A Higher Counterpart to Random Forcing

Tristan van der Vlugt Universität Hamburg

STiHAC Forschungsseminar Mathematische Logik March 25, 2021 This talk summarises "A parallel to the null ideal for inaccessible λ " (Shelah, 2017) and "The Higher Cichoń Diagram" (Baumhauer, Goldstern & Shelah, 2020)

We will compare random forcing of the **classical** Cantor space ${}^{\omega}2$ (the reals) to a similar forcing \mathbb{Q}_{κ} on the **higher** Cantor space ${}^{\kappa}2$ with κ inaccessible, in particular for κ being weakly compact.

- Classical Cohen & Random Forcing
- $\,\circ\,$ Higher Cohen Forcing & \mathbb{Q}_{κ} Forcing
- \circ Properties of \mathbb{Q}_{κ}
- Higher Cichoń Diagram
- Anti-Fubini Sets & Orthogonality

Classical Reals

The topology on ${}^{\omega}2$ is defined by the basis of clopens $\{[s] \mid s \in {}^{<\omega}2\}$, where $[s] = \{x \in {}^{\omega}2 \mid s \subseteq x\}$.

A set $X \subseteq {}^{\omega}2$ is **nowhere dense** if every open O contains an open $U \subseteq O$ with $U \cap X = \emptyset$. A set $X \subseteq {}^{\omega}2$ is **meagre** if it is the countable union of nowhere dense sets. Let $\mathcal{M} \subseteq \mathcal{P}({}^{\omega}2)$ be the set of meagre sets.

Let μ be the Lebesgue measure, generated by $\mu([s]) = 2^{-\mathrm{ot}(s)}$ for basic open [s]. Let $\mathcal{N} \subseteq \mathcal{P}(^{\omega}2)$ be the set of Lebesgue null sets.

Proposition

 \mathcal{M} and \mathcal{N} are $<\omega_1$ -complete ideals and contain all singleton sets. The set of meagre Borel sets is cofinal in \mathcal{M} and the set of null Borel sets is cofinal in \mathcal{N} . Finally, \mathcal{M} and \mathcal{N} are orthogonal: there exists $A \in \mathcal{M}$ with ${}^{\omega}2 \setminus A \in \mathcal{N}$.

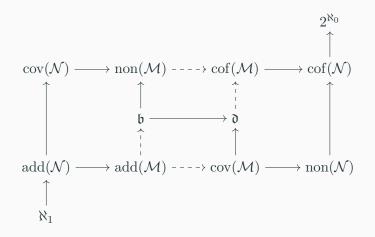
Cardinal characteristics

Let λ be a regular cardinal, \mathcal{I} be a $<\lambda^+$ -complete ideal on $^{\lambda}2$ containing all singleton sets. We define the following cardinals:

- $\operatorname{cov}(\mathcal{I})$ is the least cardinality of $\mathcal{J} \subseteq \mathcal{I}$ such that $\bigcup \mathcal{J} = {}^{\lambda}2$,
- $\operatorname{non}(\mathcal{I})$ is the least cardinality of $I \subseteq {}^{\lambda}2$ such that $I \notin \mathcal{I}$,
- $\ \mathrm{add}(\mathcal{I}) \text{ is the least cardinality of } \mathcal{J} \subseteq \mathcal{I} \text{ such that } \bigcup \mathcal{J} \notin \mathcal{I},$
- $\operatorname{cof}(\mathcal{I}) \text{ is the least cardinality of } \mathcal{J} \subseteq \mathcal{I} \text{ such that for all } I \in \mathcal{I} \text{ there is } J \in \mathcal{J} \text{ with } I \subseteq J.$

Given $f, g \in {}^{\lambda}\lambda$, let $f \leq g$ if there is $\alpha \in \lambda$ such that $f(\xi) \leq g(\xi)$ for all $\xi \geq \alpha$.

- $-\mathfrak{b}_{\lambda}$ is the least cardinality of $B \subseteq {}^{\lambda}\lambda$ such that for all $f \in {}^{\lambda}\lambda$ there is $g \in B$ such that $g \not\leq^* f$,
- $-\mathfrak{d}_{\lambda}$ is the least cardinality of $D \subseteq {}^{\lambda}\lambda$ such that for all $f \in {}^{\lambda}\lambda$ there is $g \in D$ such that $f \leq^* g$.



Classical Cohen Forcing

For any $s \in {}^{<\omega}2$, let $T_s = \{t \in {}^{<\omega}2 \mid s \subseteq t \text{ or } t \subseteq s\}$. Note that T_s is a tree and $T_s \subseteq T_t$ iff $s \supseteq t$.

The **Cohen forcing** \mathbb{C} has as conditions trees T such that $T = T_s$ for some $s \in {}^{<\omega}2$ and is ordered by inclusion: $T' \leq_{\mathbb{C}} T$ iff $T' \subseteq T$, where T' is the **stronger** condition. If $r \in {}^{\omega}2$ is a real added by forcing with \mathbb{C} , then r is called a **Cohen real**.

