Separating Many Slalom Cardinals

Tristan van der Vlugt Universität Hamburg

STiHAC Forschungsseminar Mathematische Logik December 3, 2021 Main goal: generalise results known for the classical reals ${}^{\omega}2$ to the generalised reals ${}^{\kappa}2$.

Classically, for every cofinal $h \in {}^{\omega}\omega$ we can define what an h-slalom is. We can define cardinal characteristics $\mathfrak{b}^h_{\omega}(\in^*)$ and $\mathfrak{d}^h_{\omega}(\in^*)$. It can be proved that the choice of h does not matter: $\mathfrak{b}^h_{\omega}(\in^*) = \mathfrak{b}^g_{\omega}(\in^*)$ and $\mathfrak{d}^h_{\omega}(\in^*) = \mathfrak{d}^g_{\omega}(\in^*)$ for all h, g.

Generally, for inaccessible κ , it was found that if $id : \alpha \mapsto \alpha$ and pow $: \alpha \mapsto 2^{|\alpha|}$, then $\mathfrak{d}_{\kappa}^{pow}(\in^*) < \mathfrak{d}_{\kappa}^{id}(\in^*)$ is consistent.

In this talk we show that there is a sequence $\langle h_{\alpha} \in {}^{\kappa}\kappa \mid \alpha < \kappa \rangle$ such that $\mathfrak{d}_{\kappa}^{h_{\alpha'}}(\in^*) < \mathfrak{d}_{\kappa}^{h_{\alpha}}(\in^*)$ is consistent for all $\alpha < \alpha'$.

- Slalom cardinals
- $\circ~$ Separating the slalom cardinals
- $\,\circ\,$ Separating more slalom cardinals
- \circ Open problems

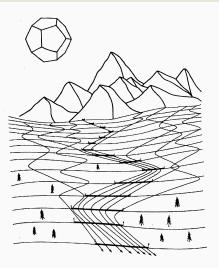
Slaloms

Let κ be regular strong limit and $h \in {}^{\kappa}\kappa$ be an increasing cofinal cardinal function.

An *h*-slalom is any function $\varphi : \kappa \to [\kappa]^{<\kappa}$ such that $|\varphi(\alpha)| = h(\alpha)$ for all $\alpha \in \kappa$.

For $f \in {}^{\kappa}\kappa$, we say $f \in {}^{*}\varphi$, or f is localised by φ , if there exists some $\xi < \kappa$ such that $f(\alpha) \in \varphi(\alpha)$ for all $\alpha \in [\xi, \kappa)$.

We will let Loc_h be the set of h-slaloms.



[Bartoszyński, 1987]

Slalom cardinals

We define the following cardinal characteristics:

 $\mathfrak{b}_{\kappa}^{h}(\in^{*}) = \min\left\{|B| \mid B \subseteq {}^{\kappa}\kappa \text{ and } \forall \varphi \in \operatorname{Loc}_{h}\exists f \in B(f \notin^{*}\varphi)\right\},\\ \mathfrak{d}_{\kappa}^{h}(\in^{*}) = \min\left\{|D| \mid D \subseteq \operatorname{Loc}_{h} \text{ and } \forall f \in {}^{\kappa}\kappa \exists \varphi \in D(f \in^{*}\varphi)\right\}.$

 $\begin{array}{ll} \mbox{Proposition} & [Brendle \ et \ al., \ 2018] \ sections \ 4.3 \ \& \ 4.4 \\ \kappa^+ \leq \mathfrak{b}^h_\kappa(\in^*) \leq \mathfrak{d}^h_\kappa(\in^*) \leq 2^\kappa, \ \mbox{and all relations can consistently be} \\ \mbox{strict inequalities.} \end{array}$

Let ${\cal N}$ be the ideal of sets of reals with Lebesgue measure 0.

