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Introduction

This talk summarises “A parallel to the null ideal for inaccessible \"”
(Shelah, 2017) and “The Higher Cichorn Diagram” (Baumbhauer,
Goldstern & Shelah, 2020)

We will compare random forcing of the classical Cantor space “2
(the reals) to a similar forcing Q,; on the higher Cantor space 2
with k inaccessible, in particular for x being weakly compact.
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Classical Reals

The topology on “2 is defined by the basis of clopens
{[s] | s € <¥2}, where [s] = {z €“2]| s C z}.

A set X C “2 is nowhere dense if every open O contains an open
UCOwithUNX =@. Aset X C“2is meagre if it is the
countable union of nowhere dense sets. Let M C P(“2) be the set
of meagre sets.

Let 1 be the Lebesgue measure, generated by p([s]) = 27°%) for
basic open [s]. Let N' C P(¥2) be the set of Lebesgue null sets.

Proposition

M and N are <wi-complete ideals and contain all singleton sets.
The set of meagre Borel sets is cofinal in M and the set of null
Borel sets is cofinal in /. Finally, M and N\ are orthogonal: there

exists A € M with “2\ A e N.
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Cardinal characteristics

Let \ be a regular cardinal, Z be a <A*-complete ideal on *2
containing all singleton sets. We define the following cardinals:

— cov(Z) is the least cardinality of 7 C Z such that |J J = *2,

— non(Z) is the least cardinality of I C *2 such that I ¢ 7,

— add(Z) is the least cardinality of J C Z such that |JJ ¢ Z,

— cof(Z) is the least cardinality of J C Z such that for all I € Z
there is J € J with I C J.

~—~~

Given f,g € )\, let f <* g if there is a € \ such that f(£) < g(€)
forall £ > a.

— b, is the least cardinality of B C *X such that for all f € A\
there is g € B such that g £* f,
— 0, is the least cardinality of D C *\ such that for all f € *\

there is g € D such that f <* g. 5 /37



Cichon’s Diagram

9No

cov(N) —— non(M) - ---» cof (M) —— cof(N)

1

_

T

add(N) — add‘(/\/l) ----» cov(M) —— non(N)

Ny
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Classical Cohen Forcing

For any s € <¥2, let Ts = {t € <¥2 | s Ctor t C s}. Note that T}
is a tree and T, C T; iff s D t.

The Cohen forcing C has as conditions trees T' such that T' = T
for some s € <“2 and is ordered by inclusion: 77 <¢c T iff T C T,
where T" is the stronger condition. If r € “2 is a real added by
forcing with C, then r is called a Cohen real.

Proposition
Let G be C-generic, then r € “2 N V[G] is Cohen iff r ¢ B, for
every Borel set B, € M coded by some c € “2N V.

Alternatively, A € M iff there is a Borel set B, coded by ¢ € “2
such that A C B, and IF¢ “7 ¢ B.", where 7 is the C-name of a

generic Cohen real. Ol

7/37



Classical Random Forcing

If T'C <“2is a tree, let [T] be the set of branches of T'. Note that
[T] is a compact set.

The random forcing R has as conditions trees T such that
w1([T]) > 0 and is ordered by inclusion. If r € “2 is a real added by
forcing with R, then r is called a random real.

Proposition
Let G be R-generic, then r € “2 N V[G] is random iff » ¢ B, for
every Borel set B. € N coded by some c € “2N V.

Alternatively, A € N iff there is a Borel set B, coded by ¢ € “2
such that A C B, and IFg “7 ¢ B.", where 7 is the R-name of a
generic random real. O
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Properties of Classical Random Forcing

A forcing IP is c.c.c. if every <p-antichain is countable.

A subset P’ C P is n-linked if every A € [P’]" has a lower bound
(possibly in P\ ). PP is o-n-linked if it is the countable union of
n-linked sets. P is o-centred if P is the countable union of sets
that are n-linked for all n € w.

P is “w-bounding if for any P-name f for a real in “w there is

g € “w in the ground model such that IFp " f <* ¢".

Proposition

The random forcing R is c.c.c., o-n-linked for all n € w and
“w-bounding. If P is a o-centred forcing, then P does not add a
random real, thus R is not o-centred. O]
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Higher Reals & x-Cohen Forcing

Let x be regular uncountable. In analogy to the reals “2, we call

elements of ©2 higher reals.

For any s € <"2 let [s] = {z € "2 | s C x}. The topology on "2 is
defined by the basis of clopens {[s] | s € <"2}. This is called the
<rk-box topology. A set X C "2 is meagre if it is the union of
<k nowhere dense sets. Let M, be the set of meagre sets of 2.