Proposition

Let G be \mathbb{C} -generic, then $r \in {}^{\omega}2 \cap \mathbf{V}[G]$ is Cohen iff $r \notin B_c$ for every Borel set $B_c \in \mathcal{M}$ coded by some $c \in {}^{\omega}2 \cap \mathbf{V}$.

Alternatively, $A \in \mathcal{M}$ iff there is a Borel set B_c coded by $c \in {}^{\omega}2$ such that $A \subseteq B_c$ and $\Vdash_{\mathbb{C}}$ " $\dot{r} \notin B_c$ ", where \dot{r} is the \mathbb{C} -name of a generic Cohen real. If $T\subseteq{}^{<\omega}2$ is a tree, let [T] be the set of branches of T. Note that [T] is a compact set.

The random forcing \mathbb{R} has as conditions trees T such that $\mu([T]) > 0$ and is ordered by inclusion. If $r \in {}^{\omega}2$ is a real added by forcing with \mathbb{R} , then r is called a random real.

Proposition

Let G be \mathbb{R} -generic, then $r \in {}^{\omega}2 \cap \mathbf{V}[G]$ is random iff $r \notin B_c$ for every Borel set $B_c \in \mathcal{N}$ coded by some $c \in {}^{\omega}2 \cap \mathbf{V}$.

Alternatively, $A \in \mathcal{N}$ iff there is a Borel set B_c coded by $c \in {}^{\omega}2$ such that $A \subseteq B_c$ and $\Vdash_{\mathbb{R}}$ " $\dot{r} \notin B_c$ ", where \dot{r} is the \mathbb{R} -name of a generic random real.

A forcing \mathbb{P} is **c.c.c.** if every $\leq_{\mathbb{P}}$ -antichain is countable.

A subset $\mathbb{P}' \subseteq \mathbb{P}$ is *n*-linked if every $A \in [\mathbb{P}']^n$ has a lower bound (possibly in $\mathbb{P} \setminus \mathbb{P}'$). \mathbb{P} is σ -*n*-linked if it is the countable union of *n*-linked sets. \mathbb{P} is σ -centred if \mathbb{P} is the countable union of sets that are *n*-linked for all $n \in \omega$.

 $\mathbb{P} \text{ is } {}^{\omega}\omega\text{-bounding if for any } \mathbb{P}\text{-name } \dot{f} \text{ for a real in } {}^{\omega}\omega\text{ there is } g \in {}^{\omega}\omega\text{ in the ground model such that } \Vdash_{\mathbb{P}} ``\dot{f} \leq^* g".$

Proposition

The random forcing \mathbb{R} is c.c.c., σ -n-linked for all $n \in \omega$ and ${}^{\omega}\omega$ -bounding. If \mathbb{P} is a σ -centred forcing, then \mathbb{P} does not add a random real, thus \mathbb{R} is not σ -centred.

- Classical Cohen & Random Forcing
- Higher Cohen Forcing & \mathbb{Q}_{κ} Forcing
- \circ Properties of \mathbb{Q}_{κ}
- Higher Cichoń Diagram
- Anti-Fubini Sets & Orthogonality

Higher Reals & *k*-Cohen Forcing

Let κ be regular uncountable. In analogy to the reals ${}^{\omega}2$, we call elements of ${}^{\kappa}2$ higher reals.

For any $s \in {}^{<\kappa}2$ let $[s] = \{x \in {}^{\kappa}2 \mid s \subseteq x\}$. The topology on ${}^{\kappa}2$ is defined by the basis of clopens $\{[s] \mid s \in {}^{<\kappa}2\}$. This is called the $<\kappa$ -box topology. A set $X \subseteq {}^{\kappa}2$ is meagre if it is the union of $\leq \kappa$ nowhere dense sets. Let \mathcal{M}_{κ} be the set of meagre sets of ${}^{\kappa}2$.

Proposition

 \mathcal{M}_{κ} is a $<\!\kappa^+$ -complete ideal that contains all sets of size $\le\!\kappa$. \Box

The κ -Cohen forcing \mathbb{C}_{κ} has as conditions trees $T \subseteq {}^{<\kappa}2$ such that $T = T_s$ for some $s \in {}^{<\kappa}2$ and is ordered by inclusion. If $r \in {}^{\kappa}2$ is a higher real added by forcing with \mathbb{C}_{κ} , then r is called a κ -Cohen real.

Let $\mathbb P$ be a forcing with conditions being trees on ${}^\kappa 2$ ordered by inclusion.

- For $J \subseteq \mathbb{P}$ we define $\operatorname{set}_1(J) = \bigcup_{p \in J} [p]$, and $\operatorname{set}_0(J) = {}^{\kappa}2 \setminus \operatorname{set}_1(J)$.
- For $\Lambda \subseteq \mathcal{P}(\mathbb{P})$ we define $\operatorname{set}_1(\Lambda) = \bigcap_{J \in \Lambda} \operatorname{set}_1(J)$, and $\operatorname{set}_0(\Lambda) = {}^{\kappa}2 \setminus \operatorname{set}_1(\Lambda) = \bigcup_{J \in \Lambda} \operatorname{set}_0(J)$.

Let $A \in id(\mathbb{P})$ iff $A \subseteq set_0(\Lambda)$ for $\Lambda \subseteq \mathcal{P}(\mathbb{P})$ with $|\Lambda| \leq \kappa$ and each $J \in \Lambda$ predense in \mathbb{P} .

