Determinacy of Long Games

Isabel Macenka and Allison Wang

University of Cambridge

8 April 2021

Macenka and Wang

Determinacy of Long Games

t → ব ≣ → ছ → ০৭.ে 8 April 2021 1/26

Introduction

The Axiom of Determinacy (AD) states that all games of length ω with move set ω are determined.

- The Axiom of Determinacy (AD) states that all games of length ω with move set ω are determined.
- We will be discussing determinacy axioms for long games statements about games with move set ω played on countable ordinals greater than ω .

- The Axiom of Determinacy (AD) states that all games of length ω with move set ω are determined.
- We will be discussing determinacy axioms for long games statements about games with move set ω played on countable ordinals greater than ω .
- In addition, we will discuss the relation between some of these determinacy axioms and the choice principle $AC_{\mathbb{R}}(\mathbb{R})$.

Determinacy and $AC_{\mathbb{R}}(\mathbb{R})$

$\begin{array}{ccc} \mathsf{AD}_{\mathbb{R}} \Longleftrightarrow \ \mathsf{AD}^{\omega^{2}} \implies \mathsf{AD}^{\omega \cdot 2} \implies \mathsf{AD}^{\omega + n} \Longleftrightarrow \ \mathsf{AD} \\ & & \downarrow & \swarrow \\ & & \mathsf{AC}_{\mathbb{R}}(\mathbb{R}) \end{array}$

Table of Contents

1 Notation and Definitions

- 2 Determinacy of games of length $\leq \omega^2$
- - 5 Games on countable ordinals

47 ▶ ∢ ∃

Notation

We will write \mathbb{R} for ω^{ω} and refer to elements of $\mathbb{R} = \omega^{\omega}$ as *reals*.

Image: A match a ma

Notation

We will write \mathbb{R} for ω^{ω} and refer to elements of $\mathbb{R} = \omega^{\omega}$ as *reals*. For $x \in X^{\alpha}$ and $y \in X$, we will write $x^{\frown}y$ for the concatenation of x and y.

Notation

We will write \mathbb{R} for ω^{ω} and refer to elements of $\mathbb{R} = \omega^{\omega}$ as *reals*. For $x \in X^{\alpha}$ and $y \in X$, we will write $x^{\frown}y$ for the concatenation of x and y.

Choice principle $AC_X(Y)$

 $(AC_X(Y))$ For every family $\{A_x \mid x \in X\}$ of non-empty sets $A_x \subseteq Y$, there is a choice function $c : X \to Y$ such that $c(x) \in A_x$ for all $x \in X$.

An α -game (or a game of length α) on a non-empty set X with payoff set A is played as follows:

< /⊒ ト < 三

An α -game (or a game of length α) on a non-empty set X with payoff set A is played as follows:

• On turn 0, player I plays some $x_0 \in X$.

Games

An α -game (or a game of length α) on a non-empty set X with payoff set A is played as follows:

- On turn 0, player I plays some $x_0 \in X$.
- Player I and player II take turns playing elements in X.

Games

An α -game (or a game of length α) on a non-empty set X with payoff set A is played as follows:

- On turn 0, player I plays some $x_0 \in X$.
- Player I and player II take turns playing elements in X.
- For each limit ordinal $\lambda < \alpha$, player I plays on turn λ .

Games

An α -game (or a game of length α) on a non-empty set X with payoff set A is played as follows:

- On turn 0, player I plays some $x_0 \in X$.
- Player I and player II take turns playing elements in X.
- For each limit ordinal $\lambda < \alpha$, player I plays on turn λ .

Define $x \in X^{\alpha}$ by $x(\beta) := x_{\beta}$ for all $\beta < \alpha$. We call x a *run* of the game. Player I wins the run x iff $x \in A$.

A strategy for this game is a function $\sigma: X^{<\alpha} \to X$.

Image: A match a ma

A strategy for this game is a function $\sigma: X^{<\alpha} \to X$. If players I and II play according to strategies σ and τ , respectively, let $\sigma * \tau$ denote the run of the game that results.

