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Introduction 2/27

Main goal: generalise results known for the classical reals “2 to

the generalised reals *2.

Classically, for every cofinal h € “w we can define what an
h-slalom is. We can define cardinal characteristics b” (c*) and
9 (€*). It can be proved that the choice of h does not matter:
bl (e*) = bl(€*) and 02 (€*) = d(€*) for all h, g.

Generally, for inaccessible k, it was found that if id : o — « and
pow : a — 2021, then 22" (e*) < 019(€*) is consistent.

In this talk we show that there is a sequence (h, € "k | @ < K)
By , .
such that 0, (€*) < dl=(€*) is consistent for all o < .
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Let k be regular strong limit
and h € "k be an increasing

cofinal cardinal function.

An h-slalom is any function
¢ : K — [K]<" such that
lp(a)| = h(a) for all a € k.

For f € "k, we say f € ¢, or
f is localised by ¢, if there

exists some £ < k such that
f(a) € p(a) for all a € [¢, k).

We will let Locy, be the set of

h-slaloms.

[Bartoszynski, 1987]
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We define the following cardinal characteristics:
b"(€*) = min {|B| | B C " and Vo € Loc,3f € B(f ¢* )},
?"(e*) = min {|D| | D C Loc, and Vf € "k3p € D(f €* ¢)}.

K

Proposition [Brendle et al., 2018] sections 4.3 & 4.4
kT < bP(e*) <ol(e*) < 2%, and all relations can consistently be
strict inequalities. Ol

Let NV be the ideal of sets of reals with Lebesgue measure 0.
add(N) = min {|A] | ACN and JA ¢ N},
cof(M) =min {|C| | CC N and VN e NIC € C(N C O)}.

Proposition [Bartoszynski, 1987] or [Bartoszyriski and Judah, 1995]
b (€*) = add(N) and d,,(€*) = cof(N) O
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Theorem  [Bartoszyriski, 1987] or [Blass, 2010] remark 5.15 (for k = w)

If h, g € "k are continuous (i.e. h(y) = U, h() for limit v) and
unbounded, then 2% (€*) = d¥(€*) and bl (€*) = b (€*).

Proof. Let (¢, | £ € k) enumerate a club s.t. h(a) < g(&,), and
let I, = [€a,&ar1). Fix some bijections 7 : & > Tok.

Forany f € "k let f': a+ 7, (f | ). For any ¢ € Locy, and

§ € Lo let ¢'(€) 2 {ma(i)(§) | i € p(a)} st [¢'(€)] = 1g(£)I.

If f/€*p, let abest. f'(a) € p(a). Then o (f () = f | Ia-
If £ € I, then f(&) = ma(f'()) (&) € ¢'(§). Hence f €* ¢'.

If D with |D| = \ witnesses 0%(€*) = X and f € "k, let f' be as
above and ¢ € D such that f' €* ¢. Then f €* ¢/, so

{¢" | ¢ € D} witnesses 0% (€*) < . O
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Our goal is to separate 27(€*) from o (c*) for two h, g € *x.
Definition

A forcing notion (P, <) has the (generalised) h-Sacks property if
for every P-name f and condition p € P such that p I+ " f € #x"
there exists a ¢ < p and h-slalom ¢ € Locy, such that

qIF" f(a) € p(a)" for all a < k.

Proposition see e.g. [Jech, 2003] lemma 15.36 (for k = w)
If P has the h-Sacks property for some h € " and P is <k-closed,
then PP does not collapse x*. Ol

Lemma
Let P have the h-Sacks property and preserve cardinals, then
VI[Gp] E“dl(e*) < (2F)V". O
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Let T C <"k be a tree. For any node u € T let

suc(u, T) ={veT |30 < k(v=u"p)}.

Node u is a-splitting in T if o < |suc(u, T)|. If u is a-splitting
but not || -splitting, then we call u a sharp a-splitting node. A
splitting node is a 2-splitting node, and any other node is
non-splitting.

We let u € Split,, (T) iff w is splitting and
ot({B < ot(u) | u | B is splitting}) = «, and we call « the
splitting level of u.

fueT, thenT,={veT|uCvorvCu}.
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The generalised Sacks forcing or perfect-set forcing S, has as
conditions trees 7' C <#2 such that:

(i) for any u € T there exists splitting v € T such that u C v,

(ii) if v < K and (uq | @ < v) € 7T are splitting nodes with

uq C ug for a < B, then u =, .., uo € T and u is splitting.

a<y
The ordering on Sy, is given by T' < S'iff T'C S.
If T € S, then .. Split, (T') is isomorphic with <+2.

a<k
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Proposition  [Kanamori, 1980] lemma 1.2
Sk is <r-closed and has the <(2%)"-cc. O

This implies that S,; preserves cardinals < x and <(2"). We will see
that S, has the pow-Sacks property, and thus preserves x*. Hence
if VE“2% = k1", then S, preserves all cardinals and cofinalities.