Proposition

 $id(\mathbb{P})$ is a $<\kappa^+$ -complete ideal.

Lemma

 $\operatorname{id}(\mathbb{C}_{\kappa}) = \mathcal{M}_{\kappa}.$

Proof. If $J \subseteq \mathbb{C}_{\kappa}$ is predense, then $\operatorname{set}_0(J)$ is nowhere dense. If Λ is a family of predense sets with $|\Lambda| \leq \kappa$, then $\operatorname{set}_0(\Lambda)$ is the κ -union of nowhere dense sets, thus meagre.

If $A = \bigcup_{\alpha < \kappa} A_{\alpha}$ is meagre, with A_{α} nowhere dense, then there are open dense sets $B_{\alpha} \subseteq {}^{\kappa}2 \setminus A_{\alpha}$. For each open dense B_{α} there is a predense $J \subseteq \mathbb{C}_{\kappa}$ such that $\operatorname{set}_1(J) = B_{\alpha}$. Generally speaking, there is no clear way to generalise Lebesgue measure to κ_2 . Random forcing is defined using Lebesgue measure, thus there is no clear way to generalise random forcing.

Problem

Assume $\kappa^+ < 2^{\kappa}$. Is there a nontrivial forcing with conditions being trees on ${}^{<\kappa}2$ that is $<\!\kappa^+$ -c.c., (strategically) $<\!\kappa$ -closed and ${}^{\kappa}\kappa$ -bounding?

If κ is weakly compact, the answer is yes.

The Forcing \mathbb{Q}_{κ}

Let κ be (strongly) inaccessible and let S_{inc}^{κ} be the set of (strongly) inaccessibles below κ . A set $S \subseteq S_{\text{inc}}^{\kappa}$ is **nowhere stationary** if $S \cap \alpha$ is nonstationary for every $\alpha \in \{\kappa\} \cup S_{\text{inc}}^{\kappa}$.

 \mathbb{Q}_{κ} is defined by recursion over $\lambda \in S_{\mathrm{inc}}^{\kappa}$. The conditions of \mathbb{Q}_{κ} are trees $p \subseteq {}^{<\kappa}2$ witnessed by a triple $\langle \tau_p, S_p, \overline{\Lambda}_p \rangle$, where:

$$-\ \tau_p \in p$$
 is the stem of p ,

$$-~S_p\subseteq S_{\rm inc}^\kappa\setminus \left({\rm ot}(\tau_p)+1\right)$$
 is nowhere stationary,

 $\begin{array}{l} - \ \overline{\Lambda}_p \ = \ \left\langle \Lambda_p^\lambda \ | \ \lambda \in S_{\mathrm{inc}}^\kappa \right\rangle \ \text{is a sequence where for} \\ \text{each } \lambda \in S_{\mathrm{inc}}^\kappa \ \text{with } \mathrm{ot}(\tau_p) < \lambda \ \text{we have a family} \\ \Lambda_p^\lambda \subseteq \mathcal{P}(\mathbb{Q}_\lambda) \ \text{of predense subsets with } |\Lambda_p^\lambda| \leq \lambda, \end{array}$

- if
$$s \in {}^{\alpha}2$$
 for $\alpha < \kappa$, then $s \in p$ iff both:

$$- s \upharpoonright \beta \in p \text{ for all } \beta < \alpha, \text{ and} \\ - \alpha \notin S_p \text{ or } [\alpha \in S_p \text{ and } s \in \text{set}_1(\Lambda_p^{\alpha})].$$

The Forcing \mathbb{Q}_{κ}

Lemma

If $p, q \in \mathbb{Q}_{\kappa}$ and $\tau_p \in q$ and $\tau_q \in p$ (in particular if $\tau_p = \tau_q$), then $p \cap q$ is a condition.

Lemma

If $\kappa > \sup(S_{inc}^{\kappa})$, then \mathbb{Q}_{κ} is forcing equivalent to \mathbb{C}_{κ} and $id(\mathbb{Q}_{\kappa}) = \mathcal{M}_{\kappa}$.

Proofs. By picture:

For this reason we will always assume $\kappa = \sup(S_{\rm inc}^\kappa)$ when κ is mentioned.

- Classical Cohen & Random Forcing
- $\,\circ\,$ Higher Cohen Forcing & \mathbb{Q}_{κ} Forcing
- Properties of \mathbb{Q}_{κ}
- Higher Cichoń Diagram
- Anti-Fubini Sets & Orthogonality

A forcing \mathbb{P} is $<\kappa^+$ -c.c. if every $\leq_{\mathbb{P}}$ -antichain is of cardinality $<\kappa^+$.

A forcing \mathbb{P} is $<\kappa$ -closed if any sequence $p_0 \ge_{\mathbb{P}} p_1 \ge_{\mathbb{P}} \cdots$ of length $<\kappa$ has a lower bound.