A strategy for this game is a function $\sigma: X^{<\alpha} \to X$. If players I and II play according to strategies σ and τ , respectively, let $\sigma * \tau$ denote the run of the game that results. We say σ is a winning strategy for player I if $\sigma * \tau \in A$ for all strategies τ , and similarly for player II.

A strategy for this game is a function $\sigma: X^{<\alpha} \to X$. If players I and II play according to strategies σ and τ , respectively, let $\sigma * \tau$ denote the run of the game that results. We say σ is a winning strategy for player I if $\sigma * \tau \in A$ for all strategies τ , and similarly for player II.

Clearly, at most one player has a winning strategy for any game. However, it need not be the case that either player has a winning strategy.

Determinacy axiom for α -games

 (AD_X^{α}) Every α -game on the move set X is determined.

Table of Contents

- 2 Determinacy of games of length $\leq \omega^2$
- (4) $AC_{\mathbb{R}}(\mathbb{R})$ and $L(\mathbb{R})$

-

Zermelo's Theorem

Theorem

All finite games are determined.

э.

590

Zermelo's Theorem

Theorem

All finite games are determined.

<u>Proof Sketch</u>: Consider the tree of all possible runs of the game. Starting from the n^{th} level, label the nodes according to who will win from that position using reverse induction.

AD^{α} for $\alpha \leq \omega^2$

Proposition

If $\alpha < \beta$, then $\mathsf{AD}^{\beta} \implies \mathsf{AD}^{\alpha}$

Macen	ka and	Wang
-------	--------	------

AD^α for $\alpha \leq \omega^2$

Proposition

If $\alpha < \beta$, then $\mathsf{AD}^{\beta} \implies \mathsf{AD}^{\alpha}$

<u>Proof Sketch</u>: Assume AD^{β} . Let $A \subseteq \omega^{\alpha}$. Want to show G(A) is determined.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

AD^α for $\alpha \leq \omega^2$

Proposition

If $\alpha < \beta$, then $\mathsf{AD}^{\beta} \implies \mathsf{AD}^{\alpha}$

<u>Proof Sketch</u>: Assume AD^{β} . Let $A \subseteq \omega^{\alpha}$. Want to show G(A) is determined.

Define $A' \subseteq \omega^{\beta}$ as follows:

$$A' = \{ x \in \omega^\beta \mid x \upharpoonright \alpha \in A \}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

AD^α for $\alpha \leq \omega^2$

Proposition

If $\alpha < \beta$, then $\mathsf{AD}^{\beta} \implies \mathsf{AD}^{\alpha}$

<u>Proof Sketch</u>: Assume AD^{β} . Let $A \subseteq \omega^{\alpha}$. Want to show G(A) is determined. Define $A' \subseteq \omega^{\beta}$ as follows:

$$A' = \{ x \in \omega^\beta \mid x \upharpoonright \alpha \in A \}$$

Player I (or II) wins the α -game G(A) iff Player I (or II) wins the β -game G(A'). Thus G(A) determined.

イロト 不得下 イヨト イヨト 二日

$AD^{\omega+n}$ for $n \in \omega$

Proposition AD \implies AD^{ω +n}

Macenka and Wang

Determinacy of Long Games

8 April 2021 11/26

$\mathsf{AD}^{\omega+n}$ for $n \in \omega$

Proposition

 $AD \implies AD^{\omega+n}$

<u>Proof Sketch</u>: Any game G(A) of length $\omega + n$ can be thought of as two games played back to back: one of length ω , one of length n.

3

イロト イポト イヨト イヨト

$\mathsf{AD}^{\omega+n}$ for $n \in \omega$

Proposition

 $\mathsf{AD} \implies \mathsf{AD}^{\omega+n}$

<u>Proof Sketch</u>: Any game G(A) of length $\omega + n$ can be thought of as two games played back to back: one of length ω , one of length n. AD says the ω -game is determined. Zermelo says the finite game is determined. Therefore G(A) is determined.