Proposition

M, is a <kT-complete ideal that contains all sets of size <x. [

The k-Cohen forcing C,; has as conditions trees T' C <%2 such
that T' = T for some s € <*2 and is ordered by inclusion. If r € %2
is a higher real added by forcing with C, then r is called a
r-Cohen real.
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The Ideal id(P)

Let P be a forcing with conditions being trees on "2 ordered by

inclusion.

— For J C P we define set1(J) = U,c [P,
and seto(J) = "2\ seti(J).

— For A C P(IP) we define set1(A) = (¢, set1(J),
and seto(A) = "2\ set;1(A) = [J cp seto(J).

Let A € id(P) iff A C seto(A) for A C P(PP) with |A| < k and each
J € A predense in P.
Proposition

id(P) is a <xT-complete ideal. O
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Higher Cohen forcing

Lemma

id(Cr) = M,..

Proof. If J C C, is predense, then seto(.J) is nowhere dense. If A
is a family of predense sets with |A| < &, then setg(A) is the
k-union of nowhere dense sets, thus meagre.

fA=,.A
open dense sets B, C "2\ A,. For each open dense B,, there is a
predense J C C, such that seti(J) = B,. O

« is meagre, with A, nowhere dense, then there are
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Generalising Random Forcing

Generally speaking, there is no clear way to generalise Lebesgue
measure to 2. Random forcing is defined using Lebesgue measure,

thus there is no clear way to generalise random forcing.

Problem

Assume kT < 27, Is there a nontrivial forcing with conditions being
trees on <2 that is <x*-c.c., (strategically) <r-closed and
®k-bounding?

If x is weakly compact, the answer is yes.
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The Forcing Q.

Let x be (strongly) inaccessible and let Sf . be the set of (strongly)

inaccessibles below . A set S C S is nowhere stationary if

mc
S N a is nonstationary for every o € {k} U SE .

Qy is defined by recursion over A € S . The conditions of Q, are

mc*

trees p C <*2 witnessed by a triple (7, Sp, A,), where:
— Tp € p is the stem of p,
— Sp € S5\ (ot(7p) + 1) is nowhere stationary,

mc
— A, = <A]’§ | A€ Sk.) is a sequence where for
each X € S¥ _ with ot(7,) < A we have a family

A])g‘ C P(Q)) of predense subsets with |A$| <A,
— if s € *2 for a < K, then s € p iff both:
— s|pepforall 8 <, and

— ag¢ Syor[aeS,and s €seti(Ay) | -



The Forcing Q.

Lemma
If p,qg € Qx and 7, € ¢ and 7, € p (in particular if 7, = 7,), then
p N q is a condition.

Lemma

If k > sup(Sf.), then Q is forcing equivalent to C, and

mc

id(Qx) = M.

Proofs. By picture:

For this reason we will always assume xk = sup(S%,.) when « is

mentioned.
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Forcing properties

A forcing P is <x'-c.c. if every <p-antichain is of cardinality <x™.

A forcing P is <k-closed if any sequence py >p p1 >p - - of
length <k has a lower bound.

Let A < k. A subset P C P is centred.) if every A € [P'|<* has a
lower bound (possibly in P\ P'). P is k-centred.) if it is the
k-union of centred_) sets.

P is "x-bounding if for any P-name f for a higher real in %« there

is g € "k in the ground model such that IFp “ f <* ¢".
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Forcing properties

For a forcing P, let Gp be the game of length x with the following
rules:

— Black and White alternatingly choose p, € IP stronger than all
previous moves pg with § < ¢,

— Black plays pg,
— White plays first at limit stages.

PP is strategically <x-closed if White has a strategy to not run
out of moves in the game Gp.

Proposition
If P is (strategically) <r-closed, then any set f € <¥2 in the
extension after forcing with P was already in the ground model. [J
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Properties of Q..: x-centred_, & <x*t-c.c.

Theorem

Qy is k-centred for all A < k. In particular Q. is <xk™-c.c.

Proof. For each 7 € <2, let Q] = {p € Q. | 7, = 7}. Clearly

Ust(r)>x QL is dense in Q. Consider {p¢ € Q | { < p} for some
7 with ot(7) > X and o < A, and let p¢ be witnessed by

<7', Sg,KO. Then S, = U£<“ S¢ is nowhere stationary, and A,
with Ajl = U, Al has [Afl] <7 forall n > A.

Therefore p = (., ¢ is a condition witnessed by (7,5, A,,) and
p < pe forall £ < p. O

Theorem
If P is k-centred—, and preserves <2, then P does not add a
Qk-generic higher real. O
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Properties of Q.: Preservation of <2

Lemma

Qx is not <k-closed.