$$\begin{aligned} \operatorname{add}(\mathcal{N}) &= \min\left\{ |\mathcal{A}| \mid \mathcal{A} \subseteq \mathcal{N} \text{ and } \bigcup \mathcal{A} \notin \mathcal{N} \right\},\\ \operatorname{cof}(\mathcal{N}) &= \min\left\{ |\mathcal{C}| \mid \mathcal{C} \subseteq \mathcal{N} \text{ and } \forall N \in \mathcal{N} \exists C \in \mathcal{C}(N \subseteq C) \right\}. \end{aligned}$$

Proposition [Bartoszyński, 1987] or [Bartoszyński and Judah, 1995] $\mathfrak{b}_{\omega}(\in^*) = \operatorname{add}(\mathcal{N}) \text{ and } \mathfrak{d}_{\omega}(\in^*) = \operatorname{cof}(\mathcal{N})$

Slalom cardinals

Theorem [Bartoszyński, 1987] or [Blass, 2010] remark 5.15 (for $\kappa = \omega$) If $h, g \in {}^{\kappa}\kappa$ are continuous (i.e. $h(\gamma) = \bigcup_{\alpha < \gamma} h(\alpha)$ for limit γ) and unbounded, then $\mathfrak{d}^{h}_{\kappa}(\in^{*}) = \mathfrak{d}^{g}_{\kappa}(\in^{*})$ and $\mathfrak{b}^{h}_{\kappa}(\in^{*}) = \mathfrak{b}^{g}_{\kappa}(\in^{*})$.

Proof. Let $\langle \xi_{\alpha} | \xi \in \kappa \rangle$ enumerate a club s.t. $h(\alpha) \leq g(\xi_{\alpha})$, and let $I_{\alpha} = [\xi_{\alpha}, \xi_{\alpha+1})$. Fix some bijections $\pi_{\alpha} : \kappa \rightarrowtail I_{\alpha} \kappa$.

For any $f \in {}^{\kappa}\kappa$ let $f' : \alpha \mapsto \pi_{\alpha}^{-1}(f \upharpoonright I_{\alpha})$. For any $\varphi \in \operatorname{Loc}_h$ and $\xi \in I_{\alpha}$ let $\varphi'(\xi) \supseteq \{\pi_{\alpha}(i)(\xi) \mid i \in \varphi(\alpha)\}$ s.t. $|\varphi'(\xi)| = |g(\xi)|$.

If $f' \in \varphi$, let α be s.t. $f'(\alpha) \in \varphi(\alpha)$. Then $\pi_{\alpha}(f'(\alpha)) = f \upharpoonright I_{\alpha}$. If $\xi \in I_{\alpha}$, then $f(\xi) = \pi_{\alpha}(f'(\alpha))(\xi) \in \varphi'(\xi)$. Hence $f \in \varphi'$.

If D with $|D| = \lambda$ witnesses $\mathfrak{d}^h_{\kappa}(\in^*) = \lambda$ and $f \in {}^{\kappa}\kappa$, let f' be as above and $\varphi \in D$ such that $f' \in {}^{*}\varphi$. Then $f \in {}^{*}\varphi'$, so $\{\varphi' \mid \varphi \in D\}$ witnesses $\mathfrak{d}^g_{\kappa}(\in^*) \leq \lambda$.

- Slalom cardinals
- Separating the slalom cardinals
- $\circ~$ Separating more slalom cardinals
- \circ Open problems

Our goal is to separate $\mathfrak{d}^h_{\kappa}(\in^*)$ from $\mathfrak{d}^g_{\kappa}(\in^*)$ for two $h, g \in {}^{\kappa}\kappa$.

Definition

A forcing notion $\langle \mathbb{P}, \leq \rangle$ has the (generalised) *h*-Sacks property if for every \mathbb{P} -name \dot{f} and condition $p \in \mathbb{P}$ such that $p \Vdash$ " $\dot{f} \in {}^{\kappa}\kappa$ " there exists a $q \leq p$ and *h*-slalom $\varphi \in \operatorname{Loc}_h$ such that $q \Vdash$ " $\dot{f}(\check{\alpha}) \in \check{\varphi}(\check{\alpha})$ " for all $\alpha < \kappa$.