イロト イポト イヨト イヨト 二日

Table of Contents

Notation and Definitions

2 Determinacy of games of length $\leq \omega^2$

$3 \ \ \mathsf{AD}_{\mathbb{R}} \ \Longleftrightarrow \ \ \mathsf{AD}^{\omega^2}$

5 Games on countable ordinals

47 ▶ ∢ ∃

э

Theorem

$$AD_{\mathbb{R}} \iff AD^{\omega^2}.$$

Macer	ıka anc	I W	ang

글 > 글

・ロト ・日下・ ・ヨト

Theorem

$$\mathsf{AD}_{\mathbb{R}} \iff \mathsf{AD}^{\omega^2}.$$

We will use the following lemmas without proof:

3

590

Theorem

 $AD_{\mathbb{R}} \iff AD^{\omega^2}$.

We will use the following lemmas without proof:

Lemma 1 For any set X, $AC_X(X) \iff AD_X^2$.

< 回 ト く ヨ ト く ヨ ト

Theorem

 $AD_{\mathbb{R}} \iff AD^{\omega^2}.$

We will use the following lemmas without proof:

Lemma 1 For any set X, $AC_X(X) \iff AD_X^2$.

Lemma 2

For any ordinal α , $AD^{\omega \cdot \alpha} \implies AD^{\alpha}_{\mathbb{R}}$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

Proof sketch

Theorem

 $AD_{\mathbb{R}} \iff AD^{\omega^2}.$

<u>Proof sketch</u>: Assume $AD_{\mathbb{R}}$. Let G be an arbitrary ω^2 -game on ω . We think of G as being composed of ω -many "blocks."

3

個▶ ▲ 東▶

Proof sketch

Theorem

 $AD_{\mathbb{R}} \iff AD^{\omega^2}.$

<u>Proof sketch</u>: Assume $AD_{\mathbb{R}}$. Let G be an arbitrary ω^2 -game on ω . We think of G as being composed of ω -many "blocks." Define the ω -game G' on \mathbb{R} as follows:

3

Proof sketch

Theorem

 $AD_{\mathbb{R}} \iff AD^{\omega^2}.$

<u>Proof sketch</u>: Assume $AD_{\mathbb{R}}$. Let G be an arbitrary ω^2 -game on ω . We think of G as being composed of ω -many "blocks." Define the ω -game G' on \mathbb{R} as follows:

$$\begin{array}{c|cccc} \mathsf{I} & \sigma_0 & \sigma_1 & \dots \\ \\ \mathsf{II} & q_0 & q_1 & \dots \end{array}$$

We can think of the move σ_n in G' as a strategy $\omega^{<\omega} \to \omega$ for player I in block *n* of *G* by fixing a bijection between ω and $\omega^{<\omega}$.

Theorem

 $AD_{\mathbb{R}} \iff AD^{\omega^2}.$

<u>Proof sketch</u>: Assume $AD_{\mathbb{R}}$. Let G be an arbitrary ω^2 -game on ω . We think of G as being composed of ω -many "blocks." Define the ω -game G' on \mathbb{R} as follows:

We can think of the move σ_n in G' as a strategy $\omega^{<\omega} \to \omega$ for player I in block *n* of *G* by fixing a bijection between ω and $\omega^{<\omega}$. We think of q_n as being a list of player II's moves in block *n* of *G*.

Theorem

 $AD_{\mathbb{R}} \iff AD^{\omega^2}.$

<u>Proof sketch</u>: Assume $AD_{\mathbb{R}}$. Let G be an arbitrary ω^2 -game on ω . We think of G as being composed of ω -many "blocks." Define the ω -game G' on \mathbb{R} as follows:

We can think of the move σ_n in G' as a strategy $\omega^{<\omega} \to \omega$ for player I in block *n* of *G* by fixing a bijection between ω and $\omega^{<\omega}$. We think of q_n as being a list of player II's moves in block *n* of *G*. Player I wins a run of *G'* iff player I wins the corresponding run of *G*.

