
David de Graaf (UvA) 27 May 2021 1 / 35

Negative step-up results for partition relations
University of Amsterdam

David de Graaf
27 May 2021



Colourings

• [S ]r = {A ⊆ S : |A| = r}.
• A k-colouring of [S ]r is a function f : [S ]r → k .

• Given f : [S ]r → k , a set H ⊆ S is i-homogeneous for f if f � [H]r is
constant with colour i ∈ k .

Definition (Arrow notation)

Let α and βi be order-types for all i < m, where m is a cardinal and let
r ∈ N. We write

α→ (βi )
r
i<m,

if for all sets S with otp S = α and every m-colouring f : [S ]r → m there
exists a i-homogeneous set H ⊆ S with otpH = βi .

• α is the resource,

• βi are the goals,

• r is the exponent, and

• m is the colour set or colour cardinal.
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Positive Step-Up Lemma

Theorem (Theorem 39, [1])
For all infinite cardinals κ, finite r , any cardinal m and any ordinal λ, if
κ→ (λ)rm, then (2<κ)+ → (λ+ 1)r+1

m .

Theorem

For any r , k ∈ N, ω1 → (ω + 1)rk .

Theorem

Let r , k ∈ N. Then (2ℵ0)+ → (ω + 2)rk .

Theorem (Erdős-Rado Theorem)

For any infinite cardinal κ, in(κ)+ → (κ+)n+1
κ .
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Pattern of partition relations

Theorem

For any r , k ∈ N, ω1 → (ω + 1)rk .

Theorem

Let r , k ∈ N. Then (2ℵ0)+ → (ω + 2)rk .

• i+
0 → (ω + 1)rk .

• i+
1 → (ω + 2)rk .

• i+
2 → (ω + 3)rk .

• etc...
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Pattern of partition relations

• i+
0 → (ω + 1)rk .

• i+
0 6→ (ω + 2)32.

• i+
1 → (ω + 2)rk .

• i+
1 6→ (ω + 3)42.

• i+
2 → (ω + 3)rk .

• i+
2 6→ (ω + 4)52?
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Theorem (Lemma 4, [1])
Let α0, α1, β0, β1 be linear order-types and 2 ≤ r < ω. Assume that
|α0| = |α1| and β0, β

∗
1 6≤ α0. Then

α1 6→ (β0, β1, (r + 1)r !−2)rr !.

Proof.

Throughout we may assume |β0|, |β1| ≥ ℵ0. Let S be a set such that
otp(S , <) = α1. As |S | = |α1| = |α0|, there is an ordering � on S such
that otp(S ,�) = α0. Given any X ∈ [S ]r , we can index the elements in
X such that X = {x0 < x1 < . . . < xr−1}. There is a unique permutation
π : r → r such that xπ(0) � xπ(1) � . . .� xπ(r−1). Note that there are
precisely r ! permutations of r . Fix an enumeration 〈πn | n < r !〉 of
permutations of r , where π0 is the identity, and π1 = π∗0 .
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Proof (continued).

Define the r !-colouring f : [S ]r → r ! : {x0 < x1 < . . . < xr−1} 7→ n where
πn is such that xπn(0) � xπn(1) � . . .� xπn(r−1). Suppose there is a
n-homogeneous set H for f with otp(H, <) = βn, there are three cases
that we consider.

Case n = 0. Then otp(H, <) = β0 and f � [H]r ≡ 0. As π0 is the identity
and r ≥ 2, we have in particular for any x , y ∈ H that
x < y ⇐⇒ x � y . This means
β0 = otp(H, <) = otp(H,�) ≤ otp(S ,�) = α0, which is a
contradiction.

Case n = 1. Then otp(H, <) = β1 and f � [H]r ≡ 1. In this case
π1 = π∗0 , which means for any x , y ∈ H we have x < y ⇐⇒ y � x .
Therefore β∗1 = otp(H, <)∗ = otp(H,�) ≤ otp(S ,�) = α0, again a
contradiction.
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Proof (continued).