Let $\lambda \leq \kappa$. A subset $\mathbb{P}' \subseteq \mathbb{P}$ is $\operatorname{centred}_{<\lambda}$ if every $A \in [\mathbb{P}']^{<\lambda}$ has a lower bound (possibly in $\mathbb{P} \setminus \mathbb{P}'$). \mathbb{P} is κ -centred_{<\lambda} if it is the κ -union of centred_{<\lambda} sets.

 \mathbb{P} is ${}^{\kappa}\kappa$ -bounding if for any \mathbb{P} -name \dot{f} for a higher real in ${}^{\kappa}\kappa$ there is $g \in {}^{\kappa}\kappa$ in the ground model such that $\Vdash_{\mathbb{P}}$ " $\dot{f} \leq {}^{*}g$ ".

Forcing properties

For a forcing $\mathbb P,$ let $\mathcal G_{\mathbb P}$ be the game of length κ with the following rules:

- $\ \text{Black and White alternatingly choose } p_\alpha \in \mathbb{P} \text{ stronger than all } \\ \text{previous moves } p_\beta \text{ with } \beta < \alpha \text{,}$
- Black plays p_0 ,
- White plays first at limit stages.

 \mathbb{P} is strategically $< \kappa$ -closed if White has a strategy to not run out of moves in the game $\mathcal{G}_{\mathbb{P}}$.

Proposition

If \mathbb{P} is (strategically) $<\kappa$ -closed, then any set $f \in {}^{<\kappa}2$ in the extension after forcing with \mathbb{P} was already in the ground model. \Box

Properties of \mathbb{Q}_{κ} : κ -centred_{< λ} & < κ^+ -c.c.

Theorem

 \mathbb{Q}_{κ} is κ -centred_{< λ} for all $\lambda < \kappa$. In particular \mathbb{Q}_{κ} is $<\kappa^+$ -c.c.

Proof. For each $\tau \in {}^{<\kappa}2$, let $\mathbb{Q}_{\kappa}^{\tau} = \{p \in \mathbb{Q}_{\kappa} \mid \tau_p = \tau\}$. Clearly $\bigcup_{\operatorname{ot}(\tau) \geq \lambda} \mathbb{Q}_{\kappa}^{\tau}$ is dense in \mathbb{Q}_{κ} . Consider $\{p_{\xi} \in \mathbb{Q}_{\kappa}^{\tau} \mid \xi < \mu\}$ for some τ with $\operatorname{ot}(\tau) \geq \lambda$ and $\mu < \lambda$, and let p_{ξ} be witnessed by $\langle \tau, S_{\xi}, \overline{\Lambda}_{\xi} \rangle$. Then $S_{\mu} = \bigcup_{\xi < \mu} S_{\xi}$ is nowhere stationary, and $\overline{\Lambda}_{\mu}$ with $\Lambda_{\mu}^{\eta} = \bigcup_{\xi < \mu} \Lambda_{\xi}^{\eta}$ has $|\Lambda_{\mu}^{\eta}| \leq \eta$ for all $\eta \geq \lambda$. Therefore $p = \bigcap_{\xi < \mu} p_{\xi}$ is a condition witnessed by $\langle \tau, S_{\mu}, \overline{\Lambda}_{\mu} \rangle$ and

 $p \le p_{\xi} \text{ for all } \xi < \mu.$

Theorem

If \mathbb{P} is κ -centred_{< κ} and preserves ^{< κ}2, then \mathbb{P} does not add a \mathbb{Q}_{κ} -generic higher real.

Properties of \mathbb{Q}_{κ} : Preservation of ${}^{<\kappa}2$

Lemma

 \mathbb{Q}_{κ} is not $<\kappa$ -closed.

Proof. Let $\alpha = \min(S)$ for some nowhere stationary $S \subseteq S_{\text{inc}}^{\kappa}$. Let $\langle p_{\beta} \mid \beta < \alpha \rangle$ be witnessed by $\langle \tau \restriction \beta, S, \overline{\Lambda} \rangle$ with $\tau \in \text{set}_0(\Lambda^{\alpha})$, then this sequence has no lower bound.

Theorem

 \mathbb{Q}_{κ} is strategically $<\kappa$ -closed.

Proof sketch. At White's turn β , White chooses a p_{β} and a club C_{β} such that for $\xi \leq \beta$ we have $S_{\beta} = \bigcup_{\xi < \beta} S_{\xi} \setminus \beta$, $C_{\beta} \subseteq \bigcap_{\xi < \beta} C_{\xi} \setminus \beta$ such that $C_{\beta} \cap S_{\beta} = \emptyset$ and $\operatorname{ot}(\tau_{\beta}) \in C_{\beta}$. \Box Corollary

If G is \mathbb{Q}_{κ} -generic, then $({}^{<\kappa}2)^{\mathbf{V}} = ({}^{<\kappa}2)^{\mathbf{V}[G]}$.

Theorem

If κ is weakly compact, then \mathbb{Q}_{κ} is ${}^{\kappa}\kappa$ -bounding.

Proof. Let $\Vdash_{\mathbb{Q}_{\kappa}}$ " $\dot{f} \in {}^{\kappa}\kappa$ " for a name \dot{f} .