Let T' <, S iff T < S and Split,(T") = Split,(S). A fusion
sequence is a sequence (T, | a < k) s.t. Tg <, T, for all 5> a.
Proposition [Kanamori, 1980] lemma 1.4

Sk is closed under fusion, that is, if (T}, | & < k) is a fusion
sequence, then there is S € S, such that S < T, forall a < k. O
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Proposition [Brendle et al., 2018] proposition 65 & 66
Let pow : @ — 2% and id : a — «, then S, has the pow-Sacks
property, but does not have the id-Sacks property.

Proof sketch. If T € Sy, then |Split, (T)| = 2/°I. Let f be a name
such that T'IF " f € %k". For each v € suc(u,T) where

u € Split,, (T) find an extension of T/, C T, deciding f(a) and take
the amalgamation of these 7. Then use fusion to get increasingly
stronger trees 7,41 deciding f(a).

There are unboundedly many o < & such that 7'N *2 = Split (7).
Let f name the S,-generic s-real. If u € T N *2, then T, decides
f I o and there are 2/%l many such w. If ¢ is an id-slalom, then
lo(a)| = |a| < 2!°l, thus we can use a bijection g : k »» 2<% to
decide a value outside p(«). O
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Let P be a forcing and A be a set of ordinals. For a function

p:A— P, we let supp(p) ={£ € A | p(§) # 1p} be the support

of p. We define the <x-supported A-product of P as follows:
P4 ={p: A—P| |supp(p)| < r}.

If p,q € P4, then q <pa p iff (&) <p p(&) for all £ € A.

Proposition see e.g. [Jech, 2003] lemma 15.4, 15.12 & 15.17

If P is <k-closed, then P4 is <k-closed.
If [P| < A, then P4 has the <A*-cc. O

Corollary
S4 is <r-closed and has the <(2%)*-cc.
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Given p,qg € S4, a < K, and Z C A with |Z| < &, let ¢ <z, p iff

o
g < p and for each £ € Z we have ¢(§) <q p(§).
A generalised fusion sequence is a sequence ((pa, Za) | @ < K)
such that:

— po €S2 and Z,, € [A]<* for each a < &,

— P8 <Zu.a Pa and Z, C Zg for all a < < &,

— for limit § we have Zs = ,_5 Za,

a<d
- Uoz<n Zo = Uoé<,g Supp(pa)-

Proposition [Kanamori, 1980] lemma 1.9
S4 is closed under generalised fusion. O

Corollary
If VE"“28 = k1", then S preserves cardinals and cofinalities. [
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Lemma [Brendle et al., 2018] main lemma 69
A
S; has the pow-Sacks property.

Proof sketch. The proof is the same as before, but for multiple S,
conditions simultaneously. To construct the fusion sequence

((Pas Za) | @ < K), at stage o we only need to control p, () for

B € Z,. We can construct the sequence such that |Z,| = |« using
bookkeeping, hence the amalgamation stays small enough. O

Theorem [Brendle et al., 2018] theorem 70
Assume V E " 2% = xT" let A > kT be regular and let G be
S)-generic, then V[G] E “rt = 027" (€*) < did(e¥) = 28", O
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In essence, because ‘UUESplit (T) suc(u,T)‘ =2lel for T €Sy, we
have enough freedom to make the id-Sacks property fail, but
restrict the branching enough to make the pow-Sacks property hold.

Given h, g € "k, let h < g denote that |h(«)| < |g()]| for limit «.
Given some Fy € “k, we want to find F] € ®k such that Fy < Fj

and a forcing P such that P has the F;-Sacks property, but not the
Fy-Sacks property.

Solution: use a tree forcing with perfect trees T', where
u € Split,, (") splits more than Fy(«) times, but at most Fj(«)
times. We also need IP to preserve cardinals and we need the Sacks

properties to be preserved by products or iteration.
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Let h € *k be an increasing cofinal cardinal function. The
conditions of the forcing S" are trees T C <"r that satisfy the
following properties:

(i) for any u € T there exists splitting v € T such that u C v,

(i) if v <k and (uq | @ < 7y) € 7T are splitting nodes with

uq C ug for a < B, then u = uq € T and w is splitting,

a<y
(iii) if w € Split, (7T'), then w is an h(«)-splitting node in 7.

We say that T < S iff T C S and for every splitting u € T, either
suc(u, T') = suc(u, S) or |suc(u,T)| < [suc(u, 5)|.