Case n ≥ 2. Then otp(H, <) = r + 1 and f � [H]r ≡ n. In particular
πn 6= π0 and πn 6= π1. Write H = {x0 < x1 < . . . < xr−1 < xr} and
define yk = xk+1. Then

xπn(0) � xπn(1) � . . .� xπn(r−1),

yπn(0) � yπn(1) � . . .� yπn(r−1).

Suppose x0 � x1, then xπn(0)−1 < xπn(1)−1 and so y0 � y1. This gives
x1 � x2. Repeating this argument gives that x0 � x1 � · · · � xr−1, and
hence πn = π0, which is a contradiction. If, on the other hand, we
assume x1 � x0, then using an analogous argument, we get
xr−1 � . . .� x1 � x0, i.e. πn = π1, which is also a contradiction.
We conclude that such a homogeneous set H cannot exist, and this
concludes the proof.
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Theorem (Lemma 5, [1])
Let α be an ordinal and r < ω and m any cardinal. Let γn be ordinals for
all n < m such that β 6→ (γn)rn<m for all β < α. Then α 6→ (γn + 1)r+1

n<m.

Proof.

Let S be a set such that otp(S , <) = α. For every x ∈ S , define
Ix = {y ∈ S | y < x}, then otp(Ix , <) = β < α, for some β. By
assumption there is some colouring fx : [Ix ]r → k such that there is no
n-homogeneous set H of order-type γn.

Define f : [S ]r+1 → k by

{x0 < x1 . . . < xr−1 < xr} 7→ fxr ({x0 < x1 . . . < xr−1}).

If there is an n-homogeneous set H = {hi | i < γn + 1} ⊆ S for f with
otp(H, <) = γn + 1, then the set {hi | i < γn} is n-homogeneous for fhγn
with order-type γn. This is a contradiction and hence the proof is
concluded.
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The first negative relation

Theorem (Theorem 41, [1])
ω1 6→ (ω + 2)32.

Proof.

Clearly, ω + 1, ω∗ 6≤ ω. By Lemma 4, we have β 6→ (ω + 1, ω)22 for all
countable ordinals β. This relation holds for all β < ω1 and thus by
Lemma 5, ω1 6→ (ω + 2, ω + 1)32.
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Recapitulate

• i+
0 → (ω + 1)rk .

• i+
0 6→ (ω + 2)32.

• i+
1 → (ω + 2)rk .

•
• i+

2 → (ω + 3)rk .

i+
1 6→ (ω + 3)42.
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Discrepancy

Definition

Given distinct f , g ∈ 2κ, we define the discrepancy δ as

δ(f , g) = min{ξ < κ | f (ξ) 6= g(ξ)}.

If f = g , we simply let δ(f , g) = κ.

Observation

If δ(f , g) < δ(g , h), then δ(f , g) = δ(f , h).

Remark

Let ≺ denote the lexicographic ordering on 2κ. If f , g , h ∈ 2κ are such
that f ≺ g ≺ h, then δ(f , g) 6= δ(g , h). Else, f (ξ) < g(ξ) < h(ξ) for
some ξ < κ.
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Result by Albin Jones

Theorem (Albin L. Jones (2000), [3])
Let α be a linear order-type and let κ be an infinite cardinal. If
α 6→ (ω)12κ , then α 6→ (κ+ 2, ω)32.

Proof.

Let e : α→ 2κ be a witness of α 6→ (ω)12κ . As ω is regular, it follows for
every B ∈ [α]ω there is C ∈ [B]ω such that e � C is injective. Define the
partition f : [α]2 → κ+ 1 by {x , y} 7→ δ(e(x), e(y)).

Define the partition of triples g : [α]3 → 2 s.t. for x < y < z ,

g{x , y , z} =

{
0 if e is injective on {x , y , z} and f {x , y} < f {y , z}, and
1 if e is not injective on {x , y , z} or f {x , y} ≥ f {y , z}.

We show that g is the partition which proves α 6→ (κ+ 2, ω)32.
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Claim

There is no 0-homogeneous H ⊆ α for g with otpH = κ+ 2.

Proof of claim.

Suppose such H = {hγ | γ < κ+ 2} exists. We observe immediately that
e � H is injective. In particular, e(hκ) 6= e(hκ+1) and hence
f {hκ, hκ+1} = δ(e(hκ), e(hκ+1)) = ξ < κ. For any µ < ν < κ we have
f {hµ, hν} < f {hν , hκ}, and by the observation:

f {hµ, hκ} = f {hµ, hν} < f {hν , hκ}.

