(y)$ is defined and $z = y \upharpoonright (\omega \cdot n)$ for some n, then $\Sigma(z)$ is defined and $\Sigma(z) = \Sigma(y) \upharpoonright n$.
3. If $y \in \omega^{\cdot 2}$ is such that $\Sigma(y \upharpoonright (\omega \cdot n))$ is defined for all $n \in \omega$, then y is a possibility.

So it suffices to find a strategy for player II in G such that any run consistent with this strategy has the property described in observation (3).
Proof sketch

Claim

Let \(y \in \omega^{\omega \cdot n} \) be a position in \(G \) such that \(\Sigma(y) \) is defined. Then there exists a strategy \(\tau_y \) for player II on block \(n \) such that \(\Sigma(y') \) is defined for every extension \(y' \in \omega^{\omega \cdot (n+1)} \) of \(y \) that arises from player II playing according to \(\tau_y \) on block \(n \).

We will use this claim without proof.
Proof sketch

Claim

Let \(y \in \omega^{\omega \cdot n} \) be a position in \(G \) such that \(\Sigma(y) \) is defined. Then there exists a strategy \(\tau_y \) for player II on block \(n \) such that \(\Sigma(y') \) is defined for every extension \(y' \in \omega^{\omega \cdot (n+1)} \) of \(y \) that arises from player II playing according to \(\tau_y \) on block \(n \).

We will use this claim without proof.

\(\text{AC}_R(\mathbb{R}) \) allows us to fix one \(\tau_y \) for every such \(y \) simultaneously.
Proof sketch

Claim

Let $y \in \omega^{\omega \cdot n}$ be a position in G such that $\Sigma(y)$ is defined. Then there exists a strategy τ_y for player II on block n such that $\Sigma(y')$ is defined for every extension $y' \in \omega^{\omega \cdot (n+1)}$ of y that arises from player II playing according to τ_y on block n.

We will use this claim without proof.

$AC_R(\mathbb{R})$ allows us to fix one τ_y for every such y simultaneously. Since $\Sigma(\emptyset)$ is defined, “gluing” together these τ_y gives a strategy for player II on G.
Proof sketch

Claim

Let $y \in \omega^{\omega \cdot n}$ be a position in G such that $\Sigma(y)$ is defined. Then there exists a strategy τ_y for player II on block n such that $\Sigma(y')$ is defined for every extension $y' \in \omega^{\omega \cdot (n+1)}$ of y that arises from player II playing according to τ_y on block n.

We will use this claim without proof.

$\text{AC}_R(R)$ allows us to fix one τ_y for every such y simultaneously. Since $\Sigma(\emptyset)$ is defined, “gluing” together these τ_y gives a strategy for player II on G. Every run z resulting from player II following this strategy in G has the property that $\Sigma(z \upharpoonright (\omega \cdot n))$ is defined for all $n \in \omega$, so by a previous observation, this is a winning strategy for player II. □
Table of Contents

1 Notation and Definitions

2 Determinacy of games of length $\leq \omega^2$

3 $\text{AD}_{\mathbb{R}} \iff \text{AD}^{\omega^2}$

4 $\text{AC}_{\mathbb{R}}(\mathbb{R})$ and $L(\mathbb{R})$

5 Games on countable ordinals
AC$_R(\mathbb{R})$ and Determinacy

Proposition

$\text{AD}^{\omega \cdot 2} \implies \text{AC}_R(\mathbb{R})$
AC\(_R(\mathbb{R})\) and Determinacy

Proposition

\[\text{AD}^{\omega \cdot 2} \implies \text{AC}_{\mathbb{R}}(\mathbb{R}) \]

Will use the following lemmas (same as for Blass’s Theorem) without proof:
AC\(_R(\mathbb{R})\) and Determinacy

Proposition

\[\text{AD}^{\omega \cdot 2} \implies AC_{\mathbb{R}}(\mathbb{R}) \]

Will use the following lemmas (same as for Blass’s Theorem) without proof:

Lemma 1

For any set \(X \), \(AC_X(X) \iff AD^2_X \).
AC^R(\mathbb{R}) and Determinacy

Proposition

\[\text{AD}^{\omega \cdot 2} \implies \text{AC}^R(\mathbb{R}) \]

Will use the following lemmas (same as for Blass’s Theorem) without proof:

Lemma 1

For any set \(X \), \(\text{AC}_X(X) \iff \text{AD}_X^2 \).