For all $p_0 \in \mathbb{Q}_{\kappa}$ we want to find $p \leq p_0$ and $\langle \beta_{\alpha} \mid \alpha < \kappa \rangle \subseteq \kappa$ such that if $r \leq p$ and $\operatorname{ot}(\tau_r) = \beta_{\alpha+1}$, then $r \Vdash ``\dot{f}(\alpha) = \eta_{\alpha}^r$ `` for some η_{α}^r . Then $p \Vdash ``\dot{f}(\alpha) \leq \eta_{\alpha}$ `` for η_{α} greater than all η_{α}^r . Let $g_p : \alpha \mapsto \eta_{\alpha}$, then $p \Vdash ``\dot{f} \leq g_p$ ``.

Let P be dense such that for any p_0 there is $p \in P$ as above. We can find a g_p for each $p \in A \subseteq P$, where A is a maximal antichain. Since \mathbb{Q}_{κ} is $<\kappa^+$ -c.c., then $\{g_p \mid p \in A\}$ is \leq^* -bounded by some g, thus $\Vdash_{\mathbb{Q}_{\kappa}}$ " $\dot{f} \leq^* g$ ". ...

Properties of \mathbb{Q}_{κ} : κ -bounding

Cont'd. Let p_0 be witnessed by $\langle \tau, S_0, \overline{\Lambda}_0 \rangle$, then we find descending $\langle p_\alpha \rangle$ witnessed by $\langle \tau, S_\alpha, \overline{\Lambda}_\alpha \rangle$ such that if $r \leq p_{\alpha+1}$ and $\operatorname{ot}(\tau_r) = \beta_{\alpha+1}$, then r decides $\dot{f}(\alpha)$. We will let $p = \bigcap_{\alpha < \kappa} p_\alpha$. For $\alpha < \kappa$ we also define a descending chain of clubs C^α with $C^{\alpha+1} \cap S_\alpha = \varnothing$. We take $\beta_0 \in C^0 \subseteq \kappa \setminus (S_0 \cup \operatorname{ot}(\tau))$ arbitrary.

Given p_{α} , let $\langle q_{\xi} | \xi < \kappa \rangle$ be a maximal antichain below p_{α} with $q_{\xi} \Vdash$ " $\dot{f}(\alpha) = \eta_{\xi}$ " for $\eta_{\xi} < \kappa$. Let S_{∇} the diagonal union of $\langle S_{q_{\xi}} \rangle$. Take $C^{\alpha+1} \subseteq C^{\alpha} \setminus (S_{\nabla} \cup S_{\alpha} \cup \beta_{\alpha})$ and $C_{\text{inc}}^{\alpha+1} = S_{\text{inc}}^{\kappa} \cap C^{\alpha+1}$ (which is stationary since κ is Mahlo).

Claim

There exists $\lambda_{\alpha} \in C_{\text{inc}}^{\alpha+1}$ such that $\{q_{\xi} \cap {}^{<\lambda_{\alpha}}2 \mid \xi < \lambda_{\alpha}\}$ is a maximal antichain below $p_{\alpha} \cap {}^{<\lambda_{\alpha}}2$.

Properties of \mathbb{Q}_{κ} : κ -bounding

Proof of claim. Given $\tau \subseteq \sigma \in p_{\alpha}$ and $\gamma = \operatorname{ot}(\sigma) + 1$, we define:

$$\begin{split} \mathcal{T}_{\sigma} = \bigcup_{\lambda \in C_{\mathrm{inc}}^{\alpha+1} \setminus \gamma} \{ r \in \mathbb{Q}_{\lambda} \mid \tau_r = \sigma \text{ and } r \subseteq p_{\alpha} \text{ and} \\ \forall \xi < \lambda (r \perp q_{\xi} \cap {}^{<\lambda}2) \quad \} \end{split}$$

ordered by $r \leq r'$ iff $r \in \mathbb{Q}_{\lambda}$, $r' \in \mathbb{Q}_{\lambda'}$, $\lambda \leq \lambda'$ and $r = r' \cap {}^{<\lambda}2$. Assume \mathcal{T}_{σ} has height κ . Each level of \mathcal{T}_{σ} has size $<\kappa$, so by weak compactness let $\langle r_{\lambda} \rangle$ be a branch, witnessed by $S_{r_{\lambda}} \subseteq \lambda$ such that $S_{r_{\lambda}} \subseteq S_{r_{\lambda'}}$ for $\lambda < \lambda'$. Since κ is a reflecting cardinal, $\bigcup_{\lambda} S_{r_{\lambda}}$ is nowhere stationary. Hence $r = \bigcup_{\lambda} r_{\lambda} \in \mathbb{Q}_{\kappa}$ and $r \perp q_{\xi}$ for all ξ , contradiction. Thus let λ_{σ} be such that $\mathbb{Q}_{\lambda_{\sigma}} \cap \mathcal{T}_{\sigma} = \emptyset$.

Given $\lambda \in C_{\text{inc}}^{\alpha+1}$, let f be a continuous function with $f(0) = \lambda$ and $f(\alpha + 1) = \sup \{\lambda_{\sigma} \mid \sigma \in {}^{<f(\alpha)}2\}$. Then there is $\lambda_{\alpha} \in C_{\text{inc}}^{\alpha+1}$ that is an f-fixed point. This λ_{α} satisfies the claim.