Note that f {hµ, hκ} < f {hκ, hκ+1} = ξ < κ. Hence, the sequence
〈f {hµ, hκ} | µ < κ〉 is a strictly increasing sequence of length κ of
ordinals below ξ, which gives a contradiction. �
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Claim

There is no 1-homogeneous H ⊆ α for g with otpH = ω.

Proof of claim.

Again, for sake of contradiction assume such H ∈ [α]ω exists. By the
remark above there is B ∈ [H]ω such that e � B is injective. Consider the
colouring h : [B]3 → 2 by

h{x < y < z} =

{
0 if f {x , y} > f {y , z}, and
1 if f {x , y} = f {y , z}.

By definition of g and since B is 1-homogeneous for g , the colouring h is
well-defined. Now, by a weak version of Ramsey’s Theorem, ω → (ω, 4)32.
Hence, either

(a) there is C ∈ [B]ω such that h � [C ]3 ≡ 0, or

(b) there is D ∈ [B]4 such that h � [D]3 ≡ 1.

If (a) holds, then 〈f {cn, cn+1} | n ∈ ω〉, where C = {c0 < c1 < . . . }, is a
strictly decreasing sequence of ordinals of length ω, which is a
contradiction.
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Proof of claim (continued).

Alternatively, if (b) holds and such D = {x < y < z < w} exists, then
f {x , y} = f {y , z} = f {x , z}. This gives us three pairwise distinct
functions e(x), e(y), e(z) ∈ 2κ such that they are pairwise different at
some point ξ < κ, which is not possible since these functions map to 2.
Hence we reach a contradiction. �
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The second negative relation

Proof (continued).

We conclude that

α 6→ (ω)12κ =⇒ α 6→ (κ+ 2, ω)32.

Theorem

i+
1 6→ (ω + 3, ω + 1)42.

Proof.

Let β < i+
1 , then |β| ≤ i1 = 2ℵ0 . Define the partition

f : β → β : γ 7→ γ. Then f witnesses β 6→ (ω)1β . Therefore β 6→ (ω)1
2ℵ0

.

By Jones’s lemma, we have β 6→ (ω + 2, ω)32.
Then by Lemma 4 in [1], we obtain the desired result.
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Does the pattern continue?

• i+
0 → (ω + 1)rk .

• i+
0 6→ (ω + 2)32.

• i+
1 → (ω + 2)rk .

• i+
1 6→ (ω + 3)42.

• i+
2 → (ω + 3)rk .

• i+
2 6→ (ω + 4)52?
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Converse Positive Step-Up Lemma unprovable

The converse: κ 6→ (λ)rk =⇒ (2<κ)+ 6→ (λ+ 1)rk .

Assume 2ℵ0 = ℵ2 and 2ℵ1 = 2ℵ2 = ℵ3. Then i+
2 = (22ℵ0 )+ = ℵ4 and

(2<ℵ2)+ = ℵ4.

• Sierpińsky: ℵ2 = 2ℵ0 6→ (ℵ1)22
• Erdős-Rado: ℵ4 = i+

2 → (ℵ1 + 1)32.
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The idea

• We want to show κ 6→ (α)rm =⇒ 2κ 6→ (α + 1)r+1
m .

• We will show κ 6→ (λ)rm =⇒ 2κ 6→ (λ)r+1
m .

• Given a partition 〈Iξ | ξ < m〉 witnessing κ 6→ (λ)rm.

• Want to create partition 〈I ∗ξ | ξ < m〉 witnessing 2κ 6→ (λ)r+1
m .

• The partition will (unfortunately) only work if λ is a cardinal.

David de Graaf (UvA) 27 May 2021 20 / 35



A bunch of definitions

Let r ≥ 3 and u ∈ [2κ]r . Write u = {x0 <∗ x1 <∗ . . . <∗ xr−1} and
define

• η(u) = (η(x0, x1), η(x1, x2), . . . , η(xr−2, xr−1)),

where η(x , y) = 0 if x <∗ y ⇐⇒ x ≺ y , and η(x , y) = 1 otherwise.