イロト イポト イヨト イヨト 二日

By $AD_{\mathbb{R}}$, G' is determined.

3

・ロト ・ 四ト ・ ヨト ・ ヨト

By $AD_{\mathbb{R}}$, G' is determined. If player I has a winning strategy in G', then player I has a winning strategy in G.

∃ > 3

Image: A math and A

- By $AD_{\mathbb{R}}$, G' is determined. If player I has a winning strategy in G', then player I has a winning strategy in G.
- Suppose player II has a winning strategy τ in G'.

3

- By $AD_{\mathbb{R}}$, G' is determined. If player I has a winning strategy in G', then player I has a winning strategy in G.
- Suppose player II has a winning strategy τ in G'. Let P be the set of all positions or runs in G that correspond to positions or runs in G' arising when player II plays according to τ .

- By $AD_{\mathbb{R}}$, G' is determined. If player I has a winning strategy in G', then player I has a winning strategy in G.
- Suppose player II has a winning strategy τ in G'. Let P be the set of all positions or runs in G that correspond to positions or runs in G' arising when player II plays according to τ . We call elements of P possibilities.

We say that a sequence $\langle \sigma_i | i < n \rangle$ leads to $y \in \omega^{\omega \cdot n}$ if y is the position in G corresponding to player I playing $\langle \sigma_i | i < n \rangle$ and player II playing according to τ in G'.

3

Image: A match a ma

We say that a sequence $\langle \sigma_i | i < n \rangle$ leads to $y \in \omega^{\omega \cdot n}$ if y is the position in G corresponding to player I playing $\langle \sigma_i | i < n \rangle$ and player II playing according to τ in G'.

Observations:

• For every $y \in P$ at least one sequence $\langle \sigma_i \rangle$ leads to y.

We say that a sequence $\langle \sigma_i | i < n \rangle$ leads to $y \in \omega^{\omega \cdot n}$ if y is the position in G corresponding to player I playing $\langle \sigma_i | i < n \rangle$ and player II playing according to τ in G'.

Observations:

- For every $y \in P$ at least one sequence $\langle \sigma_i \rangle$ leads to y.
- ② If $\langle \sigma_i \mid i < n \rangle$ leads to $y \in \omega^{\omega \cdot n}$, then any extension $\langle \sigma_i \mid i < n \rangle^{\frown} \sigma_n$ leads to an extension $y^{\frown} y_n \in \omega^{\omega \cdot (n+1)}$.

We say that a sequence $\langle \sigma_i | i < n \rangle$ leads to $y \in \omega^{\omega \cdot n}$ if y is the position in G corresponding to player I playing $\langle \sigma_i | i < n \rangle$ and player II playing according to τ in G'.

Observations:

- For every $y \in P$ at least one sequence $\langle \sigma_i \rangle$ leads to y.
- ② If $\langle \sigma_i | i < n \rangle$ leads to $y \in \omega^{\omega \cdot n}$, then any extension $\langle \sigma_i | i < n \rangle^{\frown} \sigma_n$ leads to an extension $y^{\frown} y_n \in \omega^{\omega \cdot (n+1)}$.

For every $\langle \sigma_i \mid i < n \rangle$, $y \in \omega^{\omega \cdot n}$, and $y^{\frown} y_n \in \omega^{\omega \cdot (n+1)}$ as in observation (2), fix some extension $\langle \sigma_i \mid i < n \rangle^{\frown} \sigma_n$ leading to $y^{\frown} y_n$.

イロト イポト イヨト イヨト 二日

We say that a sequence $\langle \sigma_i | i < n \rangle$ leads to $y \in \omega^{\omega \cdot n}$ if y is the position in G corresponding to player I playing $\langle \sigma_i | i < n \rangle$ and player II playing according to τ in G'.

Observations:

- For every $y \in P$ at least one sequence $\langle \sigma_i \rangle$ leads to y.
- ② If $\langle \sigma_i | i < n \rangle$ leads to $y \in \omega^{\omega \cdot n}$, then any extension $\langle \sigma_i | i < n \rangle^{\frown} \sigma_n$ leads to an extension $y^{\frown} y_n \in \omega^{\omega \cdot (n+1)}$.