Properties of \mathbb{Q}_{κ} : ${}^{\kappa}\kappa$ -bounding

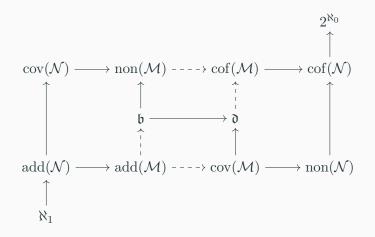
Cont'd. Let q_{ξ}^{s} be witnessed by $\langle s, S_{q_{\xi}} \setminus (\lambda_{\alpha} + 1), \overline{\Lambda}_{q_{\xi}} \rangle$ for each $s \in q_{\xi} \cap {}^{\lambda_{\alpha}}2$. Let $Q \subseteq \mathbb{Q}_{\lambda_{\alpha}}$ be predense with $\{q_{\xi} \cap {}^{<\lambda_{\alpha}}2 \mid \xi < \lambda_{\alpha}\}$ being the part of Q below p_{α} .

We set
$$p_{\alpha+1} = \bigcup \left\{ q_{\xi}^{s} \mid \xi < \lambda_{\alpha} \text{ and } s \in q_{\xi} \cap \lambda_{\alpha} 2 \right\}$$
, witnessed by:
 $S_{\alpha+1} = (S_{\alpha} \cap \lambda_{\alpha}) \cup \{\lambda_{\alpha}\} \cup \bigcup_{\xi < \lambda_{\alpha}} S_{q_{\xi}} \setminus (\lambda_{\alpha} + 1),$
 $\overline{\Lambda}_{\alpha+1} = \left\langle \Lambda_{\alpha+1}^{\lambda} \mid \lambda \in S_{\text{inc}}^{\kappa} \right\rangle$ with
 $\Lambda_{\alpha+1}^{\lambda} = \begin{cases} \Lambda_{\alpha}^{\lambda} & \text{if } \lambda < \lambda_{\alpha} \\ \{Q\} & \text{if } \lambda = \lambda_{\alpha} \\ \bigcup_{\xi < \lambda_{\alpha}} \Lambda_{q_{\xi}}^{\lambda} & \text{if } \lambda > \lambda_{\alpha} \end{cases}$

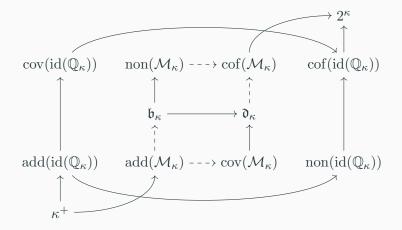
Take $\beta_{\alpha+1} \in C^{\alpha+1} \setminus (S_{\alpha+1} \cup \lambda_{\alpha})$. Then $r \leq p_{\alpha+1}$ with $\operatorname{ot}(\tau_r) = \beta_{\alpha+1} > \lambda_{\alpha}$ decides $\dot{f}(\alpha)$.

Cont'd. Finally for limit γ we set $\beta_{\gamma} = \bigcup_{\alpha < \gamma} \beta_{\alpha}$ and $p_{\gamma} = \bigcap_{\alpha < \gamma} p_{\alpha}$, witnessed by $S_{\gamma} = \bigcup_{\alpha < \gamma} S_{\alpha}$. We let $C^{\gamma} = \bigcap_{\alpha < \gamma} C^{\alpha}$, which is club, then since $C^{\alpha+1}$ is disjoint from S_{α} for each α , we see C^{γ} is disjoint from S_{γ} . We have $\beta_{\gamma} \in C^{\gamma}$ because $\{\beta_{\xi} \mid \xi > \alpha\} \subseteq C^{\alpha}$ for each $\alpha < \gamma$, thus $\beta_{\gamma} \notin S_{\gamma}$. For $\xi \leq \alpha < \gamma$ we have $\beta_{\alpha} \notin S_{\xi}$, and for $\xi > \alpha$ we have $S_{\xi} \cap \lambda_{\alpha} = S_{\alpha} \cap \lambda_{\alpha}$, therefore by $\beta_{\alpha} < \lambda_{\alpha}$ we get $\beta_{\alpha} \notin S_{\xi}$. Therefore S_{γ} is nonstationary below β_{γ} , and since S_{γ} is a γ -union of nowhere stationary sets, it is also nonstationary above β_{γ} . Finally if $\gamma = \beta_{\gamma}$, then $\langle \beta_{\alpha} \mid \alpha < \gamma \rangle$ is a club set disjoint from $S_{\gamma} \cap \gamma$.

