Borel chromatic numbers as cardinal invariants

Michel Gaspar joint work with Stefan Geschke

Fachbereich Mathematik - Universität Hamburg

michel.gaspar@uni-hamburg.de

3rd and 10th of June, 2020

1 Borel chromatic numbers and other small cardinals

- The graph counterpart to Vitali's relation
- A measure-sensitive relative of G_0

2 How to increase Borel chromatic numbers

- Looking for embeddings of G_0
- The case with $\chi_B(E_0)$ and $\chi_B(G_1)$
- The case with $\chi_B(G_0)$

3 What else?

• Still open problems

Of central importance to the theory of Borel equivalence relations is the *Vitali's equivalence relation* E_0 :

$$xE_0y \leftrightarrow \forall^{\infty}n(x(n)=y(n)).$$

The Glimm-Effros Dichotomy says this is the *least non-smooth Borel equivalence relation*:

The graph counterpart to Vitali's relation A measure-sensitive relative of G_0

Theorem (Glimm-Effros Dichotomy, see [HKL90])

Let X be a Polish space and E be a Borel equivalence relation on X. Then one of the following holds:

(a) *E* is smooth — i.e., *E* is Borel reducible to equality on some Polish space *Y* —, or

(b) there is a continuous embedding from E_0 to E.

The graph counterpart of E_0 is the graph G_0 defined as follows:

Let $(s_n)_{n\in\omega}$ be a dense sequence of elements of $2^{<\omega}$ such that

- $|s_n| = n$ for all $n \in \omega$, and
- every $t \in 2^{<\omega}$ has an extension of the form s_n .

The G_0 -graph is the graph on 2^{ω} defined by

$$G_0 \doteq \{ (s_n^{\frown} 0^{\frown} x, s_n^{\frown} 1^{\frown} x) \mid n \in \omega \land x \in 2^{\omega} \}.$$

The graph counterpart to Vitali's relation A measure-sensitive relative of G_0

Let X be a Polish space and G be a graph on it.

The Borel chromatic number of G, denoted by $\chi_B(G)$, is the least cardinality of a family of Borel G-indendent¹ sets covering X.

It turns out $\chi_B(G_0) \ge \aleph_0$. In fact,

$$\chi_B(G_0) \ge \operatorname{cov}(\mathcal{M}). \tag{1}$$

This follows from the fact that any Borel (Baire measurable) G_0 -independent set has to be meager (see Proposition 6.2. from [KST99]).

Also, this is the *minimal* analytic graph with uncountable Borel chromatic number, in the following sense:

The graph counterpart to Vitali's relation A measure-sensitive relative of G_0

Theorem (*G*₀-dichotomy, [KST99])

Let X be a Polish space and G be an analytic graph on X, then exactly one of the following holds:

- (a) either $\chi_B(G) \leq \aleph_0$, or
- (b) there is a continuous homomorphism from G_0 to G. In which case $\chi_B(G_0) \leq \chi_B(G)$.

The importance of the above dichotomy is highlighted by Ben Miller [Mil12] who showed how this implies many well-known descriptive set-theoretic dichotomy-theorems. In contrast to the the case with the meager sets, there is Borel G_0 -independent set of *positive Lebesgue measure*.

In fact, it is is open whether $\chi_B({\it G}_0) \geq {\rm cov}({\cal N})$ can be proved in ${\sf ZFC}^2$

On the other hand, for the bigger relative of G_0 , the graph G_1 , we have such inequality:

Let G_1 be the graph on 2^{ω} defined as

 $G_1 = \{(x, y) \mid \exists ! n(x(n) \neq y(n))\}.$

²We conjecture that these cardinals are orthogonal to each other. (\equiv) \equiv 2 < 0 < 0

Using the Lebesgue density theorem one can argue that any Borel (Lebesgue measurable) G_1 -independent subset of 2^{ω} has measure zero.

It follows that

$$\chi_B(G_1) \ge \operatorname{cov}(\mathcal{N}). \tag{2}$$

Finally, we define $\chi_B(E_0)$ as the least cardinality of a family of Borel partial transversals covering 2^{ω} .