Proposition see e.g. [Jech, 2003] lemma 15.36 (for $\kappa = \omega$) If \mathbb{P} has the *h*-Sacks property for some $h \in {}^{\kappa}\kappa$ and \mathbb{P} is $<\kappa$ -closed, then \mathbb{P} does not collapse κ^+ .

Lemma

Let \mathbb{P} have the *h*-Sacks property and preserve cardinals, then $\mathbf{V}[G_{\mathbb{P}}] \vDash \mathfrak{d}_{\kappa}^{h}(\in^{*}) \leq (2^{\kappa})^{\mathbf{V}}$ ".

 $\begin{array}{l} \text{Let } T \subseteq {}^{<\kappa}\kappa \text{ be a tree. For any node } u \in T \text{ let} \\ \mathrm{suc}(u,T) = \{v \in T \mid \exists \beta < \kappa (v = u^\frown \beta)\}. \end{array}$

Node u is α -splitting in T if $\alpha \leq |\operatorname{suc}(u, T)|$. If u is α -splitting but not $|\alpha|^+$ -splitting, then we call u a sharp α -splitting node. A splitting node is a 2-splitting node, and any other node is non-splitting.

We let $u \in \text{Split}_{\alpha}(T)$ iff u is splitting and $\operatorname{ot}(\{\beta < \operatorname{ot}(u) \mid u \upharpoonright \beta \text{ is splitting}\}) = \alpha$, and we call α the splitting level of u.

If
$$u \in T$$
, then $T_u = \{v \in T \mid u \subseteq v \text{ or } v \subseteq u\}$.

The generalised Sacks forcing or perfect-set forcing \mathbb{S}_{κ} has as conditions trees $T \subseteq {}^{<\kappa}2$ such that:

(i) for any
$$u \in T$$
 there exists splitting $v \in T$ such that $u \subseteq v$,
(ii) if $\gamma < \kappa$ and $\langle u_{\alpha} \mid \alpha < \gamma \rangle \in {}^{\gamma}T$ are splitting nodes with $u_{\alpha} \subseteq u_{\beta}$ for $\alpha < \beta$, then $u = \bigcup_{\alpha < \gamma} u_{\alpha} \in T$ and u is splitting.

The ordering on \mathbb{S}_{κ} is given by $T \leq S$ iff $T \subseteq S$.

If $T \in \mathbb{S}_{\kappa}$, then $\bigcup_{\alpha < \kappa} \operatorname{Split}_{\alpha}(T)$ is isomorphic with ${}^{<\kappa}2$.

Proposition [Kanamori, 1980] lemma 1.2 \mathbb{S}_{κ} is $<\kappa$ -closed and has the $<(2^{\kappa})^+$ -cc.

This implies that \mathbb{S}_{κ} preserves cardinals $\leq \kappa$ and $\langle (2^{\kappa})$. We will see that \mathbb{S}_{κ} has the pow-Sacks property, and thus preserves κ^+ . Hence if $\mathbf{V} \models 2^{\kappa} = \kappa^+$ ", then \mathbb{S}_{κ} preserves all cardinals and cofinalities.

Let $T \leq_{\alpha} S$ iff $T \leq S$ and $\text{Split}_{\alpha}(T) = \text{Split}_{\alpha}(S)$. A fusion sequence is a sequence $\langle T_{\alpha} \mid \alpha < \kappa \rangle$ s.t. $T_{\beta} \leq_{\alpha} T_{\alpha}$ for all $\beta > \alpha$.