For every $\langle \sigma_i \mid i < n \rangle$, $y \in \omega^{\omega \cdot n}$, and $y \cap y_n \in \omega^{\omega \cdot (n+1)}$ as in observation (2), fix some extension $\langle \sigma_i \mid i < n \rangle \cap \sigma_n$ leading to $y \cap y_n$. Call this extension the *standard extension*.

イロト イボト イヨト イヨト 二日

Define a partial function $\boldsymbol{\Sigma}$ on the possibilities inductively by:

- $\bullet \ \Sigma(\emptyset) = \emptyset$
- ② If $y \in \omega^{\omega \cdot n}$ and $\Sigma(y) \in \mathbb{R}^n$ is defined, and if $y' \in \omega^{\omega \cdot (n+1)}$ is an extension of y such that some extension of $\Sigma(y)$ leads to y', define $\Sigma(y')$ to be the corresponding standard extension.

3

Define a partial function $\boldsymbol{\Sigma}$ on the possibilities inductively by:

$$\bullet \ \Sigma(\emptyset) = \emptyset$$

If y ∈ ω^{ω⋅n} and Σ(y) ∈ ℝⁿ is defined, and if y' ∈ ω^{ω⋅(n+1)} is an extension of y such that some extension of Σ(y) leads to y', define Σ(y') to be the corresponding standard extension.

Observations:

• If $\Sigma(y)$ is defined, then $\Sigma(y)$ leads to y.

Define a partial function Σ on the possibilities inductively by:

$$\bullet \ \Sigma(\emptyset) = \emptyset$$

② If $y \in \omega^{\omega \cdot n}$ and $\Sigma(y) \in \mathbb{R}^n$ is defined, and if $y' \in \omega^{\omega \cdot (n+1)}$ is an extension of y such that some extension of $\Sigma(y)$ leads to y', define $\Sigma(y')$ to be the corresponding standard extension.

Observations:

- If $\Sigma(y)$ is defined, then $\Sigma(y)$ leads to y.
- If $\Sigma(y)$ is defined and $z = y \upharpoonright (\omega \cdot n)$ for some *n*, then $\Sigma(z)$ is defined and $\Sigma(z) = \Sigma(y) \upharpoonright n$.

イロト イボト イヨト イヨト 二日

Define a partial function Σ on the possibilities inductively by:

$$\bullet \ \Sigma(\emptyset) = \emptyset$$

2 If $y \in \omega^{\omega \cdot n}$ and $\Sigma(y) \in \mathbb{R}^n$ is defined, and if $y' \in \omega^{\omega \cdot (n+1)}$ is an extension of y such that some extension of $\Sigma(y)$ leads to y', define $\Sigma(y')$ to be the corresponding standard extension.

Observations:

- If $\Sigma(y)$ is defined, then $\Sigma(y)$ leads to y.
- If Σ(y) is defined and z = y ↾ (ω ⋅ n) for some n, then Σ(z) is defined and Σ(z) = Σ(y) ↾ n.
- If y ∈ ω^{ω²} is such that Σ(y ↾ (ω · n)) is defined for all n ∈ ω, then y is a possibility.

イロト 不得下 イヨト イヨト 二日

Define a partial function Σ on the possibilities inductively by:

$$\bullet \Sigma(\emptyset) = \emptyset$$

2 If $y \in \omega^{\omega \cdot n}$ and $\Sigma(y) \in \mathbb{R}^n$ is defined, and if $y' \in \omega^{\omega \cdot (n+1)}$ is an extension of y such that some extension of $\Sigma(y)$ leads to y', define $\Sigma(y')$ to be the corresponding standard extension.

