# Negative step-up results for partition relations University of Amsterdam

David de Graaf 27 May 2021



# Colourings

• 
$$[S]^r = \{A \subseteq S \colon |A| = r\}.$$

- A *k*-colouring of  $[S]^r$  is a function  $f: [S]^r \to k$ .
- Given  $f: [S]^r \to k$ , a set  $H \subseteq S$  is *i*-homogeneous for f if  $f \upharpoonright [H]^r$  is constant with colour  $i \in k$ .

#### Definition (Arrow notation)

Let  $\alpha$  and  $\beta_i$  be order-types for all i < m, where m is a cardinal and let  $r \in \mathbb{N}$ . We write

$$\alpha \to (\beta_i)_{i < m}^r,$$

if for all sets S with otp  $S = \alpha$  and every *m*-colouring  $f : [S]^r \to m$  there exists a *i*-homogeneous set  $H \subseteq S$  with otp  $H = \beta_i$ .

- *α* is the *resource*,
- $\beta_i$  are the goals,
- r is the exponent, and
- *m* is the colour set or colour cardinal.



# Positive Step-Up Lemma

### Theorem (Theorem 39, [1])

For all infinite cardinals  $\kappa$ , finite r, any cardinal m and any ordinal  $\lambda$ , if  $\kappa \to (\lambda)_m^r$ , then  $(2^{<\kappa})^+ \to (\lambda+1)_m^{r+1}$ .

#### Theorem

For any  $r, k \in \mathbb{N}$ ,  $\omega_1 \to (\omega + 1)_k^r$ .

#### Theorem

Let 
$$r, k \in \mathbb{N}$$
. Then  $(2^{\aleph_0})^+ \to (\omega+2)_k^r$ .

#### Theorem (Erdős-Rado Theorem)

For any infinite cardinal  $\kappa$ ,  $\beth_n(\kappa)^+ \to (\kappa^+)^{n+1}_{\kappa}$ .



# Pattern of partition relations

### Theorem

For any  $r, k \in \mathbb{N}$ ,  $\omega_1 \to (\omega + 1)_k^r$ .

### Theorem

Let  $r, k \in \mathbb{N}$ . Then  $(2^{\aleph_0})^+ \to (\omega + 2)_k^r$ .

• 
$$\beth_0^+ \to (\omega+1)_k^r$$
  
•  $\beth_1^+ \to (\omega+2)_k^r$ 

• 
$$\beth_2^+ \to (\omega+3)_k^r$$
.



# Pattern of partition relations





#### Theorem (Lemma 4, [1])

Let  $\alpha_0, \alpha_1, \beta_0, \beta_1$  be linear order-types and  $2 \leq r < \omega$ . Assume that  $|\alpha_0| = |\alpha_1|$  and  $\beta_0, \beta_1^* \not\leq \alpha_0$ . Then

 $\alpha_1 \not\to (\beta_0, \beta_1, (r+1)_{r!-2})_{r!}^r.$ 

#### Proof.

Throughout we may assume  $|\beta_0|, |\beta_1| \ge \aleph_0$ . Let *S* be a set such that  $\operatorname{otp}(S, <) = \alpha_1$ . As  $|S| = |\alpha_1| = |\alpha_0|$ , there is an ordering  $\ll$  on *S* such that  $\operatorname{otp}(S, \ll) = \alpha_0$ . Given any  $X \in [S]^r$ , we can index the elements in *X* such that  $X = \{x_0 < x_1 < \ldots < x_{r-1}\}$ . There is a unique permutation  $\pi: r \to r$  such that  $x_{\pi(0)} \ll x_{\pi(1)} \ll \ldots \ll x_{\pi(r-1)}$ . Note that there are precisely *r*! permutations of *r*. Fix an enumeration  $\langle \pi_n \mid n < r! \rangle$  of permutations of *r*, where  $\pi_0$  is the identity, and  $\pi_1 = \pi_0^*$ .



Define the r!-colouring  $f: [S]^r \to r!$ :  $\{x_0 < x_1 < \ldots < x_{r-1}\} \mapsto n$  where  $\pi_n$  is such that  $x_{\pi_n(0)} \ll x_{\pi_n(1)} \ll \ldots \ll x_{\pi_n(r-1)}$ . Suppose there is a *n*-homogeneous set *H* for *f* with  $otp(H, <) = \beta_n$ , there are three cases that we consider.