Since $G_0 \subseteq G_1 \subseteq E_0$, we trivially have

$$\chi_B(G_0) \le \chi_B(G_1) \le \chi_B(E_0). \tag{3}$$

The last ZFC-inequality connects $\chi_B(G_1)$ with the reaping number \mathfrak{r} :

$$\chi_B(G_1) \le \mathfrak{r}.\tag{4}$$

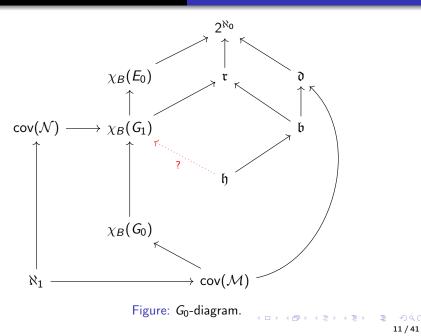
We will see this is connected to the fact that Silver forcing adds splitting reals.

The proof is exactly the same as in Brendle's [Bre94] proof of $\operatorname{cov}(v^0) \leq \mathfrak{r}$, where v^0 is the σ -ideal os Silver null sets.

Combining these four inequalities with other known inequalities between cardinals from the Cichon's and the van Douwen's diagrams, we get the following picture:

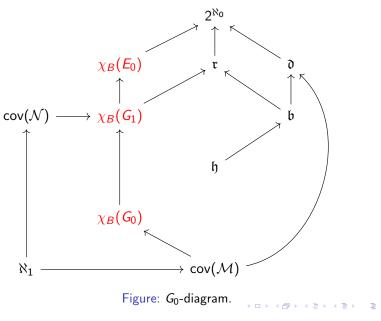
Borel chromatic numbers and other small cardinals

How to increase Borel chromatic numbers What else? The graph counterpart to Vitali's relation A measure-sensitive relative of G_0



Borel chromatic numbers and other small cardinals

How to increase Borel chromatic numbers What else? The graph counterpart to Vitali's relation A measure-sensitive relative of G_0



For G a graph on a Polish space X, we let I_G denote the σ -ideal generated by Borel G-independent sets.

The natural forcing notion candidate to increase $\chi_B(G)$ is $Bor(2^{\omega}) \setminus I_G$.

Of course, it needs to be checked for which graphs this forcing notion is actually proper. For this purpose, it is often useful to find a forcing notion with perfect trees that densely embeds into $Bor(2^{\omega}) \setminus I_G$.

Looking for embeddings of G_0 The case with $\chi_B(E_0)$ and $\chi_B(G_1)$ The case with $\chi_B(G_0)$

Lemma (Miller Paris' notes)

Let X be a Polish space and G be an analytic graph on it. If A is an analytic G-independent set, then there is some Borel set $B \supseteq A$ such that B is G-independent. For an analytic graph G on 2^{ω} , say that a perfect tree p on $2^{<\omega}$ is a G-tree iff it is perfect, and

$$\forall s \in p \ ([p_s] \text{ has a } G\text{-edge}).$$

Let \mathbb{P}_G denote the consisting of *G*-trees ordered by inclusion.

At a first glance, we could think the ideal I_G always has the *inner* approximation property — i.e., the compact I_G -positive sets are dense in the set of Borel I_G -positive sets.

We don't know a general proof of this fact, but this holds for the situations in which we have actual embeddings of G_0 :

Looking for embeddings of G_0 The case with $\chi_B(E_0)$ and $\chi_B(G_1)$ The case with $\chi_B(G_0)$

Theorem ([KST99])

Let X be a Polish space and G be an analytic graph on X which is either acyclic or locally countable, then exactly one of the following holds:

(a) either
$$\chi_B(G) \leq \aleph_0$$
, or

(b) there is a continuous **embedding** from G_0 to G.

Looking for embeddings of G_0 The case with $\chi_B(E_0)$ and $\chi_B(G_1)$ The case with $\chi_B(G_0)$

Theorem

Let G be an analytic graph on 2^{ω} which is either acyclic or locally countable and A be an analytic set. Then either $A \in I_G$ or there is some G-tree p such that $[p] \subseteq A$.

Looking for embeddings of G_0 The case with $\chi_B(E_0)$ and $\chi_B(G_1)$ The case with $\chi_B(G_0)$

Consider the graph defined as $G \upharpoonright A = G \cap (A \times A)$. Using the G_0 -dichotomy, one of the following holds:

(a) $\chi_B(G \upharpoonright A) \leq \aleph_0$.

In this case, let $(B_n)_{n \in \omega}$ be a sequence of Borel $(G \upharpoonright A)$ -independent sets such that

$$2^{\omega} = \bigcup_{n \in \omega} B_n.$$

Now each $B_n \cap A$ is an analytic *G*-independent set. For each *n* we find a Borel $C_n \supseteq B_n \cap A$ which is *G*-independent.