Observations:

- If $\Sigma(y)$ is defined, then $\Sigma(y)$ leads to y.
- If Σ(y) is defined and z = y ↾ (ω ⋅ n) for some n, then Σ(z) is defined and Σ(z) = Σ(y) ↾ n.
- If y ∈ ω^{ω²} is such that Σ(y ↾ (ω · n)) is defined for all n ∈ ω, then y is a possibility.

So it suffices to find a strategy for player II in G such that any run consistent with this strategy has the property described in observation (3).

イロト 不得下 イヨト イヨト 二日

Claim

Let $y \in \omega^{\omega \cdot n}$ be a position in G such that $\Sigma(y)$ is defined. Then there exists a strategy τ_y for player II on block n such that $\Sigma(y')$ is defined for every extension $y' \in \omega^{\omega \cdot (n+1)}$ of y that arises from player II playing according to τ_y on block n.

We will use this claim without proof.

Claim

Let $y \in \omega^{\omega \cdot n}$ be a position in G such that $\Sigma(y)$ is defined. Then there exists a strategy τ_y for player II on block n such that $\Sigma(y')$ is defined for every extension $y' \in \omega^{\omega \cdot (n+1)}$ of y that arises from player II playing according to τ_y on block n.

We will use this claim without proof.

 $AC_{\mathbb{R}}(\mathbb{R})$ allows us to fix one τ_y for every such y simultaneously.

Claim

Let $y \in \omega^{\omega \cdot n}$ be a position in G such that $\Sigma(y)$ is defined. Then there exists a strategy τ_y for player II on block n such that $\Sigma(y')$ is defined for every extension $y' \in \omega^{\omega \cdot (n+1)}$ of y that arises from player II playing according to τ_y on block n.

We will use this claim without proof.

 $AC_{\mathbb{R}}(\mathbb{R})$ allows us to fix one τ_y for every such y simultaneously. Since $\Sigma(\emptyset)$ is defined, "gluing" together these τ_y gives a strategy for player II on G.

Claim

Let $y \in \omega^{\omega \cdot n}$ be a position in G such that $\Sigma(y)$ is defined. Then there exists a strategy τ_y for player II on block n such that $\Sigma(y')$ is defined for every extension $y' \in \omega^{\omega \cdot (n+1)}$ of y that arises from player II playing according to τ_y on block n.

We will use this claim without proof.

 $AC_{\mathbb{R}}(\mathbb{R})$ allows us to fix one τ_y for every such y simultaneously. Since $\Sigma(\emptyset)$ is defined, "gluing" together these τ_y gives a strategy for player II on G. Every run z resulting from player II following this strategy in G has the property that $\Sigma(z \upharpoonright (\omega \cdot n))$ is defined for all $n \in \omega$, so by a previous observation, this is a winning strategy for player II.

イロト イポト イヨト イヨト 二日

Table of Contents

Notation and Definitions

2 Determinacy of games of length $\leq \omega^2$

5 Games on countable ordinals

э

Proposition

 $\mathsf{AD}^{\omega \cdot 2} \implies \mathsf{AC}_{\mathbb{R}}(\mathbb{R})$

1

・ロト ・ 四ト ・ ヨト ・ ヨト

Macenka and Wang

Proposition

 $\mathsf{AD}^{\omega \cdot 2} \implies \mathsf{AC}_{\mathbb{R}}(\mathbb{R})$

Will use the following lemmas (same as for Blass's Theorem) without proof:

Macen	ka anc	l Wang
-------	--------	--------

</i>

Proposition

 $\mathsf{AD}^{\omega \cdot 2} \implies \mathsf{AC}_{\mathbb{R}}(\mathbb{R})$

Will use the following lemmas (same as for Blass's Theorem) without proof:

Lemma 1

For any set X, $AC_X(X) \iff AD_X^2$.

イロト イボト イヨト イヨト 二日

Proposition

 $\mathsf{AD}^{\omega \cdot 2} \implies \mathsf{AC}_{\mathbb{R}}(\mathbb{R})$

Will use the following lemmas (same as for Blass's Theorem) without proof:

Lemma 1

For any set X,
$$AC_X(X) \iff AD_X^2$$
.