Proposition
If T € St and o < K, then UuESplit (T) suc(u, T')| = h(a)‘od- [
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Proposition [vdV] lemma 4

Let v < k and (T¢ | € <) € 7(S]) be decreasing. If u € T = (T
is splitting in T¢ for all £ < A, then w is splitting in 7" and there is
n < & such that for all £ € [, \) we have suc(u, T') = suc(u, T¢).

Proof. Let \¢ = |suc(u,T¢)|, then (A¢ | £ < ) is a descending
sequence, hence there is 7 < 7 such that A\¢ = A, for all £ € [n,7).
Thus suc(u, T¢) = suc(u, Ty for all £ € [n, ). O

Corollary  [vdV] lemma 4
Sh is <k-closed. O

Proposition [vdV] lemma 6
S" is closed under fusion and has the <(2")"-cc. O
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For any T € SZ and u € T, the subtree T;, is a condition.
Every T has a sharp T* < T such that Split, (7%) C Split, (T
and each u € Split,, (T™) is a sharp h(«a)-splitting node.

Theorem [vdV] theorem 7
For every h € "k there exists F' € "k such that h < F and S" has
the F-Sacks property. In particular, F': a — h(a)!®! suffices.

Proof sketch. We use the same idea as pow-Sacks property of S,.

Let Ty € S! and f be a Sk-name with Ty I- “ferk”, then we
construct a fusion sequence (T¢ | £ < k) and a sequence of sets
(Ag | € < k) with |A¢| < F(a) such that Teyq - f(€) € A"

We need u € Split, (T¢) to have [suc(u, T¢)| = h(«) for each
a < &, hence we make sure T is sharp for all &. Cont'd
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Cont'd. Given T, let Ve = UUGSplitE(Tg) suc(u, Tg), then

[Ve| < h(€)El = F(€) because Ty is sharp. For each v € V%, we
find T < (1g), that decides £(€). We then fix some successor v
of some v’ € Split¢(7¢) and let T/, , be the amalgamation of all
(T¢). with v € V¢. Finally we let Teyq = (T, )" be sharp.

Ag consists of the values that each T decided for f(&).
For limit v we take 1%, = (¢, T¢)" O

Corollary
h +
Sy preserves k™.

Corollary
If VE"“2% = xT", then S" preserves all cardinals and cofinalities.



Sacks property of S” 22/27

Theorem  [vdV] theorem 9

Let F,h € "k and F < h, then S! does not have the F-Sacks
property.

Proof sketch. Similar to the failure of id-Sacks property for Sj.

Let ¢ be an F-slalom, T € S", and f name the S/'-generic x-real.

There are unboundedly many limit @ < x s.t. T'N %k = Split,, (T').
If w e TNk, then T, decides f() and there are h(a)!®l many
such u. Since |p(a)| = F(a) < h(a), we can choose u with

u(a) ¢ p(a) to see that T, IF" f(&) ¢ B(ct)". By denseness it
follows that IF“ f ¢* 3" O
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Lemma [vdV] lemma 10, 11, 12
Let A be a set of ordinals, then (S?)4 is <k-closed, has the
<(2%)*-cc and is closed under generalised fusion. O

Lemma [vdV] lemma 13
If S! has the F-Sacks property, then (S?)# has the F-Sacks
property. []

Theorem  [vdV] theorem 14

Let Fy, h € "k be increasing cofinal cardinal functions such that
Fy < h and let F| : oo h(a)l®l. Assuming that V " 2% = x+"
and A > sV is regular, for any (S/)*-generic G we have

VG E“ofi(e*) = wt <dfo(er) = A =2"".
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Proof sketch. First, 0f1(€*) = k* by the Fy-Sacks property.
That A\ = 2" is a standard argument.

Working in V[G], let kT < u < X and suppose that

D = {p¢ | € < u} C Locg, witnesses that 9£0(€*) = < A. Since
Fy-slaloms are essentially x-reals, it follows that there is A C A
with |A| < p such that D € V[G | A].

We may then pick 3 € A\ A and let f be the S-generic k-real
added in the -th term of the product. The proof that S” does not
have the Fy-Sacks property, implies that f ¢ ¢ forany § < p. O
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— Can we separate multiple 9”(€*) simultaneously?
— Let kt < A< g, and id < h < I, use (SP)* x (SP)A
— If h < I/, does there exists h < g < h/ such that d7,(€*) is
consistently different from 9" (c*) and 2/ (€*)?
— If are there h and A’ such that both 2"(*) < "' (*) and
o (e*) < ol (e*) are consistent?
— We need stationary sets S, S’ such that h(a) < h/(«) for
all @ € S and I (a) < h(a) for all a € 5.
— Can we separate b’(c*) for different functions h € *x?
— We cannot dualise the forcing, as we need V F 28 = .
— What is the relation between the slalom cardinals and Shelah's
“null ideal” for inaccessible \?
— Partial results: [Baumhauer et al., 2020]
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