Looking for embeddings of G_0 The case with $\chi_B(E_0)$ and $\chi_B(G_1)$ The case with $\chi_B(G_0)$

(b) there is continuous embedding from G_0 to G_A .

In this case, let $\varphi: 2^{\omega} \to 2^{\omega}$ be the continuous embedding from G_0 to $G \upharpoonright A$.

Note that $\varphi[2^{\omega}] \subseteq A$ is a compact I_G -positive set (here we need the injectivity of φ).

Moreover, $\varphi[O]$ has a *G*-edge for every open set *O* (since *O* has a *G*₀-edge).

From this, it is possible to show that $\varphi[2^{\omega}]$ is the set of branches of a *G*-tree.

Let G, H be two analytic graphs on the Cantor space that are either acyclic or locally countable, both having uncountable Borel chromatic number.

Assume we can prove $\chi_B(H) \leq \chi_B(G)$ also and the forcing \mathbb{P}_G is a proper forcing notion.

The standard forcing recipe to prove the consistency of $\chi_B(H) < \chi_B(G)$ is:

- (1) Prove that forcing with \mathbb{P}_G does not add \mathbb{P}_H -quasi-generic reals.
- (2) Assume CH in the ground model and let $(\mathbb{P}_G)_{\omega_2}$ be a countable supported iteration of \aleph_2 copies of \mathbb{P}_H and prove that no \mathbb{P}_H -reals appear in successor steps of this iteration.
- (3) Prove the same as above for limit steps.

For a natural number *n*, we define an *action* of 2^n on 2^{ω} as follows: For $\sigma \in 2^n$ and $x \in 2^{\omega}$, then $\sigma \cdot x$ replaces $x \upharpoonright n$ with σ in x — i.e.,

$$(\sigma \cdot x)(m) = \begin{cases} \sigma(m) \text{ if } m < n \\ x(m) \text{ if } m \ge n \end{cases}$$

An E₀-tree p is a perfect tree such that for any splitting node σ ∈ p, there are τ₀, τ₁, extensions of the same lenght, such that

$$\tau_1 \cdot [p_{\tau_0}] = [p_{\tau_1}].$$

• If τ_0, τ_1 can always be chosen in a way that $|\tau_0 \Delta \tau_1| = 1$, then p is a Silver tree.

Clearly, any \mathbb{E}_0 -tree is an E_0 -tree; and any Silver tree is a G_1 -tree. In fact, these forcing notions are respectively equivalent — see Zapletal [Zap04].

The \mathbb{E}_0 -forcing and the Silver forcing \mathbb{V} are relatively well-known forcing notions and our natural candidates to increase *only* $\chi_B(E_0)$ and $\chi_B(G_1)$, respectively, while keeping the other cardinals of our diagram intact.

Borel chromatic numbers and other small cardinals	Looking for embeddings of Go
How to increase Borel chromatic numbers	The case with $\chi_B(E_0)$ and $\chi_B(G_1)$
What else?	The case with $\chi_B(G_{m 0})$

Lemma

(a) \mathbb{E}_0 does not add Silver-quasi-generic reals.

(b) \mathbb{V} does not add \mathbb{P}_{G_0} -reals.

For any forcing notion \mathbb{P} and \dot{x} a \mathbb{P} -name for an element of 2^{ω} witnessed by p, define for each $q \leq p$,

$$\mathcal{T}_q(\dot{x}) = \{s \in 2^{<\omega} \mid \exists r \leq q(r \Vdash s \subseteq \dot{x})\},$$

the tree of *q*-interpretations for \dot{x} . We have

 $q \Vdash \dot{x} \in [T_q(\dot{x})]$

and each $[T_q(\dot{x})]$ is a closed set coded in the ground model.

In case the case of (a) the goal is to find $q \leq p$ an \mathbb{E}_0 -tree such that $[T_q(\dot{x})]$ is a G_1 -independent set.

Likewise, in the case of (b) the goal is to find $q \le p$ a Silver tree such that $[T_q(\dot{x})]$ is a G_0 -independent set.