Lemma 2

For any ordinal α , $AD^{\omega \cdot \alpha} \implies AD^{\alpha}_{\mathbb{R}}$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

Proposition

 $\mathsf{AD}^{\omega \cdot 2} \implies \mathsf{AC}_{\mathbb{R}}(\mathbb{R})$

Will use the following lemmas (same as for Blass's Theorem) without proof:

Lemma 1

For any set X,
$$AC_X(X) \iff AD_X^2$$
.

Lemma 2

For any ordinal α , $AD^{\omega \cdot \alpha} \implies AD^{\alpha}_{\mathbb{R}}$.

 $\frac{\text{Proof of Proposition: From Lemma 2, we have } AD^{\omega \cdot 2} \implies AD^2_{\mathbb{R}}.$ Lemma 1 gives us $AD^2_{\mathbb{R}} \implies AC_{\mathbb{R}}(\mathbb{R})$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

 $\mathsf{AD} \implies \mathsf{AC}_{\mathbb{R}}(\mathbb{R})$

In order to show AD \implies AC_R(R), we will show that the inner model $L(\mathbb{R})$ is not a model of AC_R(R)

3

イロト イポト イヨト イヨト

$L(\mathbb{R})$

Construction of $L(\mathbb{R})$

- $L_0(\mathbb{R}) = \text{transitive closure of } \mathbb{R}$
- $L_{\lambda}(\mathbb{R}) = \bigcup_{\alpha < \lambda} L_{\alpha}(\mathbb{R})$
- $L_{\lambda+1}(\mathbb{R}) = \{x \mid x \text{ definable over } L_{\lambda}(\mathbb{R})\}$

 $L(\mathbb{R}) = \bigcup L_{\lambda}(\mathbb{R})$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

$L(\mathbb{R})$

Construction of $L(\mathbb{R})$

- $L_0(\mathbb{R}) = \text{transitive closure of } \mathbb{R}$
- $L_{\lambda}(\mathbb{R}) = \bigcup_{\alpha < \lambda} L_{\alpha}(\mathbb{R})$
- $L_{\lambda+1}(\mathbb{R}) = \{x \mid x \text{ definable over } L_{\lambda}(\mathbb{R})\}$

 $L(\mathbb{R}) = \bigcup L_{\lambda}(\mathbb{R})$

Properties of $L(\mathbb{R})$

- \bullet Smallest inner model containing ${\mathbb R}$ and the ordinals
- Can code every set with a real and an ordinal

▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ● ● ● ● ●

$L(\mathbb{R})$ and $\mathsf{AC}_{\mathbb{R}}(\mathbb{R})$

Proposition

 $L(\mathbb{R})$ does not have $AC_{\mathbb{R}}(\mathbb{R})$.

э

▲ 伊 ト - ▲ 三

æ

590

$L(\mathbb{R})$ and $AC_{\mathbb{R}}(\mathbb{R})$

Proposition

 $L(\mathbb{R})$ does not have $AC_{\mathbb{R}}(\mathbb{R})$.

<u>Proof</u>: Consider, for $x \in \mathbb{R}$, $A_x = \{y \mid y \text{ not ordinal definable from } x\}$. We know A_x is nonempty.

(4) → (1

$L(\mathbb{R})$ and $\mathsf{AC}_{\mathbb{R}}(\mathbb{R})$

Proposition

 $L(\mathbb{R})$ does not have $AC_{\mathbb{R}}(\mathbb{R})$.

<u>Proof</u>: Consider, for $x \in \mathbb{R}$, $A_x = \{y \mid y \text{ not ordinal definable from } x\}$. We know A_x is nonempty.

Now assume we have a choice function $f \in L(\mathbb{R})$ for $\{A_x \mid x \in \mathbb{R}\}$.

< 🗇 🕨 < 🖃 🕨

3

$L(\mathbb{R})$ and $\mathsf{AC}_{\mathbb{R}}(\mathbb{R})$

Proposition

 $L(\mathbb{R})$ does not have $AC_{\mathbb{R}}(\mathbb{R})$.