Proposition [Kanamori, 1980] lemma 1.4

 \mathbb{S}_{κ} is closed under fusion, that is, if $\langle T_{\alpha} \mid \alpha < \kappa \rangle$ is a fusion sequence, then there is $S \in \mathbb{S}_{\kappa}$ such that $S \leq T_{\alpha}$ for all $\alpha < \kappa$. \Box

Sacks property of \mathbb{S}_{κ}

Proposition [Brendle et al., 2018] proposition 65 & 66 Let pow : $\alpha \mapsto 2^{\alpha}$ and id : $\alpha \mapsto \alpha$, then \mathbb{S}_{κ} has the pow-Sacks property, but does not have the id-Sacks property.

Proof sketch. If $T \in \mathbb{S}_{\kappa}$, then $|\operatorname{Split}_{\alpha}(T)| = 2^{|\alpha|}$. Let \dot{f} be a name such that $T \Vdash ``\dot{f} \in {}^{\kappa}\kappa"$. For each $v \in \operatorname{suc}(u,T)$ where $u \in \operatorname{Split}_{\alpha}(T)$ find an extension of $T'_{v} \subseteq T_{v}$ deciding $\dot{f}(\alpha)$ and take the amalgamation of these T'_{v} . Then use fusion to get increasingly stronger trees $T_{\alpha+1}$ deciding $\dot{f}(\alpha)$.

There are unboundedly many $\alpha < \kappa$ such that $T \cap {}^{\alpha}2 = \operatorname{Split}_{\alpha}(T)$. Let \dot{f} name the \mathbb{S}_{κ} -generic κ -real. If $u \in T \cap {}^{\alpha}2$, then T_u decides $\dot{f} \upharpoonright \alpha$ and there are $2^{|\alpha|}$ many such u. If φ is an id-slalom, then $|\varphi(\alpha)| = |\alpha| < 2^{|\alpha|}$, thus we can use a bijection $g : \kappa \to 2^{<\kappa}$ to decide a value outside $\varphi(\alpha)$. Let \mathbb{P} be a forcing and A be a set of ordinals. For a function $p: A \to \mathbb{P}$, we let $\operatorname{supp}(p) = \{\xi \in A \mid p(\xi) \neq \mathbb{1}_{\mathbb{P}}\}$ be the support of p. We define the $\leq \kappa$ -supported A-product of \mathbb{P} as follows:

 $\mathbb{P}^A = \{ p : A \to \mathbb{P} \mid |\operatorname{supp}(p)| \le \kappa \} \,.$

If $p,q \in \mathbb{P}^A$, then $q \leq_{\mathbb{P}^A} p$ iff $q(\xi) \leq_{\mathbb{P}} p(\xi)$ for all $\xi \in A$.

Proposition see e.g. [Jech, 2003] lemma 15.4, 15.12 & 15.17 If \mathbb{P} is $<\kappa$ -closed, then \mathbb{P}^A is $<\kappa$ -closed. If $|\mathbb{P}| \le \lambda$, then \mathbb{P}^A has the $<\lambda^+$ -cc.

Corollary

 \mathbb{S}^A_κ is ${<}\kappa\text{-closed}$ and has the ${<}(2^\kappa)^+\text{-cc}.$

Generalised fusion

Given $p, q \in \mathbb{S}_{\kappa}^{A}$, $\alpha < \kappa$, and $Z \subseteq A$ with $|Z| < \kappa$, let $q \leq_{Z,\alpha} p$ iff $q \leq p$ and for each $\xi \in Z$ we have $q(\xi) \leq_{\alpha} p(\xi)$.

A generalised fusion sequence is a sequence $\langle (p_{\alpha}, Z_{\alpha}) \mid \alpha < \kappa \rangle$ such that:

$$- p_{\alpha} \in \mathbb{S}_{\kappa}^{A}$$
 and $Z_{\alpha} \in [A]^{<\kappa}$ for each $\alpha < \kappa$

$$- \ p_{\beta} \leq_{Z_{\alpha}, \alpha} p_{\alpha} \text{ and } Z_{\alpha} \subseteq Z_{\beta} \text{ for all } \alpha < \beta < \kappa,$$

- for limit
$$\delta$$
 we have $Z_{\delta} = \bigcup_{\alpha < \delta} Z_{\alpha}$,

$$- \bigcup_{\alpha < \kappa} Z_{\alpha} = \bigcup_{\alpha < \kappa} \operatorname{supp}(p_{\alpha}).$$

Proposition [Kanamori, 1980] lemma 1.9 \mathbb{S}_{κ}^{A} is closed under generalised fusion.