Also given s ≤ r − 1 and k0, k1, . . . , ks−1 ∈ 2, define

• K (k0, k1, . . . , ks−1) = {u ∈ [2κ]r | η(u) � s = (k0, k1, . . . , ks−1)}.
• K0 = K (0, 0, . . . , 0) and K1 = K (1, 1, . . . , 1).

• K = K0 ∪ K1.
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Examples

Given u = {x0 <∗ x1 <∗ . . . <∗ xr−1}.

u ∈ K (0, 1) ⇐⇒ η(x0, x1) = 0 and η(x1, x2) = 1

⇐⇒ x0 ≺ x1 � x2.

• u ∈ K0 ⇐⇒ x0 ≺ x1 ≺ . . . ≺ xr−1

• u ∈ K1 ⇐⇒ x0 � x1 � . . . � xr−1

David de Graaf (UvA) 27 May 2021 22 / 35



More definitions

Let r ≥ 4 and u ∈ K . Write u = {x0 <∗ x1 <∗ . . . <∗ xr−1} and define
δs = δ(xs , xs+1) for s ≤ r − 2. Define

• ζ(δ(u)) = (ζ(δ0, δ1), ζ(δ1, δ2), . . . , ζ(δr−3, δr−2)),

where ζ(δs , δs+1) = 0 if δs < δs+1, and ζ(δs , δs+1) = 1 if δs > δs+1.

Also given s ≤ r − 2 and k0, k1, . . . , ks−1 ∈ 2, define

• P(k0, k1, . . . , ks−1) = {u ∈ K | ζ(δ(u)) � s = (k0, k1, . . . , ks−1)}.
• P0 = P(0, 0, . . . , 0) and P1 = P(1, 1, . . . , 1).

• P = P0 ∪ P1.
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More examples

Given u = {x0 <∗ x1 <∗ . . . <∗ xr−1}.

u ∈ P(0, 1) ⇐⇒ ζ(δ0, δ1) = 0 and ζ(δ1, δ2) = 1

⇐⇒ δ0 < δ1 > δ2

⇐⇒ δ(x0, x1) < δ(x1, x2) > δ(x2, x3).

• u ∈ P0 ⇐⇒ δ0 < δ1 < . . . < δr−2

• u ∈ P1 ⇐⇒ δ0 > δ1 > . . . > δr−2
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Lemma (Lemma 23.12, [2])
Let r ≥ 3, let κ be a cardinal. Let I ⊆ [κ]r−1 and put

I ∗ = {u ∈ P0 | δ(u) ∈ I}. (1)

Assume that [H]r ⊆ I ∗ for some H 6= ∅ where by assumption
otp(H, <∗) = α. Then there is X ⊆ κ with otp(X , <) = α− such that
[X ]r−1 ⊆ I .

Proof.

We may assume that |H| ≥ r and write H = {hγ | γ < α} where
α = otp(H, <∗). (Recall that <∗ is a fixed well-order on 2κ). For
ordinals γ such that γ + 1 < α we let

δγ = δ(hγ , hγ+1).

Define
X = {δγ | γ + 1 < α}.

David de Graaf (UvA) 27 May 2021 25 / 35



Proof (continued).

First we show that otp(X , <) = α−. It obviously suffices to show for all
γ < γ′ < α− that δγ < δγ′ . By the assumption [H]r ⊆ I ∗ ⊆ P0, it
follows that

ζ(δ({hγ , hγ+1, hγ′})) = ζ(δ(hγ , hγ+1), δ(hγ+1, hγ′)) = 0.

Also

ζ(δ({hγ+1, hγ′ , hγ′+1})) = ζ(δ(hγ+1, hγ′), δ(hγ′ , hγ′+1)) = 0.

In other words, δγ < δ(hγ+1, hγ′) < δγ′ . Note that we assumed
γ + 1 < γ′, because if γ + 1 = γ′, we could just leave out the term
δ(hγ+1, hγ′). In particular, we obtain δγ < δγ′ , showing that
otp(X , <) = α−.
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Proof (continued).