Case n = 0. Then  $\operatorname{otp}(H, <) = \beta_0$  and  $f \upharpoonright [H]^r \equiv 0$ . As  $\pi_0$  is the identity and  $r \ge 2$ , we have in particular for any  $x, y \in H$  that  $x < y \iff x \ll y$ . This means  $\beta_0 = \operatorname{otp}(H, <) = \operatorname{otp}(H, \ll) \le \operatorname{otp}(S, \ll) = \alpha_0$ , which is a contradiction.

Case n = 1. Then  $\operatorname{otp}(H, <) = \beta_1$  and  $f \upharpoonright [H]^r \equiv 1$ . In this case  $\pi_1 = \pi_0^*$ , which means for any  $x, y \in H$  we have  $x < y \iff y \ll x$ . Therefore  $\beta_1^* = \operatorname{otp}(H, <)^* = \operatorname{otp}(H, \ll) \le \operatorname{otp}(S, \ll) = \alpha_0$ , again a contradiction.



Case  $n \ge 2$ . Then  $\operatorname{otp}(H, <) = r + 1$  and  $f \upharpoonright [H]^r \equiv n$ . In particular  $\pi_n \neq \pi_0$  and  $\pi_n \neq \pi_1$ . Write  $H = \{x_0 < x_1 < \ldots < x_{r-1} < x_r\}$  and define  $y_k = x_{k+1}$ . Then

$$\begin{aligned} x_{\pi_n(0)} \ll x_{\pi_n(1)} \ll \ldots \ll x_{\pi_n(r-1)}, \\ y_{\pi_n(0)} \ll y_{\pi_n(1)} \ll \ldots \ll y_{\pi_n(r-1)}. \end{aligned}$$

Suppose  $x_0 \ll x_1$ , then  $x_{\pi_n(0)^{-1}} < x_{\pi_n(1)^{-1}}$  and so  $y_0 \ll y_1$ . This gives  $x_1 \ll x_2$ . Repeating this argument gives that  $x_0 \ll x_1 \ll \cdots \ll x_{r-1}$ , and hence  $\pi_n = \pi_0$ , which is a contradiction. If, on the other hand, we assume  $x_1 \ll x_0$ , then using an analogous argument, we get  $x_{r-1} \ll \ldots \ll x_1 \ll x_0$ , i.e.  $\pi_n = \pi_1$ , which is also a contradiction. We conclude that such a homogeneous set *H* cannot exist, and this concludes the proof.



### Theorem (Lemma 5, [1])

Let  $\alpha$  be an ordinal and  $r < \omega$  and m any cardinal. Let  $\gamma_n$  be ordinals for all n < m such that  $\beta \not\rightarrow (\gamma_n)_{n < m}^r$  for all  $\beta < \alpha$ . Then  $\alpha \not\rightarrow (\gamma_n + 1)_{n < m}^{r+1}$ .

#### Proof.

Let S be a set such that  $otp(S, <) = \alpha$ . For every  $x \in S$ , define  $I_x = \{y \in S \mid y < x\}$ , then  $otp(I_x, <) = \beta < \alpha$ , for some  $\beta$ . By assumption there is some colouring  $f_x : [I_x]^r \to k$  such that there is no *n*-homogeneous set H of order-type  $\gamma_n$ .

Define  $f: [S]^{r+1} \to k$  by

$$\{x_0 < x_1 \ldots < x_{r-1} < x_r\} \mapsto f_{x_r}(\{x_0 < x_1 \ldots < x_{r-1}\}).$$

If there is an *n*-homogeneous set  $H = \{h_i \mid i < \gamma_n + 1\} \subseteq S$  for *f* with  $otp(H, <) = \gamma_n + 1$ , then the set  $\{h_i \mid i < \gamma_n\}$  is *n*-homogeneous for  $f_{h_{\gamma_n}}$  with order-type  $\gamma_n$ . This is a contradiction and hence the proof is concluded.



# The first negative relation

# Theorem (Theorem 41, [1])

 $\omega_1 \not\rightarrow (\omega+2)_2^3$ .