Corollary

If $\mathbf{V} \vDash "2^{\kappa} = \kappa^+$ ", then \mathbb{S}^A_{κ} preserves cardinals and cofinalities.

Lemma [Brendle et al., 2018] main lemma 69 \mathbb{S}^{A}_{κ} has the pow-Sacks property.

Proof sketch. The proof is the same as before, but for multiple \mathbb{S}_{κ} conditions simultaneously. To construct the fusion sequence $\langle (p_{\alpha}, Z_{\alpha}) \mid \alpha < \kappa \rangle$, at stage α we only need to control $p_{\alpha}(\beta)$ for $\beta \in Z_{\alpha}$. We can construct the sequence such that $|Z_{\alpha}| = |\alpha|$ using bookkeeping, hence the amalgamation stays small enough. \Box

Theorem [Brendle et al., 2018] theorem 70 Assume $\mathbf{V} \vDash ``2^{\kappa} = \kappa^+ ``, \text{ let } \lambda > \kappa^+ \text{ be regular and let } G \text{ be } \mathbb{S}_{\kappa}^{\lambda}\text{-generic, then } \mathbf{V}[G] \vDash ``\kappa^+ = \mathfrak{d}_{\kappa}^{\text{pow}}(\in^*) < \mathfrak{d}_{\kappa}^{\text{id}}(\in^*) = 2^{\kappa} ``.$

- Slalom cardinals
- $\circ~$ Separating the slalom cardinals
- Separating more slalom cardinals
- \circ Open problems

In essence, because $\left|\bigcup_{u\in \mathrm{Split}_{\alpha}(T)} \mathrm{suc}(u,T)\right| = 2^{|\alpha|}$ for $T \in \mathbb{S}_{\kappa}$, we have enough freedom to make the id-Sacks property fail, but restrict the branching enough to make the pow-Sacks property hold. Given $h, g \in {}^{\kappa}\kappa$, let $h \ll g$ denote that $|h(\alpha)| < |g(\alpha)|$ for limit α . Given some $F_0 \in {}^{\kappa}\kappa$, we want to find $F_1 \in {}^{\kappa}\kappa$ such that $F_0 \ll F_1$ and a forcing \mathbb{P} such that \mathbb{P} has the F_1 -Sacks property, but not the F_0 -Sacks property.

Solution: use a tree forcing with perfect trees T, where $u \in \operatorname{Split}_{\alpha}(T)$ splits more than $F_0(\alpha)$ times, but at most $F_1(\alpha)$ times. We also need \mathbb{P} to preserve cardinals and we need the Sacks properties to be preserved by products or iteration.

Let $h \in {}^{\kappa}\kappa$ be an increasing cofinal cardinal function. The conditions of the forcing \mathbb{S}_{κ}^{h} are trees $T \subseteq {}^{<\kappa}\kappa$ that satisfy the following properties:

(i) for any u ∈ T there exists splitting v ∈ T such that u ⊆ v,
(ii) if γ < κ and ⟨u_α | α < γ⟩ ∈ ^γT are splitting nodes with u_α ⊆ u_β for α < β, then u = ⋃_{α<γ} u_α ∈ T and u is splitting,
(iii) if u ∈ Split_α(T), then u is an h(α)-splitting node in T.

We say that $T \leq S$ iff $T \subseteq S$ and for every splitting $u \in T$, either suc(u, T) = suc(u, S) or |suc(u, T)| < |suc(u, S)|.