It rests to show that [X ]r−1 ⊆ I . Given ξ0 < . . . < ξr−2 < α−, we want
to show {δξ0 < . . . < δξr−2} ∈ I . Suppose that ξi + 1 < ξi+1. As
[H]r ⊆ P0, we have δ(hξi , hξi+1) < δ(hξi+1, hξi+1) and hence ,
δ(hξi , hξi+1) = δ(hξi , hξi+1). If ξi + 1 = ξi+1, then
δ(hξi , hξi+1) = δ(hξi , hξi+1) obviously holds as well. Now, writing
ξr−1 = ξr−2 + 1, we obtain

{δξi | i < r − 1} = {δ(hξi , hξi+1) | i < r − 1}
= {δ(hξi , hξi+1) | i < r − 1}
= δ({hξi | i < r}).

As {hξi | i < r} ∈ [H]r ⊆ I ∗, we have by definition of I ∗ that
{δξi | i < r − 1} ∈ I . This gives us [X ]r−1 ⊆ I , which is what we wanted
to show.
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Lemma (Lemma 23.5, [2])
Let X ⊆ 2κ and assume |X | ≥ ℵ0. Assume that (i) [X ]r ∩K (0, 1) = ∅ or
(ii) [X ]r ∩ K (1, 0) = ∅. Then there is a set Y ⊆ X with |Y | = |X | such
that [Y ]r ⊆ K0 or [Y ]r ⊆ K1.

Proof.

Write λ = |X | and we may assume otp(X , <∗) = λ. Assume that no
such Y exists.

Claim

There are elements x0 <
∗ x1 <

∗ x2 <
∗ x3 such that x0 ≺ x1 � x2 ≺ x3.

If the claim is proven, then there is {x0, x1, x2, . . .} ∈ [X ]r ∩ K (0, 1) and
{x1, x2, x3, . . .} ∈ [X ]r ∩ K (1, 0), contradicting (i) or (ii), respectively,
which gives the contradiction. Hence such Y exists.
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Claim

There are elements x0 <
∗ x1 <

∗ x2 <
∗ x3 such that x0 ≺ x1 � x2 ≺ x3.

Proof of claim.

For every x ∈ X there are y , z ∈ X and y ′, z ′ ∈ X such that

x ≤∗ y <∗ z and y ≺ z , (2)

x ≤∗ y ′ <∗ z ′ and y ′ � z ′. (3)

Suppose not and let x ∈ X be a counterexample, the set
Y = {x ′ ∈ X | x ≤∗ x ′} has cardinality λ and is contained in either K0 or
K1, which is a contradiction.
Now let x0, z1 ∈ X with x0 <

∗ z1 and x0 ≺ z1. Then let y1, z2 ∈ X with
z1 ≤∗ y1 <∗ z2 with y1 � z2. Define x1 = max≺{y1, z1}, then x0 <

∗ x1
and x0 ≺ x1. Also, x1 � z2.
Pick y2, z3 ∈ X with z2 ≤∗ y2 <∗ x3 with y2 ≺ x3. Let x2 = min≺{y2, z2}.
Then x1 <

∗ x2 and x1 � x2. Also, x2 ≺ x3. This proves the claim �
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Lemma (Lemma 23.9, [2])
Let r ≥ 4, let X ⊆ 2κ such that |X | ≥ ℵ0. Suppose [X ]r ⊆ K0 or
[X ]r ⊆ K1. Assume (i) [X ]r ∩ P(0, 1) = ∅ or (ii) [X ]r ∩ P(1, 0) = ∅.
Then there exists Y ⊆ X with |Y | = |X | such that [Y ]r ⊆ P0.

Claim

Suppose x0 <
∗ x1 <

∗ . . . <∗ xs−1 are such that

ζ(δi , δi+1) 6= ζ(δi+1, δi+2), (4)

for all i ≤ s − 4. Then s ≤ 4.

Proof of claim.

Suppose s ≥ 5 and x0 <
∗ x1 <

∗ x2 <
∗ x3 <

∗ x4 constitutes a
counterexample. If ζ(δ0, δ1) < ζ(δ1, δ2) > ζ(δ2, δ3), then
{x0, x1, x2, x3, . . .} ∈ [X ]r ∩ P(0, 1) or {x1, x2, x3, x4, . . .} ∈ [X ]r ∩ P(1, 0),
giving a contradiction with (i) or (ii), respectively.