Lemma 2

For any ordinal \(\alpha \), \(\text{AD}^{\omega \cdot \alpha} \implies \text{AD}_R^\alpha \).
AC$_R$(\mathbb{R}) and Determinacy

Proposition

\[AD^{\omega \cdot 2} \implies AC_R(\mathbb{R}) \]

Will use the following lemmas (same as for Blass’s Theorem) without proof:

Lemma 1

For any set X, $AC_X(X) \iff AD_X^2$.

Lemma 2

For any ordinal α, $AD^{\omega \cdot \alpha} \implies AD^\alpha_R$.

Proof of Proposition: From Lemma 2, we have $AD^{\omega \cdot 2} \implies AD_R^2$. Lemma 1 gives us $AD_R^2 \implies AC_R(\mathbb{R})$.
AD $\iff AC_R(\mathbb{R})$

In order to show $AD \iff AC_R(\mathbb{R})$, we will show that the inner model $L(\mathbb{R})$ is not a model of $AC_R(\mathbb{R})$.
Construction of $L(\mathbb{R})$

- $L_0(\mathbb{R}) = \text{transitive closure of } \mathbb{R}$
- $L_\lambda(\mathbb{R}) = \bigcup_{\alpha<\lambda} L_\alpha(\mathbb{R})$
- $L_{\lambda+1}(\mathbb{R}) = \{x \mid x \text{ definable over } L_\lambda(\mathbb{R})\}$

$L(\mathbb{R}) = \bigcup L_\lambda(\mathbb{R})$
Construction of $L(\mathbb{R})$

- $L_0(\mathbb{R}) = \text{transitive closure of } \mathbb{R}$
- $L_\lambda(\mathbb{R}) = \bigcup_{\alpha < \lambda} L_\alpha(\mathbb{R})$
- $L_{\lambda+1}(\mathbb{R}) = \{x \mid x \text{ definable over } L_\lambda(\mathbb{R})\}$

$L(\mathbb{R}) = \bigcup L_\lambda(\mathbb{R})$

Properties of $L(\mathbb{R})$

- Smallest inner model containing \mathbb{R} and the ordinals
- Can code every set with a real and an ordinal
Proposition

$L(\mathbb{R})$ does not have $AC_{\mathbb{R}}(\mathbb{R})$.

Proof:
Consider, for $x \in \mathbb{R}$, $A^x = \{ y | y \text{ not ordinal definable from } x \}$. We know A^x is nonempty. Now assume we have a choice function $f \in L(\mathbb{R})$ for $\{ A^x | x \in \mathbb{R} \}$. As $f \in L(\mathbb{R})$, it must be ordinal definable from some $x_0 \in \mathbb{R}$. However then $f(x_0) \notin A^{x_0}$. Contradiction.
Proposition

$L(R)$ does not have $AC_R(R)$.

Proof: Consider, for $x \in R$, $A_x = \{y \mid y$ not ordinal definable from $x\}$. We know A_x is nonempty.
Proposition

$L(\mathbb{R})$ does not have $\text{AC}_R(\mathbb{R})$.

Proof: Consider, for $x \in \mathbb{R}$, $A_x = \{y \mid y$ not ordinal definable from $x\}$. We know A_x is nonempty.
Now assume we have a choice function $f \in L(\mathbb{R})$ for $\{A_x \mid x \in \mathbb{R}\}$.
Proposition

$L(\mathbb{R})$ does not have $AC_{\mathbb{R}}(\mathbb{R})$.

Proof: Consider, for $x \in \mathbb{R}$, $A_x = \{ y \mid y \text{ not ordinal definable from } x \}$. We know A_x is nonempty.

Now assume we have a choice function $f \in L(\mathbb{R})$ for $\{A_x \mid x \in \mathbb{R}\}$.