Proof. Let o = min(S) for some nowhere stationary S C S¥ . Let

(ps | B < @) be witnessed by <7' [ 3,9, K> with 7 € seto(A%), then
this sequence has no lower bound. O

Theorem

Qy is strategically <k-closed.

Proof sketch. At White's turn 3, White chooses a pg and a club
Cp such that for £ < 8 we have Sz = [Je_55¢ \ B,

Cp C (Ne<p Ce \ B such that C3 N Sp = @ and ot(73) € Cp. O
Corollary

If G is Q,-generic, then (<+2)V = (<r2)VIC], O
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Properties of Q.: “x-bounding

Theorem

If x is weakly compact, then Qy is “k-bounding.
Proof. Let IFq, f e"k" for a name f.

For all pg € Q,; we want to find p < pp and (5, | @ < k) C K such
that if » < p and ot(7.) = Bas1, then r IF* f(a) = " for some
ne- Then pl-* f(a) < no" for n, greater than all n’,. Let

Gp : Q> N)q, then p I “f< G -

Let P be dense such that for any pg there is p € P as above. We
can find a g, for each p € A C P, where A is a maximal antichain.
Since Q is <kT-c.c., then {g, | p € A} is <*-bounded by some g,
thus I-q, “E<H g
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Properties of Q.: “x-bounding

Cont'd. Let py be witnessed by <7', SO,K0>, then we find
descending (p,) witnessed by <7', Sa,Ka> such that if » < p,11
and ot(7.) = Ba1, then r decides f(a). We will let p = Na<s Pa-
For oo < k we also define a descending chain of clubs C'* with
CN S, = 3. We take By € C° C k \ (Sp Uot(r)) arbitrary.

Given pq, let (g¢ | € < k) be a maximal antichain below p, with
e IF* f(a) = ne" for ne < k. Let Sy the diagonal union of (Sge)-
Take Co+1 C C\ (Sy U S, U Ba) and C2F = SE 0 Cotl

(which is stationary since « is Mahlo).

M Claim
There exists A\, € C2T! such that {qg N<Ae2| ¢ < )\a} is a

mc
maximal antichain below p, N <t 2.
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Properties of Q.: “x-bounding

Proof of claim. Given 7 C o € p, and v = ot(0) + 1, we define:
To = U)\GC_‘1+1\,}/{T‘ €Qx| 7 =0andr Cp, and
VE<A(r Lgen<*2) }

ordered by r < 7/ iff r € Qy, ' € Qy, A < X and r =7/ N <*2,
Assume 7, has height . Each level of 7, has size <k, so by weak
compactness let (ry) be a branch, witnessed by S,, C A such that
Sry C© Sr,, for A < X'. Since & is a reflecting cardinal, |J, S, is
nowhere stationary. Hence r = J, r\ € Q. and r L g¢ for all &,
contradiction. Thus let A\, be such that Q), N7, = @.

Given A € C2T! let f be a continuous function with f(0) = A and

mc

fla+1)=sup{\, | 0 € </ @2}, Then there is A\, € C2H! that

mc

is an f-fixed point. This A\, satisfies the claim. [ |
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Properties of Q.: “x-bounding

Cont'd. Let g; be witnessed by (5,5 \ (Aa +1), Ay, ) for each
5€qN Aa2. Let @ C Q,, be predense with {q§ N<A2| ¢ < )\a}

being the part of ) below p,.
We set po+1 = U {q%g | € < Aqand s € ge N )‘a2}, witnessed by:
Sa+1 - (Sa N /\a) U {/\a} U U§</\a Sq§ \ ()‘a + 1)7
Noir = <Ag+1 BYE s> with
A) if A < Ao

Ao = 3{Q} if A= Ao
Ugaro Ao iFA> Ao

Take Bar1 € COTHN\ (Sas1 UAy). Then 7 < poyq with

0t(7r) = Bat1 > Ao decides f(a).
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Properties of Q.: “x-bounding

Cont'd. Finally for limit v we set 3, = Ua<7 Bo and
Py = o<y Pa, Witnessed by Sy =, ., Sa-

We let C7 =1, C% which is club, then since Cotl s disjoint
from S, for each o, we see C7 is disjoint from .S,. We have
By € C7 because {3 | £ > a} C C° for each a < 7, thus 3, ¢ S,,.