### Proof.

Clearly,  $\omega + 1, \omega^* \not\leq \omega$ . By Lemma 4, we have  $\beta \not\rightarrow (\omega + 1, \omega)_2^2$  for all countable ordinals  $\beta$ . This relation holds for all  $\beta < \omega_1$  and thus by Lemma 5,  $\omega_1 \not\rightarrow (\omega + 2, \omega + 1)_2^3$ .



# Recapitulate



• 
$$\beth_2^+ \rightarrow (\omega + 3)_k^r$$

$$\beth_1^+ \not\rightarrow (\omega + 3)_2^4.$$



David de Graaf (UvA)

# Discrepancy

### Definition

Given distinct  $f,g\in 2^\kappa$ , we define the *discrepancy*  $\delta$  as

$$\delta(f,g) = \min\{\xi < \kappa \mid f(\xi) \neq g(\xi)\}.$$

If f = g, we simply let  $\delta(f, g) = \kappa$ .

#### Observation

If  $\delta(f,g) < \delta(g,h)$ , then  $\delta(f,g) = \delta(f,h)$ .

#### Remark

Let  $\prec$  denote the lexicographic ordering on  $2^{\kappa}$ . If  $f, g, h \in 2^{\kappa}$  are such that  $f \prec g \prec h$ , then  $\delta(f, g) \neq \delta(g, h)$ . Else,  $f(\xi) < g(\xi) < h(\xi)$  for some  $\xi < \kappa$ .



# Result by Albin Jones

## Theorem (Albin L. Jones (2000), [3])

Let  $\alpha$  be a linear order-type and let  $\kappa$  be an infinite cardinal. If  $\alpha \not\rightarrow (\omega)_{2^{\kappa}}^1$ , then  $\alpha \not\rightarrow (\kappa + 2, \omega)_2^3$ .

#### Proof.

Let  $e: \alpha \to 2^{\kappa}$  be a witness of  $\alpha \not\to (\omega)_{2^{\kappa}}^1$ . As  $\omega$  is regular, it follows for every  $B \in [\alpha]^{\omega}$  there is  $C \in [B]^{\omega}$  such that  $e \upharpoonright C$  is injective. Define the partition  $f: [\alpha]^2 \to \kappa + 1$  by  $\{x, y\} \mapsto \delta(e(x), e(y))$ .

Define the partition of triples  $g : [\alpha]^3 \to 2$  s.t. for x < y < z,

 $g\{x, y, z\} = \begin{cases} 0 & \text{if } e \text{ is injective on } \{x, y, z\} \text{ and } f\{x, y\} < f\{y, z\}, \text{ and} \\ 1 & \text{if } e \text{ is not injective on } \{x, y, z\} \text{ or } f\{x, y\} \ge f\{y, z\}. \end{cases}$ 

We show that g is the partition which proves  $\alpha \not\rightarrow (\kappa + 2, \omega)_2^3$ .



#### Claim

There is no 0-homogeneous  $H \subseteq \alpha$  for g with  $otp H = \kappa + 2$ .

#### Proof of claim.

Suppose such  $H = \{h_{\gamma} \mid \gamma < \kappa + 2\}$  exists. We observe immediately that  $e \upharpoonright H$  is injective. In particular,  $e(h_{\kappa}) \neq e(h_{\kappa+1})$  and hence  $f\{h_{\kappa}, h_{\kappa+1}\} = \delta(e(h_{\kappa}), e(h_{\kappa+1})) = \xi < \kappa$ . For any  $\mu < \nu < \kappa$  we have  $f\{h_{\mu}, h_{\nu}\} < f\{h_{\nu}, h_{\kappa}\}$ , and by the observation:

$$f\{h_{\mu}, h_{\kappa}\} = f\{h_{\mu}, h_{\nu}\} < f\{h_{\nu}, h_{\kappa}\}.$$

Note that  $f\{h_{\mu}, h_{\kappa}\} < f\{h_{\kappa}, h_{\kappa+1}\} = \xi < \kappa$ . Hence, the sequence  $\langle f\{h_{\mu}, h_{\kappa}\} | \mu < \kappa \rangle$  is a strictly increasing sequence of length  $\kappa$  of ordinals below  $\xi$ , which gives a contradiction.