Proposition

 $| \mathsf{f} \ T \in \mathbb{S}^h_\kappa \ \text{and} \ \alpha < \kappa \text{, then} \ \left| \bigcup_{u \in \mathrm{Split}_\alpha(T)} \mathrm{suc}(u,T) \right| = h(\alpha)^{|\alpha|}. \quad \Box$

 $\begin{array}{ll} \mbox{Proposition} \quad [vdV] \mbox{ lemma 4} \\ \mbox{Let } \gamma < \kappa \mbox{ and } \langle T_{\xi} \mid \xi < \gamma \rangle \in {}^{\gamma}(\mathbb{S}^h_{\kappa}) \mbox{ be decreasing. If } u \in T = \bigcap T_{\xi} \\ \mbox{is splitting in } T_{\xi} \mbox{ for all } \xi < \lambda, \mbox{ then } u \mbox{ is splitting in } T \mbox{ and there is } \\ \eta < \kappa \mbox{ such that for all } \xi \in [\eta, \lambda) \mbox{ we have } \mbox{suc}(u, T) = \mbox{suc}(u, T_{\xi}). \\ \mbox{Proof. Let } \lambda_{\xi} = |\mbox{suc}(u, T_{\xi})|, \mbox{ then } \langle \lambda_{\xi} \mid \xi < \gamma \rangle \mbox{ is a descending} \\ \mbox{sequence, hence there is } \eta < \gamma \mbox{ such that } \lambda_{\xi} = \lambda_{\eta} \mbox{ for all } \xi \in [\eta, \gamma). \\ \mbox{Thus } \mbox{suc}(u, T_{\xi}) = \mbox{suc}(u, T_{\eta}) \mbox{ for all } \xi \in [\eta, \lambda). \end{array}$

 $\begin{array}{ll} \mbox{Corollary} & [vdV] \ lemma \ 4 \\ \mathbb{S}^h_\kappa \ \mbox{is} \ < \kappa\mbox{-closed}. \end{array}$

Proposition [vdV] lemma 6

 \mathbb{S}^h_{κ} is closed under fusion and has the $<\!(2^{\kappa})^+$ -cc.

Sacks property of \mathbb{S}^h_{κ}

20/27

For any $T \in \mathbb{S}_{\kappa}^{h}$ and $u \in T$, the subtree T_{u} is a condition.

Every T has a sharp $T^* \leq T$ such that $\operatorname{Split}_{\alpha}(T^*) \subseteq \operatorname{Split}_{\alpha}(T)$ and each $u \in \operatorname{Split}_{\alpha}(T^*)$ is a sharp $h(\alpha)$ -splitting node.

Theorem [vdV] theorem 7 For every $h \in {}^{\kappa}\kappa$ there exists $F \in {}^{\kappa}\kappa$ such that $h \leq F$ and \mathbb{S}^{h}_{κ} has the *F*-Sacks property. In particular, $F : \alpha \mapsto h(\alpha)^{|\alpha|}$ suffices. *Proof sketch.* We use the same idea as pow-Sacks property of \mathbb{S}_{κ} . Let $T_0 \in \mathbb{S}^h_{\kappa}$ and \dot{f} be a \mathbb{S}^h_{κ} -name with $T_0 \Vdash$ " $\dot{f} \in {}^{\kappa}\kappa$ ", then we construct a fusion sequence $\langle T_{\xi} | \xi < \kappa \rangle$ and a sequence of sets $\langle A_{\xi} | \xi < \kappa \rangle$ with $|A_{\xi}| \leq F(\alpha)$ such that $T_{\xi+1} \Vdash \check{f}(\check{\xi}) \in \check{A}_{\xi}$. We need $u \in \text{Split}_{\alpha}(T_{\xi})$ to have $|\operatorname{suc}(u, T_{\xi})| = h(\alpha)$ for each $\alpha < \xi$, hence we make sure T_{ξ} is sharp for all ξ . Cont'd Cont'd. Given T_{ξ} , let $V_{\xi} = \bigcup_{u \in \operatorname{Split}_{\xi}(T_{\xi})} \operatorname{suc}(u, T_{\xi})$, then $|V_{\xi}| \leq h(\xi)^{|\xi|} = F(\xi)$ because T_{ξ} is sharp. For each $v \in V_{\xi}$, we find $T_{\xi}^{v} \leq (T_{\xi})_{v}$ that decides $\dot{f}(\check{\xi})$. We then fix some successor v' of some $u' \in \operatorname{Split}_{\xi}(T_{\xi}^{v})$ and let $T'_{\xi+1}$ be the amalgamation of all $(T_{\xi}^{v})_{v'}$ with $v \in V_{\xi}$. Finally we let $T_{\xi+1} = (T'_{\xi+1})^{*}$ be sharp. A_{ξ} consists of the values that each T_{ξ}^{v} decided for $\dot{f}(\check{\xi})$.