Similarly, if ζ(δ0, δ1) > ζ(δ1, δ2) < ζ(δ2, δ3), we get
{x0, x1, x2, x3, . . .} ∈ [X ]r ∩ P(1, 0) or {x1, x2, x3, x4, . . .} ∈ [X ]r ∩ P(0, 1),
giving a contradiction with (ii) or (i), respectively. �
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Proof (continued).

Now let such s ≤ 4 be maximal (note s ≥ 3 always holds) and define
x = xs−3, y = xs−2 and z = xs−1. Note that δ(x , y) 6= δ(y , z), hence
either (a) δ(x , y) > δ(y , z) or (b) δ(x , y) < δ(y , z). Then by maximality
of s, for all z ≤∗ z0 <∗ z1, either

(a) not δ(x , y) > δ(y , z0) < δ(z0, z1), or

(b) not δ(x , y) < δ(y , z0) > δ(z0, z1).

We show case (a) is impossible. For suppose otherwise, then for all
z0 ∈ X with z <∗ z0 we have

δ(y , z) > δ(z , z0) = δ(y , z0).

Picking an <∗-increasing sequence 〈zn | n < ω〉 gives us

δ(y , z0) > δ(y , z1) > δ(y , z2) > . . . ,

which is a contradiction.
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Proof (continued).

So, assume (b) holds. Let z0, z1, z2 ∈ X be arbitrary such that
z <∗ z0 <

∗ z1 <
∗ z2. Then firstly, δ(x , y) < δ(y , z) < δ(z , z0), hence

δ(x , y) < δ(y , z0) = δ(y , z). As δ(x , y) < δ(y , z0), it must be that
δ(x , y) < δ(y , z0) < δ(z0, z1).
Then δ(x , z0) = δ(x , y) and so δ(x , z0) < δ(z0, z1). Therefore, in view of
the maximality of s,

δ(z0, z1) < δ(z1, z2).

Define Y = {z ′ ∈ X | z <∗ z ′}, we showed that [Y ]r ⊆ P0 and clearly
|Y | = |X |.
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Theorem (Negative Stepping-Up Lemma, [2])
Suppose r ≥ 3 and that κ and λ are infinite cardinals. Assume κ 6→ (λ)r2.
Then 2κ 6→ (λ)r+1

2 .

Proof.

Let [κ]r = I0 ·∪ I1 be the partition witnessing κ 6→ (λ)r2.
Define a partition [2κ]r+1 = J0 ·∪ J1 by

J1 = K (0, 1) ∪ P(0, 1) ∪ I ∗1 ,

and
J0 = [2κ]r+1 \ J1.

Suppose there is X ⊆ 2κ such that |X | = λ and [X ]r+1 ⊆ J0. Then
[X ]r+1 ∩K (0, 1) = ∅, hence there is by the previous lemma some Y ⊆ X
with |Y | = λ and [Y ]r+1 ⊆ K0 or [Y ]r+1 ⊆ K1. By the other lemma,
there is Z ⊆ Y with |Z | = λ and [Z ]r+1 ⊆ P0. But this means
[Z ]r+1 ⊆ I ∗0 . Using another lemma, we find a homogeneous set of size λ
in I0, a contradiction.
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Proof (continued).

Similarly, suppose X ⊆ 2κ such that |X | = λ and [X ]r+1 ⊆ J1. Then
[X ]r+1 ⊆ K ∪ K (0, 1), and thus [X ]r+1 ∩ K (1, 0) = ∅. This gives some
Y ⊆ X with [Y ]r+1 ⊆ K0 or [Y ]r+1 ⊆ K1 and |Y | = λ. Then
[Y ]r+1 ⊆ P(0, 1)∪ P0, hence [Y ]r+1 ∩ P(1, 0) = ∅. Thus there is Z ⊆ Y
with [Z ]r+1 ⊆ P0. Therefore [Z ]r+1 ⊆ I ∗1 and so we find a homogeneous
set of size λ in I1, a contradiction.
Therefore 2κ 6→ (λ)r+1

2 .
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