As $f \in L(\mathbb{R})$, it must be ordinal definable from some $x_0 \in \mathbb{R}$.
Proposition

$L(\mathbb{R})$ does not have $AC_{\mathbb{R}}(\mathbb{R})$.

Proof: Consider, for $x \in \mathbb{R}$, $A_x = \{y \mid y \text{ not ordinal definable from } x\}$. We know A_x is nonempty.

Now assume we have a choice function $f \in L(\mathbb{R})$ for $\{A_x \mid x \in \mathbb{R}\}$. As $f \in L(\mathbb{R})$, it must be ordinal definable from some $x_0 \in \mathbb{R}$. However then $f(x_0) \not\in A_{x_0}$. Contradiction.
$L(\mathbb{R})$ and dependent choice

Axiom of Dependent Choice, DC

For every nonempty set X and entire relation R on X (i.e. for all a, there exists b such that $R(a, b)$), there is a function $f : \omega \to X$ such that for all n, $R(f(n), f(n + 1))$.

Theorem (Kechris)

Assume ZF $+$ AD $+$ $V = L(\mathbb{R})$ holds. Then DC holds.
Axiom of Dependent Choice, DC

For every nonempty set X and entire relation R on X (i.e. for all a, there exists b such that $R(a, b)$), there is a function $f : \omega \rightarrow X$ such that for all n, $R(f(n), f(n + 1))$.

Theorem (Kechris)

Assume $ZF + AD + V = L(\mathbb{R})$ holds. Then DC holds.
Table of Contents

1 Notation and Definitions

2 Determinacy of games of length $\leq \omega^2$

3 $\text{AD}_\mathbb{R} \iff \text{AD}^{\omega^2}$

4 $\text{AC}_\mathbb{R}(\mathbb{R})$ and $L(\mathbb{R})$

5 Games on countable ordinals
Countable ordinals and determinacy

We’ve discussed AD^α for $\alpha \leq \omega^2$. What about $\alpha < \omega_1$?
Countable ordinals and determinacy

We’ve discussed AD^α for $\alpha \leq \omega^2$. What about $\alpha < \omega_1$?

Theorem (Martin, Woodin)

For all $\alpha < \omega_1$,

1. $AD_R \implies AD^\alpha$
2. $AD^{\omega \cdot 2} \implies AD^\alpha$.

Since we know $AD^\alpha \implies AD^{\omega \cdot 2}$ if $\omega \cdot 2 \leq \alpha$, we have $AD^{\omega \cdot 2} \iff AD^\alpha$ for $\omega \cdot 2 \leq \alpha < \omega_1$.

$AD_R \iff AD^{\omega_2} \iff AD^{\omega \cdot 2} \iff AD^\alpha$.

Countable ordinals and determinacy

We’ve discussed AD^α for $\alpha \leq \omega^2$. What about $\alpha < \omega_1$?

Theorem (Martin, Woodin)

For all $\alpha < \omega_1$,

- $\text{AD}^\mathbb{R} \implies \text{AD}^\alpha$
- $\text{AD}^{\omega \cdot 2} \implies \text{AD}^\alpha$.

Since we know $\text{AD}^\alpha \implies \text{AD}^{\omega \cdot 2}$ if $\omega \cdot 2 \leq \alpha$, we have $\text{AD}^{\omega \cdot 2} \iff \text{AD}^\alpha$ for $\omega \cdot 2 \leq \alpha < \omega_1$.
We’ve discussed AD^α for $\alpha \leq \omega^2$. What about $\alpha < \omega_1$?

Theorem (Martin, Woodin)

For all $\alpha < \omega_1$,

- $\text{AD}_R \iff \text{AD}^\alpha$
- $\text{AD}^{\omega \cdot 2} \implies \text{AD}^\alpha$.

Since we know $\text{AD}^\alpha \implies \text{AD}^{\omega \cdot 2}$ if $\omega \cdot 2 \leq \alpha$, we have $\text{AD}^{\omega \cdot 2} \iff \text{AD}^\alpha$ for $\omega \cdot 2 \leq \alpha < \omega_1$.

$$\text{AD}_R \iff \text{AD}^{\omega^2} \iff \text{AD}^{\omega \cdot 2} \iff \text{AD}^\alpha$$