For limit
$$\gamma$$
 we take $T_{\gamma} = (\bigcap_{\xi < \gamma} T_{\xi})^*$.

Corollary

 \mathbb{S}^h_{κ} preserves κ^+ .

Corollary

If $\mathbf{V} \vDash "2^{\kappa} = \kappa^+$ ", then \mathbb{S}^h_{κ} preserves all cardinals and cofinalities.

Theorem [vdV] theorem 9

Let $F,h\in {}^{\kappa}\kappa$ and $F\ll h$, then \mathbb{S}^{h}_{κ} does not have the F-Sacks property.

Proof sketch. Similar to the failure of id-Sacks property for \mathbb{S}_{κ} .

Let φ be an F-slalom, $T \in \mathbb{S}^h_{\kappa}$, and \dot{f} name the \mathbb{S}^h_{κ} -generic κ -real.

There are unboundedly many limit $\alpha < \kappa$ s.t. $T \cap {}^{\alpha}\kappa = \operatorname{Split}_{\alpha}(T)$. If $u \in T \cap {}^{\alpha+1}\kappa$, then T_u decides $\dot{f}(\alpha)$ and there are $h(\alpha)^{|\alpha|}$ many such u. Since $|\varphi(\alpha)| = F(\alpha) < h(\alpha)$, we can choose u with $u(\alpha) \notin \varphi(\alpha)$ to see that $T_u \Vdash ``\dot{f}(\check{\alpha}) \notin \check{\varphi}(\check{\alpha})''$. By denseness it follows that $\Vdash ``\dot{f} \notin \check{\varphi}''$. Lemma [vdV] lemma 10, 11, 12

Let A be a set of ordinals, then $(\mathbb{S}^h_{\kappa})^A$ is $<\kappa$ -closed, has the $<(2^{\kappa})^+$ -cc and is closed under generalised fusion.

Lemma [vdV] lemma 13 If \mathbb{S}^h_{κ} has the *F*-Sacks property, then $(\mathbb{S}^h_{\kappa})^A$ has the *F*-Sacks property.

Theorem [vdV] theorem 14

Let $F_0, h \in {}^{\kappa}\kappa$ be increasing cofinal cardinal functions such that $F_0 \ll h$ and let $F_1 : \alpha \mapsto h(\alpha)^{|\alpha|}$. Assuming that $\mathbf{V} \models {}^{"}2^{\kappa} = \kappa^+ {}^{"}$ and $\lambda > \kappa^+$ is regular, for any $(\mathbb{S}^h_{\kappa})^{\lambda}$ -generic G we have $\mathbf{V}[G] \models {}^{"}\mathfrak{d}^{F_1}_{\kappa}(\in^*) = \kappa^+ < \mathfrak{d}^{F_0}_{\kappa}(\in^*) = \lambda = 2^{\kappa} {}^{"}.$

Proof sketch. First, $\mathfrak{d}_{\kappa}^{F_1}(\in^*) = \kappa^+$ by the F_1 -Sacks property.

That $\lambda = 2^{\kappa}$ is a standard argument.