### Claim

#### There is no 1-homogeneous $H \subseteq \alpha$ for g with $otp H = \omega$ .

#### Proof of claim.

Again, for sake of contradiction assume such  $H \in [\alpha]^{\omega}$  exists. By the remark above there is  $B \in [H]^{\omega}$  such that  $e \upharpoonright B$  is injective. Consider the colouring  $h: [B]^3 \to 2$  by

$$h\{x < y < z\} = \begin{cases} 0 & \text{if } f\{x, y\} > f\{y, z\}, \text{ and} \\ 1 & \text{if } f\{x, y\} = f\{y, z\}. \end{cases}$$

By definition of g and since B is 1-homogeneous for g, the colouring h is well-defined. Now, by a weak version of Ramsey's Theorem,  $\omega \to (\omega, 4)_2^3$ . Hence, either

- (a) there is  $C \in [B]^{\omega}$  such that  $h \upharpoonright [C]^3 \equiv 0$ , or
- (b) there is  $D \in [B]^4$  such that  $h \upharpoonright [D]^3 \equiv 1$ .

If (a) holds, then  $\langle f\{c_n, c_{n+1}\} | n \in \omega \rangle$ , where  $C = \{c_0 < c_1 < ...\}$ , is a strictly decreasing sequence of ordinals of length  $\omega$ , which is a contradiction.



### Proof of claim (continued).

Alternatively, if (b) holds and such  $D = \{x < y < z < w\}$  exists, then  $f\{x, y\} = f\{y, z\} = f\{x, z\}$ . This gives us three pairwise distinct functions  $e(x), e(y), e(z) \in 2^{\kappa}$  such that they are pairwise different at some point  $\xi < \kappa$ , which is not possible since these functions map to 2. Hence we reach a contradiction.



# The second negative relation

### Proof (continued).

We conclude that

$$\alpha \not\rightarrow (\omega)_{2^{\kappa}}^{1} \implies \alpha \not\rightarrow (\kappa + 2, \omega)_{2}^{3}.$$

### Theorem

$$\beth_1^+ \not\rightarrow (\omega+3, \omega+1)_2^4.$$

### Proof.

Let 
$$\beta < \beth_1^+$$
, then  $|\beta| \leq \beth_1 = 2^{\aleph_0}$ . Define the partition  
 $f: \beta \to \beta: \gamma \mapsto \gamma$ . Then  $f$  witnesses  $\beta \not\to (\omega)^1_{\beta}$ . Therefore  $\beta \not\to (\omega)^1_{2^{\aleph_0}}$ .  
By Jones's lemma, we have  $\beta \not\to (\omega + 2, \omega)^2_2$ .  
Then by Lemma 4 in [1], we obtain the desired result.



# Does the pattern continue?





# Converse Positive Step-Up Lemma unprovable

The converse:  $\kappa \not\rightarrow (\lambda)_k^r \implies (2^{<\kappa})^+ \not\rightarrow (\lambda+1)_k^r$ .

Assume  $2^{\aleph_0} = \aleph_2$  and  $2^{\aleph_1} = 2^{\aleph_2} = \aleph_3$ . Then  $\beth_2^+ = (2^{2^{\aleph_0}})^+ = \aleph_4$  and  $(2^{<\aleph_2})^+ = \aleph_4$ .

- Sierpińsky:  $\aleph_2 = 2^{\aleph_0} \not\rightarrow (\aleph_1)_2^2$
- Erdős-Rado:  $\aleph_4 = \beth_2^+ \rightarrow (\aleph_1 + 1)_2^3$ .



# The idea

- We want to show  $\kappa \not\rightarrow (\alpha)_m^r \implies 2^{\kappa} \not\rightarrow (\alpha+1)_m^{r+1}$ .
- We will show  $\kappa \not\rightarrow (\lambda)_m^r \implies 2^{\kappa} \not\rightarrow (\lambda)_m^{r+1}$ .
- Given a partition  $\langle I_{\xi} | \xi < m \rangle$  witnessing  $\kappa \not\rightarrow (\lambda)_m^r$ .
- Want to create partition (I<sup>\*</sup><sub>ξ</sub> | ξ < m) witnessing 2<sup>κ</sup> → (λ)<sup>r+1</sup><sub>m</sub>.
- The partition will (unfortunately) only work if  $\lambda$  is a cardinal.