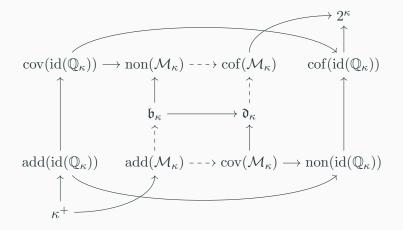
- Classical Cohen & Random Forcing
- $\,\circ\,$ Higher Cohen Forcing & \mathbb{Q}_{κ} Forcing
- \circ Properties of \mathbb{Q}_{κ}
- Higher Cichoń Diagram
- Anti-Fubini Sets & Orthogonality



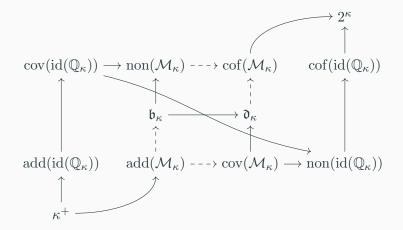
Higher Cichoń's Diagram



Higher Cichoń's Diagram



Higher Cichoń's Diagram



- Classical Cohen & Random Forcing
- $\,\circ\,$ Higher Cohen Forcing & \mathbb{Q}_{κ} Forcing
- \circ Properties of \mathbb{Q}_{κ}
- Higher Cichoń Diagram
- Anti-Fubini Sets & Orthogonality

Fubini's Theorem & Anti-Fubini Sets

Let $x \in X$, $y \in Y$ and $A \subseteq X \times Y$, then define the sections $A_x = \{y \in Y \mid (x, y) \in A\}$ and $A^y = \{x \in X \mid (x, y) \in A\}.$

Theorem (Fubini's theorem)

Let $A \subseteq {}^{\omega}2 \times {}^{\omega}2$ be measurable, then $\mu(A) = 0$ iff $\{x \in {}^{\omega}2 \mid \mu(A_x) > 0\} \in \mathscr{N}$ iff $\{y \in {}^{\omega}2 \mid \mu(A^y) > 0\} \in \mathscr{N}$.

An anti-Fubini set between the ideals \mathcal{I} and \mathcal{J} is a set $F \subseteq {}^{\kappa}2 \times {}^{\kappa}2$ for which $F_x \in \mathcal{I}$ and ${}^{\kappa}2 \setminus F^y \in \mathcal{J}$ for all $x, y \in {}^{\kappa}2$.

Lemma

If $A \subseteq {}^{\kappa}2 \times {}^{\kappa}2$ is anti-Fubini between \mathcal{I} and \mathcal{J} , then $\operatorname{cov}(\mathcal{I}) \leq \operatorname{non}(\mathcal{J})$ and $\operatorname{cov}(\mathcal{J}) \leq \operatorname{non}(\mathcal{I})$.

Proof. Let F be anti-Fubini, $Y \notin \mathcal{I}$. Since $F_x \in \mathcal{I}$, let $y \in Y \setminus F_x$, then $(x, y) \notin F$, so $x \notin F^y$, so $x \in \bigcup_{y \in Y} {}^{\kappa}2 \setminus F^y$. \Box

Anti-Fubini Property of \mathbb{Q}_{κ}

Theorem

There exists an anti-Fubini set between \mathbb{Q}_{κ} and itself.

Proof. Let $S = \{\lambda \mid \lambda > \sup(S_{inc}^{\lambda})\}$ and fix $x \in {}^{\kappa}2, \lambda \in S$. For $s \in {}^{<\lambda}2$ let $x_{\lambda}^s \in {}^{\lambda}2$ be defined as $x_{\lambda}^s \upharpoonright \operatorname{dom}(s) = s$ and $x_{\lambda}^{s}(\alpha) = x(\lambda + \alpha)$ otherwise. Let $A_{\lambda}^{x} = \{x_{\lambda}^{s} \mid s \in {}^{<\lambda}2\} \in id(\mathbb{Q}_{\lambda}).$ Let $\Lambda^x_{\lambda} \subseteq \mathcal{P}(\mathbb{Q}_{\lambda})$ witness that $A^x_{\lambda} \subseteq \operatorname{set}_0(\Lambda^x_{\lambda})$ for $\lambda \in S$, and define a sequence $\overline{\Lambda}^x = \langle \Lambda^x_{\lambda} \mid \lambda \in S^{\kappa}_{inc} \rangle$. For each $\tau \in {}^{<\kappa}2$ let $p^x_{\tau} \in \mathbb{Q}_{\kappa}$ be witnessed by $\langle \tau, S \setminus \operatorname{ot}(\tau), \overline{\Lambda}^x \rangle$. $J^x = \{ p^x_\tau \mid \tau \in {}^{<\kappa}2 \}$ is predense. Unfixing x, let $F = \{(x, y) \in {}^{\kappa}2 \times {}^{\kappa}2 \mid y \in \operatorname{set}_1(\{J^x\})\}$, then $F_r = \operatorname{set}_1(\{J^x\})$, thus $\kappa_2 \setminus F_r = \operatorname{set}_0(\{J^x\}) \in \operatorname{id}(\mathbb{O}_{\kappa})$. We have to show that $F^y \in id(\mathbb{Q}_{\kappa})$ for all $y \in {}^{\kappa}2$.