Working in $\mathbf{V}[G]$, let $\kappa^+ \leq \mu < \lambda$ and suppose that $D = \{\varphi_{\xi} \mid \xi < \mu\} \subseteq \operatorname{Loc}_{F_0}$ witnesses that $\mathfrak{d}_{\kappa}^{F_0}(\in^*) = \mu < \lambda$. Since F_0 -slaloms are essentially κ -reals, it follows that there is $A \subseteq \lambda$ with $|A| \leq \mu$ such that $D \in \mathbf{V}[G \upharpoonright A]$.

We may then pick $\beta \in \lambda \setminus A$ and let f be the \mathbb{S}^h_{κ} -generic κ -real added in the β -th term of the product. The proof that \mathbb{S}^h_{κ} does not have the F_0 -Sacks property, implies that $f \notin \varphi_{\xi}$ for any $\xi < \mu$. \Box

- Slalom cardinals
- $\circ~$ Separating the slalom cardinals
- $\circ~$ Separating more slalom cardinals
- Open problems

Open problems

- Can we separate multiple $\mathfrak{d}^h_\kappa(\in^*)$ simultaneously?

 $- \text{ Let } \kappa^+ < \lambda < \mu \text{, and } \mathrm{id} \ll h \ll h' \text{, use } (\mathbb{S}^h_\kappa)^\mu \times (\mathbb{S}^{h'}_\kappa)^\lambda$

- If $h \ll h'$, does there exists $h \leq g \leq h'$ such that $\mathfrak{d}^g_{\kappa}(\in^*)$ is consistently different from $\mathfrak{d}^h_{\kappa}(\in^*)$ and $\mathfrak{d}^{h'}_{\kappa}(\in^*)$?
- If are there h and h' such that both $\mathfrak{d}^h_\kappa(\in^*) < \mathfrak{d}^{h'}_\kappa(\in^*)$ and $\mathfrak{d}^{h'}_\kappa(\in^*) < \mathfrak{d}^h_\kappa(\in^*)$ are consistent?
 - $\begin{array}{l} \mbox{ We need stationary sets } S,S' \mbox{ such that } h(\alpha) \leq h'(\alpha) \mbox{ for all } \alpha \in S \mbox{ and } h'(\alpha) \leq h(\alpha) \mbox{ for all } \alpha \in S'. \end{array}$
- Can we separate $\mathfrak{b}_{\kappa}^{h}(\in^{*})$ for different functions $h \in {}^{\kappa}\kappa?$
 - We cannot dualise the forcing, as we need $\mathbf{V} \vDash 2^{\kappa} = \kappa^+$.
- What is the relation between the slalom cardinals and Shelah's "null ideal" for inaccessible λ ?
 - Partial results: [Baumhauer et al., 2020]

References

Tomek Bartoszyński. Combinatorial aspects of measure and category. Fundamenta Mathematicae, 127(3):225–239, 1987.

- Tomek Bartoszyński and Haim Judah. Set Theory: On the Structure of the Real Line. A.K. Peters, Wellesley, MA, 1995.
- Thomas Baumhauer, Martin Goldstern, and Saharon Shelah. The Higher Cichoń Diagram. Fundamenta Mathematicae, 252(3):241–314, 2020.
- Andreas Blass. Combinatorial Cardinal Characteristics of the Continuum. In Handbook of Set Theory Vol. 1, pages 395–489. Springer, Dordrecht, 2010.
- Jörg Brendle, Andrew Brooke-Taylor, Sy-David Friedman, and Diana Carolina Montoya. Cichoń's diagram for uncountable cardinals. Israel Journal of Mathematics, 225(2):959–1010, 2018.
- Thomas Jech. Set Theory: Third Millennium Edition. Springer Monographs in Mathematics, 2003.
- Akihiro Kanamori. Perfect-set forcing for uncountable cardinals. Annals of Mathematical Logic, 19(1-2):97–114, 1980.
- Tristan van der Vlugt. Separating Many Slalom Cardinals. Unpublished notes: http://tvdvlugt.nl/separatingslaloms.pdf, 2021.