# A bunch of definitions

Let  $r \geq 3$  and  $u \in [2^{\kappa}]^r$ . Write  $u = \{x_0 <^* x_1 <^* \ldots <^* x_{r-1}\}$  and define

•  $\eta(u) = (\eta(x_0, x_1), \eta(x_1, x_2), \dots, \eta(x_{r-2}, x_{r-1})),$ where  $\eta(x, y) = 0$  if  $x <^* y \iff x \prec y$ , and  $\eta(x, y) = 1$  otherwise.

Also given  $s \leq r-1$  and  $k_0, k_1, \ldots, k_{s-1} \in 2$ , define

- $K(k_0, k_1, \ldots, k_{s-1}) = \{ u \in [2^{\kappa}]^r \mid \eta(u) \upharpoonright s = (k_0, k_1, \ldots, k_{s-1}) \}.$
- $K_0 = K(0, 0, ..., 0)$  and  $K_1 = K(1, 1, ..., 1)$ .
- $K = K_0 \cup K_1$ .



# Examples

Given 
$$u = \{x_0 <^* x_1 <^* \dots <^* x_{r-1}\}$$
.  
 $u \in K(0,1) \iff \eta(x_0, x_1) = 0 \text{ and } \eta(x_1, x_2) = 1$   
 $\iff x_0 \prec x_1 \succ x_2$ .  
•  $u \in K_0 \iff x_0 \prec x_1 \prec \dots \prec x_{r-1}$ 

• 
$$u \in K_1 \iff x_0 \succ x_1 \succ \ldots \succ x_{r-1}$$



# More definitions

Let  $r \ge 4$  and  $u \in K$ . Write  $u = \{x_0 <^* x_1 <^* \dots <^* x_{r-1}\}$  and define  $\delta_s = \delta(x_s, x_{s+1})$  for  $s \le r-2$ . Define •  $\zeta(\delta(u)) = (\zeta(\delta_0, \delta_1), \zeta(\delta_1, \delta_2), \dots, \zeta(\delta_{r-3}, \delta_{r-2}))$ , where  $\zeta(\delta_s, \delta_{s+1}) = 0$  if  $\delta_s < \delta_{s+1}$ , and  $\zeta(\delta_s, \delta_{s+1}) = 1$  if  $\delta_s > \delta_{s+1}$ .

Also given  $s \leq r-2$  and  $k_0, k_1, \ldots, k_{s-1} \in 2$ , define

- $P(k_0, k_1, \ldots, k_{s-1}) = \{ u \in K \mid \zeta(\delta(u)) \upharpoonright s = (k_0, k_1, \ldots, k_{s-1}) \}.$
- $P_0 = P(0, 0, ..., 0)$  and  $P_1 = P(1, 1, ..., 1)$ .
- $P = P_0 \cup P_1$ .



## More examples

Given 
$$u = \{x_0 <^* x_1 <^* \dots <^* x_{r-1}\}$$
.  
 $u \in P(0, 1) \iff \zeta(\delta_0, \delta_1) = 0 \text{ and } \zeta(\delta_1, \delta_2) = 1$   
 $\iff \delta_0 < \delta_1 > \delta_2$   
 $\iff \delta(x_0, x_1) < \delta(x_1, x_2) > \delta(x_2, x_3)$ .  
•  $u \in P_0 \iff \delta_0 < \delta_1 < \dots < \delta_{r-2}$ 





#### Lemma (Lemma 23.12, [2])

Let  $r \geq 3$ , let  $\kappa$  be a cardinal. Let  $I \subseteq [\kappa]^{r-1}$  and put

$$I^* = \{ u \in P_0 \mid \delta(u) \in I \}.$$

$$\tag{1}$$

Assume that  $[H]^r \subseteq I^*$  for some  $H \neq \emptyset$  where by assumption otp $(H, <^*) = \alpha$ . Then there is  $X \subseteq \kappa$  with otp $(X, <) = \alpha^-$  such that  $[X]^{r-1} \subseteq I$ .