Theorem

The countable supported iteration of \aleph_2 copies of the $\mathbb{E}_0\text{-forcing},$ over a model of CH, yields to a model of

$$\aleph_1 = \chi_B(G_1) < \chi_B(E_0) = 2^{\aleph_0}.$$

Theorem

The countable supported iteration of \aleph_2 copies of the Silver forcing, over a model of CH, yields to a model of

$$\aleph_1 = \chi_B(G_0) < \chi_B(G_1) = 2^{\aleph_0}.$$

Borel chromatic numbers and other small cardinals	Looking for embeddings of Go
How to increase Borel chromatic numbers	The case with $\chi_B(E_{f 0})$ and $\chi_B(G_{f 1})$
What else?	The case with $\chi_B(G_{m 0})$

We would like to separate $cov(\mathcal{M})$ from $\chi_B(G_0)$. It is tempting to say that, just like Silver and \mathbb{E}_0 -forcing, \mathbb{P}_{G_0} is proper and has the Sacks property.

Surprisingly, this is far from the truth: Zapletal [Zap08] (Theorem 4.7.20) proved that forcing with G_0 -trees is not proper. In fact, it collapses the continuum to \aleph_0 .

This problem arises from the fact that G_0 is not a very homogeneous graph — i.e.,

If B is a Borel I_{G_0} -positive subset of $[s_n]$, there is a compact I_{G_0} -positive set $C \subseteq B$ such that the *bit-flipped set*

$$\pi_n[C] \doteq \{ s_n^\frown i^\frown x \in 2^\omega \mid s_n^\frown (1-i)^\frown x \in C \text{ for } i < 2 \}$$

is a G_0 -independent set (Claim 4.7.21 of [Zap08] due to Ben Miller).

From this, Zapletal shows that this implies that any *B* Borel I_{G_0} -positive set is compatible with uncountable many elements of a maximal antichain inside some $[s_n]$:

$$A_n \subseteq \{C \subseteq [s_n] | \pi_n[C] \text{ is } I_{G_0}\text{-small}\}.$$

We fix this problem by eliminating such sets from our conditions.

This yields to some forcing between Cohen and \mathbb{P}_{G_0} .

Say that p is a fat G_0 -tree iff

- it is a Silver tree, and
- ullet for every splitting node $\tau\in p$ and for every $\sigma\in 2^{|\tau|}$

 $\tau \cdot [\textbf{\textit{p}}_{\sigma}]$ has a $\textit{G}_{0}\text{-edge.}$

Denote the fat G_0 -forcing by $\mathbb{P}^f_{G_0}$.

Borel chromatic numbers and other small cardinals	Looking for embeddings of Go
How to increase Borel chromatic numbers	The case with $\chi_B(E_0)$ and $\chi_B(G_1)$
What else?	The case with $\chi_B(G_{m 0})$

Theorem

The fat G_0 -forcing is an ω^{ω} -bounding proper forcing notion. Therefore, it does not add Cohen reals.

The $\omega^\omega\text{-bounding}$ is preserved for countable supported iterations of proper forcing notions.

As a consequence, the countable supported iteration of \aleph_2 copies of $\mathbb{P}^f_{G_0}$ yields to a model of $\operatorname{cov}(\mathcal{M}) < \chi_B(G_0)$.

Borel chromatic numbers and other small cardinals	Looking for embeddings of Go
How to increase Borel chromatic numbers	The case with $\chi_B(E_0)$ and $\chi_B(G_1)$
What else?	The case with $\chi_B(G_{m 0})$

Say that $q \leq_0^f p$ iff q and p have the same stem.

Let τ be the stem of q and for $\sigma \in 2^{|\tau|}$ and n_{σ} be the least natural n number such that s_n is a splitting node of $\sigma \cdot [p_{\tau}]$.

Say that $\sigma' \in L_1^f(q)$ iff it is a splitting node of q and any proper initial segment that is a splitting node of q has height among the levels n_{σ} 's.

Say that $q \leq_1^f p$ iff $L_1^f(q) = L_1^f(p)$.

Assume we have defined $L_n^f(p)$ and repeat the same procedure as before to define $L_{n+1}^f(q)$:

For $\tau \in L_n^f(q)$, let $\sigma \in 2^{|\tau|}$ and choose n_{σ} the least natural number for which $s_{n_{\sigma}}$ is a splitting node of $\sigma \cdot [p_{\tau}]$.

The elements of $L_{n+1}^{f}(q)$ will then be splitting nodes of q such that any proper initial segment that is a splitting node of q has height among the levels n_{σ} 's, for $\tau \in L_{n}^{f}(q)$ and $\sigma \in 2^{|\tau|}$.

Now that $L_n^f(q)$ is defined for every q, we say that $q \leq_n^f p$ iff $q \leq p$ and $L_n^f(q) = L_n^f(p)$.