For £ < oo < v we have 8, ¢ S¢, and for £ > a we have

Se N Aq = Sa N Aq, therefore by B, < Ao we get B, ¢ St.
Therefore S, is nonstationary below 3., and since S, is a y-union
of nowhere stationary sets, it is also nonstationary above /3. Finally
if v =55, then (B, | @ <) is a club set disjoint from S, N~y. O
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Cichon’s Diagram

9No

cov(N) —— non(M) - ---» cof (M) —— cof(N)

1

_

T

add(N) — add‘(/\/l) ----» cov(M) —— non(N)

Ny
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Higher Cichon’s Diagram

=
cov(id(Qy)) non(M,) ---» cof(i\/l,{) cof (id(Qx))

I

b

=

K

I

add(id(Qy))  add(M,) ---» cov(M,)  non(id(Qs))

=7

=

---y

K
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Higher Cichon’s Diagram

=
cov(id(Qx)) — non(My) ---» cof(i\/l,{) cof (id(Qx))

I

b

=

K

I

add(id(Qx))  add(M,) ---> cov(My) — non(id(Qy))

=7

=

---y

K

30/37



Higher Cichon’s Diagram

P

cov(id(Qx)) — non(My) ---» cof(i\/l,{) cof (id(Qx))
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Fubini’s Theorem & Anti-Fubini Sets

letz € X, yeY and A C X x Y, then define the sections

A, ={yeY | (z,y) € A} and AY = {z € X | (z,y) € A}.
Theorem (Fubini’s theorem)

Let A C “2 x “2 be measurable, then pu(A) = 0 iff

{z €2 | u(Ay) >0} e A iff {y € 2| u(AY) >0} € A O
An anti-Fubini set between the ideals Z and J is a set

F C %2 x "2 for which F, € 7T and "2\ FY € J for all x,y € "2.
Lemma

If A C %2 x *2is anti-Fubini between Z and 7, then
cov(Z) < non(J) and cov(J) < non(Z).

Proof. Let F be anti-Fubini, Y ¢ Z. Since F, € Z, lety € Y \ F,
then (z,y) ¢ F,sox ¢ FY, so x € J,cy "2\ FY. O
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Anti-Fubini Property of Q,

Theorem

There exists an anti-Fubini set between Q,, and itself.

Proof. Let S = {\| A > sup(Sp,)} and fix z € "2, A € S. For

s € <22 let 235 € *2 be defined as x5 | dom(s) = s and
z5(a) = z(X + @) otherwise. Let AT = {25 | s € <*2} €id(Q)).

Let AT C P(Q)) witness that A C seto(AY) for A € S, and define
a sequence A% = (A | X € Sf ). For each 7 € <F2 let p* € Q,; be
witnessed by (7, S\ ot(7), A"). J” = {p% | T € <F2} is predense.

Unfixing z, let F' = {(z,y) € "2 x "2 | y € set1({J*})}, then
F, = set1({J*}), thus "2\ F, = seto({J*}) € id(Qx). We have
to show that F¥ € id(Qy) for all y € #2.

34/37



Anti-Fubini Property of Q,

Cont'd. Let D = {p €Qu[INeS\aly A€ Nyepy A“}‘\)} for
y € 2. We show D is dense and F¥ C seto({Dy | v < K }).

Take ¢ € Qy, w.lo.g. with S, \ a # @. Let A € S; \ «, then since
(A, A-2)N S = @, we see that ¢ is fully branching in [A, X - 2).
Hence t' € ¢N*2 and ¢’ € *2 implies t'~t"” € q. Let t € gN 22
with ¢ [ [\, A-2) =y [ [0,A). Then let » < ¢ be such that ¢t C 7,.
If € [r], then take s =y [ £ for some £ < A, to see that

ylA=z3 € A3, sor € Dy.

Let x € FY, then y € set1({J*}). Thus y € [p%] for some T € <F2,
where p? is witnessed by (7, 5\ Ot(T),Kx>. For each A € S\ ot(7)
we see that i [ A ¢ seto(AY), and thus by A C seto(Af) also

y [ A ¢ AS. Therefore x € seto(Dy) for any o > ot(7). O
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Orthogonality

Theorem
There exists A C %2 such that A € M, and "2\ A € id(Qy).

Proof. Let S = {\| A > sup(Sp.)} and let A~ = sup(S3,) and
Ly={peQy|Ia(A" <a<ot(ry) and 1,(a) # 0)}. Let
Py € Q, be witnessed by (1, S\ ot(n), ({Lx} | A € S)). Then

set1({py | 7 € <2}) € M, and seto({p, | n € <"2}) € id(Qs). O

Theorem

There exists an anti-Fubini set between M, and id(Q)

Proof. Let A € M, be closed under translation such that

"2\ A €1d(Qy). Define F = {(z,y) € "2 x "2 |y € x + A}.
Then F, =z + A € M, and thus "2\ F, = 2z + "2\ A € id(Qy).
Fv={z|ycz+At={z|zecy+-A}=y+-AecM, O
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