### Proof.

We may assume that  $|H| \ge r$  and write  $H = \{h_{\gamma} \mid \gamma < \alpha\}$  where  $\alpha = \operatorname{otp}(H, <^*)$ . (Recall that  $<^*$  is a fixed well-order on  $2^{\kappa}$ ). For ordinals  $\gamma$  such that  $\gamma + 1 < \alpha$  we let

$$\delta_{\gamma} = \delta(h_{\gamma}, h_{\gamma+1}).$$

Define

$$X = \{\delta_{\gamma} \mid \gamma + 1 < \alpha\}.$$



First we show that  $\operatorname{otp}(X, <) = \alpha^-$ . It obviously suffices to show for all  $\gamma < \gamma' < \alpha^-$  that  $\delta_{\gamma} < \delta_{\gamma'}$ . By the assumption  $[H]^r \subseteq I^* \subseteq P_0$ , it follows that

$$\zeta(\delta(\{h_{\gamma},h_{\gamma+1},h_{\gamma'}\}))=\zeta(\delta(h_{\gamma},h_{\gamma+1}),\delta(h_{\gamma+1},h_{\gamma'}))=0.$$

Also

$$\zeta(\delta(\{h_{\gamma+1},h_{\gamma'},h_{\gamma'+1}\}))=\zeta(\delta(h_{\gamma+1},h_{\gamma'}),\delta(h_{\gamma'},h_{\gamma'+1}))=0.$$

In other words,  $\delta_{\gamma} < \delta(h_{\gamma+1}, h_{\gamma'}) < \delta_{\gamma'}$ . Note that we assumed  $\gamma + 1 < \gamma'$ , because if  $\gamma + 1 = \gamma'$ , we could just leave out the term  $\delta(h_{\gamma+1}, h_{\gamma'})$ . In particular, we obtain  $\delta_{\gamma} < \delta_{\gamma'}$ , showing that  $otp(X, <) = \alpha^{-}$ .



It rests to show that  $[X]^{r-1} \subseteq I$ . Given  $\xi_0 < \ldots < \xi_{r-2} < \alpha^-$ , we want to show  $\{\delta_{\xi_0} < \ldots < \delta_{\xi_{r-2}}\} \in I$ . Suppose that  $\xi_i + 1 < \xi_{i+1}$ . As  $[H]^r \subseteq P_0$ , we have  $\delta(h_{\xi_i}, h_{\xi_{i+1}}) < \delta(h_{\xi_i+1}, h_{\xi_{i+1}})$  and hence,  $\delta(h_{\xi_i}, h_{\xi_{i+1}}) = \delta(h_{\xi_i}, h_{\xi_{i+1}})$ . If  $\xi_i + 1 = \xi_{i+1}$ , then  $\delta(h_{\xi_i}, h_{\xi_{i+1}}) = \delta(h_{\xi_i}, h_{\xi_{i+1}})$  obviously holds as well. Now, writing  $\xi_{r-1} = \xi_{r-2} + 1$ , we obtain

$$egin{aligned} &\{\delta_{\xi_i} \mid i < r-1\} = \{\delta(h_{\xi_i}, h_{\xi_i+1}) \mid i < r-1\} \ &= \{\delta(h_{\xi_i}, h_{\xi_{i+1}}) \mid i < r-1\} \ &= \delta(\{h_{\xi_i} \mid i < r\}). \end{aligned}$$

As  $\{h_{\xi_i} \mid i < r\} \in [H]^r \subseteq I^*$ , we have by definition of  $I^*$  that  $\{\delta_{\xi_i} \mid i < r-1\} \in I$ . This gives us  $[X]^{r-1} \subseteq I$ , which is what we wanted to show.



### Lemma (Lemma 23.5, [2])

Let  $X \subseteq 2^{\kappa}$  and assume  $|X| \ge \aleph_0$ . Assume that (i)  $[X]^r \cap K(0,1) = \emptyset$  or (ii)  $[X]^r \cap K(1,0) = \emptyset$ . Then there is a set  $Y \subseteq X$  with |Y| = |X| such that  $[Y]^r \subseteq K_0$  or  $[Y]^r \subseteq K_1$ .

#### Proof.

Write  $\lambda = |X|$  and we may assume  $\operatorname{otp}(X, <^*) = \lambda$ . Assume that no such Y exists.

#### Claim

There are elements  $x_0 <^* x_1 <^* x_2 <^* x_3$  such that  $x_0 \prec x_1 \succ x_2 \prec x_3$ .

If the claim is proven, then there is  $\{x_0, x_1, x_2, ...\} \in [X]^r \cap K(0, 1)$  and  $\{x_1, x_2, x_3, ...\} \in [X]^r \cap K(1, 0)$ , contradicting (i) or (ii), respectively, which gives the contradiction. Hence such Y exists.