Anti-Fubini Property of \mathbb{Q}_{κ}

Cont'd. Let $D_y^{\alpha} = \left\{ p \in \mathbb{Q}_{\kappa} \mid \exists \lambda \in S \setminus \alpha(y \upharpoonright \lambda \in \bigcap_{x \in [p]} A_{\lambda}^x) \right\}$ for $y \in \kappa^2$. We show D_y^{α} is dense and $F^y \subseteq \operatorname{set}_0(\left\{ D_y^{\alpha} \mid \alpha < \kappa \right\})$. Take $q \in \mathbb{Q}_{\kappa}$, w.l.o.g. with $S_q \setminus \alpha \neq \emptyset$. Let $\lambda \in S_q \setminus \alpha$, then since $(\lambda, \lambda \cdot 2) \cap S_{\operatorname{inc}}^{\kappa} = \emptyset$, we see that q is fully branching in $[\lambda, \lambda \cdot 2)$. Hence $t' \in q \cap \lambda^2$ and $t'' \in \lambda^2$ implies $t' \cap t'' \in q$. Let $t \in q \cap \lambda^{\cdot 2}^2$ with $t \upharpoonright [\lambda, \lambda \cdot 2) = y \upharpoonright [0, \lambda)$. Then let $r \leq q$ be such that $t \subseteq \tau_r$. If $x \in [r]$, then take $s = y \upharpoonright \xi$ for some $\xi < \lambda$, to see that $y \upharpoonright \lambda = x_{\lambda}^s \in A_{\lambda}^x$, so $r \in D_y^{\alpha}$.

Let $x \in F^y$, then $y \in \text{set}_1(\{J^x\})$. Thus $y \in [p_\tau^x]$ for some $\tau \in {}^{<\kappa}2$, where p_τ^x is witnessed by $\langle \tau, S \setminus \operatorname{ot}(\tau), \overline{\Lambda}^x \rangle$. For each $\lambda \in S \setminus \operatorname{ot}(\tau)$ we see that $y \upharpoonright \lambda \notin \operatorname{set}_0(\Lambda_\lambda^x)$, and thus by $A_\lambda^x \subseteq \operatorname{set}_0(\Lambda_\lambda^x)$ also $y \upharpoonright \lambda \notin A_\lambda^x$. Therefore $x \in \operatorname{set}_0(D_y^\alpha)$ for any $\alpha \ge \operatorname{ot}(\tau)$. \Box

Orthogonality

Theorem

There exists $A \subseteq {}^{\kappa}2$ such that $A \in \mathcal{M}_{\kappa}$ and ${}^{\kappa}2 \setminus A \in id(\mathbb{Q}_{\kappa})$.

Proof. Let $S = \{\lambda \mid \lambda > \sup(S_{\text{inc}}^{\lambda})\}$ and let $\lambda^{-} = \sup(S_{\text{inc}}^{\lambda})$ and $L_{\lambda} = \{p \in \mathbb{Q}_{\lambda} \mid \exists \alpha (\lambda^{-} \leq \alpha < \operatorname{ot}(\tau_{p}) \text{ and } \tau_{p}(\alpha) \neq 0)\}$. Let $p_{\eta} \in \mathbb{Q}_{\kappa}$ be witnessed by $\langle \eta, S \setminus \operatorname{ot}(\eta), \langle \{L_{\lambda}\} \mid \lambda \in S \rangle \rangle$. Then $\operatorname{set}_{1}(\{p_{\eta} \mid \eta \in {}^{<\kappa}2\}) \in \mathcal{M}_{\kappa}$ and $\operatorname{set}_{0}(\{p_{\eta} \mid \eta \in {}^{<\kappa}2\}) \in \operatorname{id}(\mathbb{Q}_{\kappa})$. \Box

Theorem

There exists an anti-Fubini set between \mathcal{M}_{κ} and $id(\mathbb{Q}_{\kappa})$

Proof. Let $A \in \mathcal{M}_{\kappa}$ be closed under translation such that ${}^{\kappa}2 \setminus A \in \mathrm{id}(\mathbb{Q}_{\kappa})$. Define $F = \{(x, y) \in {}^{\kappa}2 \times {}^{\kappa}2 \mid y \in x + A\}$. Then $F_x = x + A \in \mathcal{M}_{\kappa}$, and thus ${}^{\kappa}2 \setminus F_x = x + {}^{\kappa}2 \setminus A \in \mathrm{id}(\mathbb{Q}_{\kappa})$. $F^y = \{x \mid y \in x + A\} = \{x \mid x \in y + -A\} = y + -A \in \mathcal{M}_{\kappa}$. \Box

References

T. Baumhauer, M. Goldstern & S. Shelah, The Higher Cichoń Diagram, Fund. Math. 252(3), 241–314 (2020)

J. Brendle, A. Brooke-Taylor, S. Friedman & D. Montoya, Cichoń's diagram for uncountable cardinals, Isr. J. Math. 255, 959-1010 (2016)

S. Cohen & S. Shelah, *Generalizing random real forcing for inaccessible cardinals*, Isr. J. Math., 234(2), 547–580 (2019)

S. Friedman & G. Laguzzi, A null ideal for inaccessibles, Arch. Math. Logic 56, 691–697 (2017)

Y. Khomskii, G. Laguzzi, B. Löwe, I. Sharankou, *Questions on generalized Baire spaces*, Math. Logic Quart. 61(1-2), 91-102 (2016)

K. Kunen, Set Theory: an introduction to independence proofs, vol. 34 of Studies in Logic, College Publ. London, 2nd edition (2011)

S. Shelah, A parallel to the null ideal for inaccessible λ , Arch. Math. Logic 56(3-4), 319–383 (2017)