Check that if $(q_n)_{n \in \omega}$ is a sequence such that $q_{n+1} \leq_{n+1} q_n$, then $q = \bigcap q_n$ is still a fat G_0 -tree.

Let A be an antichain on $\mathbb{P}_{G_0}^f$, p be any condition and $n \in \omega$. We aim there is $q \leq_n^f p$ compatible with at most finitely many elements of A^3 :

Enumerate $L_n^f(p) = \{\tau_0, ..., \tau_m\}$ and let $r_0 \le p_{\tau_0}$ be a condition compatible with at most one element of A. Define r_i to be the *amalgamation of* r_0 *into* p_{τ_i} :

$$[r_i] = \tau_i \cdot [r_0].$$

Finally, let q_0 be the union of all r_i . Repeating this process with q_0 now we obtain a sequence $q_1, ..., q_m$ and we let $q = q_m$.

By construction we have $q \leq_n^f p$ and it is compatible with at most m elements of the antichain A.

³This is the strong form of the Axiom A, which implies ω^{ω} -boundedness as well

What have we lost: the idea with closing up G_0 -edges for the actions of binary trees was imported from the Silver forcing.

A closer inspection on the Silver forcing will show that the same amalgamation technique can be used to prove that it adds *reals of minimal degree* and that it has the Sacks property.

Unfortunately it is not clear that the fat G_0 -forcing also has the Laver property, which would imply that no random reals were added and, moreover, $|cof(\mathcal{N})|$ has the value of the ground-model continuum⁴.

⁴Stefan thinks it has the Sacks property, but minimality is more mysterious

Still open problems

• The relationship between the graph and its forcing.

For an analytic graph G on the Cantor space, acyclic or locally countable, with $\chi_B(G) > \aleph_0$, we see that the correspondent forcing \mathbb{P}_G may or may not be proper.

It is natural to investigate how properties of the graph affect properties of the respective forcing.

One idea: note that \mathbb{V} is equivalent to its fat version, while this is not true for the G_0 -forcing:

Any Silver tree p has the property: for every splitting node $\tau \in p$ and every $\sigma \in 2^{|\tau|}$,

 $\sigma \cdot [p_{\tau}]$ has a G_1 -edge.

Still open problems

• **ZFC**-proof of $\mathfrak{h} \leq \chi_B(G_1)$.

Since

$$\mathfrak{h} \leq \operatorname{cov}(r^0 \cap \operatorname{Bor}([\omega]^{\omega})),$$

We could try to show that G_1 -independent Borel sets can be coded into Ramsey-null sets.

Yurii Khomskii observed this trivially follows from the Ramsey property for Borel sets.

• Consistency of $\chi_B(G_0) < \operatorname{cov}(\mathcal{N})$.

Note that the inequality $cov(\mathcal{N}) < \chi_B(G_0)$ holds in the Cohen model.

One can check that any random real (over the ground model) is always in some closed G_0 -independent positive-measure set coded in the ground model. What about any other real?

Still open problems

• Consistency of $\chi_B(E_0) < \mathfrak{d}$.

It is known that E_0 -forcing has the Sacks property (therefore it is ω^{ω} -bounding). This yields to the consitency of $\mathfrak{d} < \chi_B(E_0)$. It is clear that in the Miller model $\chi_B(G_1) < \mathfrak{d}$, but this is open for $\chi_B(E_0)$.

• Consistency of $\chi_B(G_1) < \mathfrak{b}$.

This is related to the old question "Does Laver forcing add Silver-quasi-generic reals?"

This obviously relates to the implications and non-implications between Silver and Laver measurability.

Still open problems

Jörg Brendle. Strolling through paradise.

arXiv preprint math/9407204, 1994.

- Leo A Harrington, Alexander S Kechris, and Alain Louveau.
 A glimm-effros dichotomy for borel equivalence relations.
 Journal of the American mathematical society, pages 903–928, 1990.
- Alexander S Kechris, Slawomir Solecki, and Stevo Todorcevic. Borel chromatic numbers.

Advances in Mathematics, 141(1):1–44, 1999.

Benjamin D Miller.

The graph-theoretic approach to descriptive set theory. *The Bulletin of Symbolic Logic*, pages 554–575, 2012.

Jindřich Zapletal.

Descriptive set theory and definable forcing. American Mathematical Soc., 2004.

Jindřich Zapletal.

Forcing idealized, volume 174.

Cambridge University Press Cambridge, 2008.

Still open problems

Thank you!