#### Claim

There are elements  $x_0 <^* x_1 <^* x_2 <^* x_3$  such that  $x_0 \prec x_1 \succ x_2 \prec x_3$ .

### Proof of claim.

For every  $x \in X$  there are  $y, z \in X$  and  $y', z' \in X$  such that

$$x \leq^* y <^* z \text{ and } y \prec z, \tag{2}$$

$$x \leq^* y' <^* z' \text{ and } y' \succ z'.$$
(3)

Suppose not and let  $x \in X$  be a counterexample, the set  $Y = \{x' \in X \mid x \leq^* x'\}$  has cardinality  $\lambda$  and is contained in either  $K_0$  or  $K_1$ , which is a contradiction. Now let  $x_0, z_1 \in X$  with  $x_0 <^* z_1$  and  $x_0 \prec z_1$ . Then let  $y_1, z_2 \in X$  with  $z_1 \leq^* y_1 <^* z_2$  with  $y_1 \succ z_2$ . Define  $x_1 = \max_{\prec} \{y_1, z_1\}$ , then  $x_0 <^* x_1$ and  $x_0 \prec x_1$ . Also,  $x_1 \succ z_2$ . Pick  $y_2, z_3 \in X$  with  $z_2 \leq^* y_2 <^* x_3$  with  $y_2 \prec x_3$ . Let  $x_2 = \min_{\prec} \{y_2, z_2\}$ . Then  $x_1 <^* x_2$  and  $x_1 \succ x_2$ . Also,  $x_2 \prec x_3$ . This proves the claim



#### Lemma (Lemma 23.9, [2])

Let  $r \ge 4$ , let  $X \subseteq 2^{\kappa}$  such that  $|X| \ge \aleph_0$ . Suppose  $[X]^r \subseteq K_0$  or  $[X]^r \subseteq K_1$ . Assume (i)  $[X]^r \cap P(0,1) = \emptyset$  or (ii)  $[X]^r \cap P(1,0) = \emptyset$ . Then there exists  $Y \subseteq X$  with |Y| = |X| such that  $[Y]^r \subseteq P_0$ .

#### Claim

Suppose  $x_0 <^* x_1 <^* \ldots <^* x_{s-1}$  are such that

$$\zeta(\delta_i, \delta_{i+1}) \neq \zeta(\delta_{i+1}, \delta_{i+2}), \tag{4}$$

for all  $i \leq s - 4$ . Then  $s \leq 4$ .

#### Proof of claim.

Suppose  $s \ge 5$  and  $x_0 <^* x_1 <^* x_2 <^* x_3 <^* x_4$  constitutes a counterexample. If  $\zeta(\delta_0, \delta_1) < \zeta(\delta_1, \delta_2) > \zeta(\delta_2, \delta_3)$ , then  $\{x_0, x_1, x_2, x_3, \ldots\} \in [X]^r \cap P(0, 1)$  or  $\{x_1, x_2, x_3, x_4, \ldots\} \in [X]^r \cap P(1, 0)$ , giving a contradiction with (i) or (ii), respectively.

Similarly, if  $\zeta(\delta_0, \delta_1) > \zeta(\delta_1, \delta_2) < \zeta(\delta_2, \delta_3)$ , we get  $\{x_0, x_1, x_2, x_3, \ldots\} \in [X]^r \cap P(1, 0)$  or  $\{x_1, x_2, x_3, x_4, \ldots\} \in [X]^r \cap P(0, 1)$ , giving a contradiction with (ii) or (i), respectively.

Now let such  $s \le 4$  be maximal (note  $s \ge 3$  always holds) and define  $x = x_{s-3}$ ,  $y = x_{s-2}$  and  $z = x_{s-1}$ . Note that  $\delta(x, y) \ne \delta(y, z)$ , hence either (a)  $\delta(x, y) > \delta(y, z)$  or (b)  $\delta(x, y) < \delta(y, z)$ . Then by maximality of *s*, for all  $z \le^* z_0 <^* z_1$ , either

(a) not 
$$\delta(x, y) > \delta(y, z_0) < \delta(z_0, z_1)$$
, or  
(b) not  $\delta(x, y) < \delta(y, z_0) > \delta(z_0, z_1)$ .