<u>Proof</u>: Consider, for $x \in \mathbb{R}$, $A_x = \{y \mid y \text{ not ordinal definable from } x\}$. We know A_x is nonempty.

Now assume we have a choice function $f \in L(\mathbb{R})$ for $\{A_x \mid x \in \mathbb{R}\}$.

As $f \in L(\mathbb{R})$, it must be ordinal definable from some $x_0 \in \mathbb{R}$.

3

$L(\mathbb{R})$ and $AC_{\mathbb{R}}(\mathbb{R})$

Proposition

 $L(\mathbb{R})$ does not have $AC_{\mathbb{R}}(\mathbb{R})$.

<u>Proof</u>: Consider, for $x \in \mathbb{R}$, $A_x = \{y \mid y \text{ not ordinal definable from } x\}$. We know A_x is nonempty.

Now assume we have a choice function $f \in L(\mathbb{R})$ for $\{A_x \mid x \in \mathbb{R}\}$. As $f \in L(\mathbb{R})$, it must be ordinal definable from some $x_0 \in \mathbb{R}$. However then

 $f(x_0) \not\in A_{x_0}$. Contradiction.

$L(\mathbb{R})$ and dependent choice

Axiom of Dependent Choice, DC

For every nonempty set X and entire relation R on X (i.e. for all a, there exists b such that R(a, b)), there is a function $f : \omega \to X$ such that for all n, R(f(n), f(n+1)).

$L(\mathbb{R})$ and dependent choice

Axiom of Dependent Choice, DC

For every nonempty set X and entire relation R on X (i.e. for all a, there exists b such that R(a, b)), there is a function $f : \omega \to X$ such that for all n, R(f(n), f(n+1)).

Theorem (Kechris)

Assume $ZF + AD + V = L(\mathbb{R})$ holds. Then DC holds.

< 回 ト く ヨ ト く ヨ ト

Table of Contents

Notation and Definitions

- 2 Determinacy of games of length $\leq \omega^2$

5 Games on countable ordinals

э

We've discussed AD^{α} for $\alpha \leq \omega^2$. What about $\alpha < \omega_1$?

3

We've discussed AD^{α} for $\alpha \leq \omega^2$. What about $\alpha < \omega_1$?

Theorem (Martin, Woodin)

For all $\alpha < \omega_1$,

- $AD_{\mathbb{R}} \implies AD^{\alpha}$
- $AD^{\omega \cdot 2} \implies AD^{\alpha}$.

3

We've discussed AD^{α} for $\alpha \leq \omega^2$. What about $\alpha < \omega_1$?

Theorem (Martin, Woodin)

For all $\alpha < \omega_1$,

- $AD_{\mathbb{R}} \implies AD^{\alpha}$
- $AD^{\omega \cdot 2} \implies AD^{\alpha}$.

Since we know $AD^{\alpha} \implies AD^{\omega \cdot 2}$ if $\omega \cdot 2 \leq \alpha$, we have $AD^{\omega \cdot 2} \iff AD^{\alpha}$ for $\omega \cdot 2 \leq \alpha < \omega_1$.

We've discussed AD^{α} for $\alpha \leq \omega^2$. What about $\alpha < \omega_1$?

Theorem (Martin, Woodin)

For all $\alpha < \omega_1$,

- $AD_{\mathbb{R}} \implies AD^{\alpha}$
- $AD^{\omega \cdot 2} \implies AD^{\alpha}$.

Since we know $AD^{\alpha} \implies AD^{\omega \cdot 2}$ if $\omega \cdot 2 \leq \alpha$, we have $AD^{\omega \cdot 2} \iff AD^{\alpha}$ for $\omega \cdot 2 \leq \alpha < \omega_1$.

$$\mathsf{AD}_{\mathbb{R}} \iff \mathsf{AD}^{\omega^2} \iff \mathsf{AD}^{\omega \cdot 2} \iff \mathsf{AD}^{\alpha}$$