We show case (a) is impossible. For suppose otherwise, then for all  $z_0 \in X$  with  $z <^* z_0$  we have

$$\delta(y,z) > \delta(z,z_0) = \delta(y,z_0).$$

Picking an  $<^*$ -increasing sequence  $\langle z_n \mid n < \omega \rangle$  gives us

$$\delta(y,z_0) > \delta(y,z_1) > \delta(y,z_2) > \ldots,$$

which is a contradiction.



So, assume (b) holds. Let  $z_0, z_1, z_2 \in X$  be arbitrary such that  $z <^* z_0 <^* z_1 <^* z_2$ . Then firstly,  $\delta(x, y) < \delta(y, z) < \delta(z, z_0)$ , hence  $\delta(x, y) < \delta(y, z_0) = \delta(y, z)$ . As  $\delta(x, y) < \delta(y, z_0)$ , it must be that  $\delta(x, y) < \delta(y, z_0) < \delta(z_0, z_1)$ . Then  $\delta(x, z_0) = \delta(x, y)$  and so  $\delta(x, z_0) < \delta(z_0, z_1)$ . Therefore, in view of the maximality of s,  $\delta(z_0, z_1) < \delta(z_1, z_2)$ . Define  $Y = \{z' \in X \mid z <^* z'\}$ , we showed that  $[Y]^r \subseteq P_0$  and clearly |Y| = |X|.



### Theorem (Negative Stepping-Up Lemma, [2])

Suppose  $r \ge 3$  and that  $\kappa$  and  $\lambda$  are infinite cardinals. Assume  $\kappa \nrightarrow (\lambda)_2^r$ . Then  $2^{\kappa} \nrightarrow (\lambda)_2^{r+1}$ .

#### Proof.

Let  $[\kappa]^r = I_0 \cup I_1$  be the partition witnessing  $\kappa \not\to (\lambda)_2^r$ . Define a partition  $[2^{\kappa}]^{r+1} = J_0 \cup J_1$  by

 $J_1 = K(0,1) \cup P(0,1) \cup I_1^*,$ 

and

$$J_0 = [2^{\kappa}]^{r+1} \setminus J_1.$$

Suppose there is  $X \subseteq 2^{\kappa}$  such that  $|X| = \lambda$  and  $[X]^{r+1} \subseteq J_0$ . Then  $[X]^{r+1} \cap K(0,1) = \emptyset$ , hence there is by the previous lemma some  $Y \subseteq X$  with  $|Y| = \lambda$  and  $[Y]^{r+1} \subseteq K_0$  or  $[Y]^{r+1} \subseteq K_1$ . By the other lemma, there is  $Z \subseteq Y$  with  $|Z| = \lambda$  and  $[Z]^{r+1} \subseteq P_0$ . But this means  $[Z]^{r+1} \subseteq I_0^*$ . Using another lemma, we find a homogeneous set of size  $\lambda$  in  $I_0$ , a contradiction.



Similarly, suppose  $X \subseteq 2^{\kappa}$  such that  $|X| = \lambda$  and  $[X]^{r+1} \subseteq J_1$ . Then  $[X]^{r+1} \subseteq K \cup K(0,1)$ , and thus  $[X]^{r+1} \cap K(1,0) = \emptyset$ . This gives some  $Y \subseteq X$  with  $[Y]^{r+1} \subseteq K_0$  or  $[Y]^{r+1} \subseteq K_1$  and  $|Y| = \lambda$ . Then  $[Y]^{r+1} \subseteq P(0,1) \cup P_0$ , hence  $[Y]^{r+1} \cap P(1,0) = \emptyset$ . Thus there is  $Z \subseteq Y$  with  $[Z]^{r+1} \subseteq P_0$ . Therefore  $[Z]^{r+1} \subseteq I_1^*$  and so we find a homogeneous set of size  $\lambda$  in  $I_1$ , a contradiction. Therefore  $2^{\kappa} \not\to (\lambda)_2^{r+1}$ .



- [1] Paul Erdős and Richard Rado. *A partition calculus in set theory*. Bulletin of the American Mathematical Society, 62:427-489, 1956.
- [2] Paul Erdős, András Hajnal, Atilla Máté and Richard Rado. Combinatorial set theory: partition relations for cardinals. North-Holland Publishing Co. Amsterdam, 1984.
- [3] Albin L. Jones. *A short proof of a partition relation for triples*. The Electronic Journal of Combinatorics, 7:R24, 2000.

